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Time Scales of a Chaotic Semiconductor Laser
With Optical Feedback Under the Lens of a
Permutation Information Analysis

Miguel C. Soriano, Luciano Zunino, Osvaldo A. Rosso, Ingscher, and Claudio R. Mirasso

Abstract—We analyze the intrinsic time scales of the chaotic the relaxation oscillation period of the semiconductoetabut
dynamics of a semiconductor laser subject to optical feedlsk by  possibly also faster time scales, as we will discuss in thjzep
estimating quantifiers derived from a permutation information  Tha resolution of chaotic lidar and the transmission raties o
approach. Based on numerically and experimentally obtaing chaos communications are limited by this characteristst fa
times series, we find that permutation entropy and permutatbn > . y .
statistical complexity allow to extract important characteristics time scale of the semiconductor laser [14]. The feedback tim
of the dynamics of the system. We provide evidence that per- delay is another intrinsic time scale determining the dyicam
mutation statistical complexity is complementary to permdation  of semiconductor lasers with feedback. The time delay is im-
entropy, giving valuable insights into the role of the diffeenttime 5 tant to generate suitable carriers for chaos commuaitat
scales involved in the chaotic regime of the semiconductonser but al b the d . f tain chaotic delaved
dynamics subject to delay optical feedback. The results obtned ut aiso, ecaqse .(_9 ynamics or certain ¢ _39 Ic ae ayg
confirm that this novel approach is a conceptually simple and systems can be identified and modeled once their time delay IS
computationally efficient method to identify the characteistic known [15]-[17]. Consequently, the identification of thendi
time scales of this relevant physical system. delay could compromise the security and confidentiality of

Index Terms—Semiconductor lasers, optical feedback, chaos, chaotic communication systems [18]-[20]. Ronteinal. [21],
time scale identification, permutation entropy, permutation sta- [22] have recently shown that difficult time delay identifioa
tistical complexity. scenarios strongly depend on the time scales of the system, i
the separation between the relaxation oscillation period a
feedback time delay plays a starring role in the retrieval of
) o ) ) ) the time delay.

The identification of essential physical time scales from g )| these aspects, a detailed study of the time scales
complex laser dynamics is a nontrivial task, which is howevegesent in the chaotic dynamic of a semiconductor laseestbj
important for their general characterization and applicat {5 gptical feedback is very important. This critical issw i
In particular, systems with time delays can generate chaofijgressed in this work by estimating permutation entropy,
dynamicsyvith high complexity, i.e. they posses a large rmmbHS’ and permutation statistical complexitg,;s, of both,
of dynamical degrees of freedom [1]. This is one of thg merical and experimental time series of the laser output
properties which makes delay systems very attractive foli-ap power as functions of the embedding detayf a particular
cations. Particularly, optical chaos encryption is basedn® gympolic reconstruction. It is worth mentioning that thisvel
unpredictability of the chaotic carrier [2] besides its &§10-  55hr0ach, derived from information theory, provides ukefu
nizability [3]. Chaotic radar [4] and lidar [S], rainbow rét-  eyidence about time delay phenomena present in noisy time
tometry [6], and ultrahigh-speed physical random number geseries [23]. More specifically, in this work it is found thaith
eration [7], [8] are other relevant applications of optichhos quantifiers, s and Cg, develope clear extrema when the
based on delay-phenomena. Semiconductor lasers Witmbpt@rnbedding delay matches the characteristic time delay
feedback have been shown to be particularly suitable f@eth&y the system. In the present work we verify from numerical
applications due to their large dynamical bandwidth [9B}1 5nq experimental time series that these quantifiers are able

This bandwidth amounts to typically several GHz, related g identify the feedback time delay and relaxation osdifat
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Finally, some concluding remarks are given in Section V. These systems are defined to have zero statistical complexit
At a given distance from these extremes, a wide range of
Il. INFORMATION THEORY QUANTIFIERS possible degrees of physical structure exists, that shbeld

Deterministic chaotic time series produced by nonlined antifigd by the statistical_complgxi.ty measure..Lambﬁrti
time delay systems share several properties with thoser-geTg [38] mtrqduced an effective statls_,t|cal cqmplexny measu
ated by stochastic processes, e.g. a wide-band power gpect CM)_ that 'S able to detect essential detglls_o_f the dynamic
and a long-term unpredictable behavior. They can be hard d dlffe_re_nnate dn‘fere_nt degrees O.f per|_od|C|ty and_cnﬂna
distinguish in practical situations and several works @me s statistical complexity measure is defined, following t

at elucidating the deterministic or random nature of a tirﬂ%tu't've notion advanced by Lopez-Ruét al. [39), through
series [24], [25]. This similarity justifies the use of standl the product

statistical operators to study the properties of chaotiteti Crs|P] = Qy[P, Pe] Hs[P)] )
series. Autocorrelation function (ACF) and delayed mutugk the normalized Shannon entropy

information (DMI) are conventional techniques widely used

to identify time delays [18], [20]-[22], [26], [27]. Howeve Hs[P] = S[P]/Smax 2
new alternatives were introduced in recent years in order to

perform this task [28]-[35]. We are particularly interakie With Smax = S[f] = InM, (0 < #Hs < 1) and
the application of a permutation information theory methoope = {1/M,...,1/M} the uniform distribution, and the

; : C i ilibrium Q; defined asQ;[P,P.] = QuJI[P,P.].
ology to unveil delay phenomena from time series mtroducg equi a .
recently [23]. In this approach, quantifiers derived frorfoin ‘#TP’ Pe] = {S[(P+Pe)/2]-5[P]/2—5[F.]/2} is the Jensen-

: . .Shannon divergence ar@gl, a normalization constant, equal to
mation theory, more precisely Shannon entropy and stilsti : . : ! )
4 P y by tge inverse of the maximum possible value 6fP, P.]. This

complexity, are estimated by using an efficient symboli ) : .

technique, the Bandt and Pompe permutation method [3 aximum yalue is obtained when one (-)f.the components of

to determine the probability distribution associated te th ’ saypm, is equal to one and the remaining components are
qgual to zero. The Jensen-Shannon divergence, that gaantifi

time series under study. This way of symbolizing time serie dife bet o bability distribns
based on a comparison of consecutive points, allows a m(g g dinerence between two (or more) probability distribs,

accurate empirical reconstruction of the underlying phagse espec(j:_ffllly u;seful to compz:)e tr\}\? sytmbol fﬁmfost't;ﬁntbti'
space of chaotic time series affected by weak (observatioﬁ een different sequences [40]. We stress the fact that the

and dynamical) noise [36]. This is the main advantage wi ove SCM is not a trivial function of the entropy because

respect to standard methods, like ACF and DMI, that ta&tedep?rldz ct)n m’o dn‘f(tarent prgbabnmle s§d|str(|jbltjrt]|ori$e_:one
the exact metric into account. Moreover, the ordinal patteg_siqg'a}[_e PO Fetﬁys em u'_l her a:)nay ,;,an thetlfjm orm
distribution is invariant with respect to nonlinear monatas IStribution . FUhermare, it has been snown that for a given

transformations. Thus, nonlinear drifts or scalings aitfly #s value, there exists a range of possible SCM values [41].

introduced by a measurement device do not modify tﬁréws, it is clear that important additional informationateld

quantifiers estimations. This property is highly desiredtfee o the c_orrela'uonal ;tructure between the components_ of
analysis of experimental data. The basic intrinsic stnm:tuthe phy§|caI system is provided by evaluating the stasibtic
of complex systems is obtained in a very fast and flexibf:eomplexIty [42], [43].
way. Characteristic time scales present in the system dipsam

are detected through the presence of clear extrema of BieBandt and Pompe symbolization method

quantifiers when they are calculated as a function of the|, orger to evaluate the two above-mentioned quantifiers,
embedding delay. g andC,g, an associated probability distribution should be

constructed beforehand. The adequate way of choosing the
A. Shannon entropy and statistical complexity probability distribution associated to a time series is pero

Shannon entropy is widely used as a first natural approdé'ﬁ)mem- Rarely,_ a univocal procedure imposes itself. Band
to quantify the information content of a system. Given arg§"d Pompe [36] introduced a successful method to evaluate th
arbitrary probability distribution? = {p; : i = 1,..., M}, probability dlstr|but|on_ taking into account _the time cality .
the widely known Shannon’s logarithmic information measu©f the system dynamics. They took partitions by comparing
defined by S[P] = —2?11 pi lnp; is regarded as the the qrder (_)f ne|ghb0r|ng values rath_er th_an partl_tlonlng _th
measure of the uncertainty associated to the physical gsoc@mPplitude into different levels. That is, given a time serie
described byP. If S[P] = 0 our knowledge of the underlying {#;¢ = 1,..., N}, an embedding dimensio® > 1, and
process described by the probability distribution is maadirm ~ @n embedding delay time, the ordinal pattern of ordeb
contrast, our knowledge is minimal for a uniform distriouti  9enerated by

However, entropy measures do not quantify the degree of
structure or patterns present in a process and measures of
statistical or structural complexity are necessary to wa&pt has to be considered. To each timewe assign aD-
properties related to organization [37]. The oppositeesrtzrs dimensional vector that results from the evaluation of the
of perfect order and maximal randomness (a periodic seguetime series at times — (D — 1)7,...,s — 7, s. Clearly, the
and a fair coin toss, for example) possess no complex steictthigher the value ofD, the more information about the past is

S = (xs—(D—l)T7 Ls—(D-2)ry -y Ls—7, Is) 3)



incorporated into the ensuing vectors. By the ordinal patte 1. NUMERICAL RESULTS
of order D related to the times we mean the permutation

_ In this paper, we focus on the chaotic dynamics of a
m = (ro,r1, -+ ,rp—1) of (0,1,--- ., D — 1) defined by

semiconductor laser. In particular, we consider a singléano
laser with moderate delayed feedback, operating in thereohe
ence collapse regime. The data used in our analysis orginat

hi h defined b 3) i di from the numerical integration of the widely used Lang-
In this way the vector defined by Eq. (3) is converte IntRobayashi rate equations [53]. These equations have been

g unique slymbolzr. -Irhel procedure can hbe better 'IIUSt,r?]teghown to be successful in modelling the dynamical behaviors
y a simple 62xamp4e, et us asdsumeht at WE starth\gtd_ tIa‘lesemiconductor lasers subject to weak to moderate coheren
time series{3,2,5,1,4,6, ... }, and we choose the embe InQ)ptical feedback, taking into account a single reflectiothim

dr:_mensmn r?SD =4 and th_e edr_npdedddl_n? de"’%‘y_ as= 1&'” external cavity. The equations for the complex slowly vagyi
this case the state space Is divided Ificpartitions and24 mplitude of the electric field2(¢) and the carrier number

mutually exclusive permutation symbols are considerece T side the cavityN'(¢) are
first 4-dimensional vector i3, 2,5,1). According to Eq. (3)

Ts—ror Z Ls—riT Z e Z Ts—rp_oT Z Ls—rp_17- (

this vector corresponds t0rs_j, zs—2, xs—1,25). Following .y _ Ldie g0 1], Bt — it
Eq. (4) we find thatr;,_; > xs_3 > zs_2 > zs. Then, the ®) 2 ®) Tp (1) +7E(t = m5)e™(5)
ordinal pattern allowing us to fulfill Eq. (4) will bél, 3,2, 0). . I N(t) 9

The second-dimensional vector i$2, 5, 1,4), and(2,0,3,1) NE) = e ™~ GOIEMS, ©

will be its associated permutation, and so on. For all fie h B 2) is th ical
possible permutations; of order D, their associated relative V€€ G(t) = g(N(t) — No)/(1 + s|E(t)|") is the optica

frequencies can be naturally computed by the number of timed"- Table | details the dlffgrent parametgrs as well ag th_e
this particular order sequence is found in the time Serigglqes.as they were used in f[he S|muIaF|on. The relaxation
divided by the total number of sequences. Thus, an ordirficillation frequency of the solitary laser fso = 4.2 GHz
pattern probability distributior? = {p(r,),i = 1,...,p!} at this pumping condition.

is obtained from the time series. This probability disttibo

. . . . . . Parameter Description Value
is derived once we fix the embedding dimensibnand the o linewidth enhancement facio 5
embedding delay timer. The former parameter plays an Tp photon lifetime 2 ps
; ; ; o ™ carrier lifetime 2ns
mpqrtant role.for the evaluatllon of the appropriate prolntab_ p differential gain coefficient | 1.5 x 10~* ps-!
dlstnbutpn, sinceD determmes_ the number_ of accessible N, carrier number at transparendy 1.5 x 105
states, given byD!. Moreover, it was established that the s gain compression coefficient 5x 1077
length N of the time series must satisfy the conditiyins> D! Ts feedback time delay 1ns
. der to obtai liable statisti 441 With th ~ feedback strength 20 ns~!
in order to obtain a reliable statis ics [44]. With respex e o optical feedback phase 0
selection of the other parameter, Bandt and Pompe spelsifical I threshold current 14.7 mA
considered an embedding delay= 1 in their cornerstone ! bias current L5
paper [36]. Nevertheless, it is clear that other values oduld

; " . . TABLE |
provide additional information. It has been recently shofat PARAMETER SET IN THE NUMERICAL SIMULATION.

the embedding delay is strongly related, if it is relevant, with
the intrinsic time delay of the system under analysis [23].

In this work the normalized Shannon entropis (Eq. (2)), The intensity dynamics of the laser was obtained by numer-
and the SCM( ;s (Eg. (1)), are evaluated using the permuically integrating Egs. (7) and (8) using a second-orderdgesn
tation probability distribution,P = {p(m;),i = 1,...,D!}. Kutta method with a time step okt = 0.1 ps. We analyzed
Defined in this way, these quantifiers are usually known as péime series ofV = 2-10° data points with a sampling period
mutation entropy and permutation statistical complexd§][ of Q, =1 ps. Figure 1 shows a typical temporal trace.

[46]. These symbolic quantifiers were shown to be partityilar In Fig. 2 we plot the normalized permutation entropy,
useful for different purposes like distinguishing chaatics- g, and the permutation statistical complexity;s, asso-
tems from stochastic processes [24], detecting noisecedlu ciated with the laser intensity time series as a function of
temporal correlations in stochastic resonance phenondétja [ the embedding delay for different embedding dimensions
guantifying the randomness of chaotic pseudo-random numi¢¢ < D < 8). Independently of the embedding dimension
generators [48], discriminating market dynamics [49], anithe permutation entropy is minimized and the permutation
characterizing the complexity of low-frequency fluctuasdn statistical complexity is maximized when the embeddingyel
semiconductor lasers with optical feedback [50]. In additi = of the symbolic reconstruction is similar tas, i.e. for

a very related approach, based on computing the number: 7,/Q, = 1000. This particular value, denoted ag

of forbidden patterns present in the time series, has bdeereafter, is slightly larger than due to the inertia of the laser
recently used to find evidence of deterministic behavior system. The inertia or internal response time is an inherent
financial time series [51] and to characterize numericatlgt a property difficult to determine precisely and affects mdshe
experimentally the level of stochasticity in the leadeygard methods proposed to identify time delay from time serie§.[20
dynamical regime of two mutually coupled semiconductdn particular, we have obtained the same time delay estimati
lasers [52]. by using the autocorrelation function (ACF) and the delayed
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conventional techniques [21], [22], [31].

It is worth noting that the time delay of the system can b
identified from the analysis of only one of the two quantifier:
Both of them have local extrema around the time dela
providing approximately the same information. However,
should be noted that the permutation statistical compléasit . Tl T
better in identifying the time delay due to the higher cositra Embedding delay
with the base line. Other minima and maxima#¢g andC g,
respectively, are obtained when the embedding delay msatch@. 2. Permutation entropyts (top) and permutation statistical complexity
harmonics and subharmonics of TS However, they are less Cys (bottom) as a function of the embedding delaywith embedding

dimensions4 < D < 8 for the numerical intensity time series. Black and
pronounced as it can be concluded from Fig. 2. The nUMRRLy arrows indicate the peaks associated to the relaxatioifiation period.
of the peaks associated to subharmonicsifncreases with Locations of the local extrema associated with the feedlimok delay T
the embedding dimension. More precisely, there Bre- 2 and its subharmonics fab = 8 are detailed in the insets. It is worth notmg

. . . that the local extrema related to subharmonics decreasetitade.

subharmonic peaks for embedding dimension located at
7$/2,78/3,...,75/(D—1). In the insets of Figure 2 we have
detailed the locations of the different peaks for the paldc
case of embedding dimensiob = 8. It is reasonable to location of the latter peak shifts to the left with the embiadd
assume that with the largest possible embedding dimensonsimension and better identification is curiously obtained f
have considered, i.e. with = 8, more information is being smaller embedding dimension value® & 4, 5 and 6). We
included when estimating the quantifiers because, in trge,cahave checked that extrema at similar locations, namgty/2
we are maximizing the length and number of symbols. We jushd 7§ + 70 /2, are obtained for the autocorrelation function
have to take into account that longer time series are negessand the delayed mutual information.
in this case {V > D!). In addition, we find a third relevant time scale for an even

From Fig. 2 we can identify other significant extrema o$maller embedding delay value. The permutation complexity
the quantifiers for an embedding delayslightly larger than indicator has a pronounced change for well-defined small
7¢ (indicated by the black arrow). The presence of this pea@knbedding delays. Figure 3 displays the behavior of both
can be attributed to the relaxation oscillation periegp, quantifiers for embedding dimensiohs D < 8andl <7 <
because its time location (= 1155) is approximately equal 50. C;s is maximized for an intermediate valueofvhile Hs
to 74 + Tro/2 independently of the embedding dimensiormonotonically increases with in this domain highlighting an
Also for small embedding delays we find the signature d@fportant difference between both quantifiers. This paldic
the relaxation oscillation period. The gray arrow indicatiee embedding delay valug,;, at which the permutation statistical
location of a broader peak. Its position is aroungh /2. We complexity reaches a local maximum, represents the mitymal
have confirmed that in the case of periodic functions certaiaquired sampling rate to capture all the information ezlat
ordinal patterns do not appear, or have very small proligsili to the nonlinear correlations of the fast chaotic dynamics.
for embedding delay at the half of the period. Consequentlle note that this time scale is faster than the relaxation
‘Hs has a minimum and ;s has a maximum for this particular oscillation time scale. It is therefore not sufficient to aet
embedding delay value. As it can be seen from Fig. 2 tlwath the bandwidth of the relaxation oscillations in order t




acquire the full complexity of the dynamics. The origin o
this faster time scale can be associated with the picosect
pulsing due to partial mode locking of the external cavit
modes in the delayed feedback system, as it has been foi
in Ref. [54]. In order to justify that this time scale is raldt
to the fast chaotic dynamics we have analyzed the evoluti
of the quantifiers for small embedding delays<( 7 < 50) in
the complexity-entropy causality plane, i.e. the planentgd
with the permutation entropy of the system in the horizont
axis and the permutation statistical complexity in the icatt
one. The termcausality takes into consideration that the
temporal correlation between successive samples is taken i
account by using the permutation probability distributimn
estimate both information theory quantifiers. This repnése
tion space was shown to be useful to discriminate betwe o s 1 15
chaotic systems and stochastic processes, locating then

different planar positions [24]. It is clear that the embiadd

; ; ; . Fig. 3. Permutation entrop}s and permutation statistical complexify; s
delay IS dlreCtIy related to the sampllng frequency’ &V Io_as a function of the embedding delaywith embedding dimensiond <

embedding delay values require high sampling frequenci@s< s for the numerical intensity time series. Small embeddingetdelays
For embedding delays smaller thafy,, = < 75, (sampling are consideredi(< = < 50). D increases from top to bottom fdis and

frequencies larger than the optimum value) we oversampign bottom to top forC;s.
the dynamics. Thus, spurious and superfluous correlatigns a
introduced, causing low permutation entropy and stagbtic

i i i
35 40 45 50

20 25 30
Embedding delay

complexity values typically associated with a regular pssc 06 ; ‘

(see Fig. 4). On the other hand, for embedding delays lar¢ =P i

than 75, 7 > 7a (Sampling frequencies smaller than the osk D=9
optimum value) the intrinsic non linear correlations presa D=8

the chaotic system are progressively lost due to undersagpl 04l

The resulting sampled system resembles a random proc
with high permutation entropy and low permutation statéti
complexity values (see Fig. 4). The curve described by tl
permutation quantifiers as a function of the embedding del
allows to estimate the amount of information redundancy, d
terminism, and stochasticity present in the underlyingotica
nature of the laser system. We have checked that the miryimé
required sampling rate is related to the sampling rate ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
which other nonlinear time series analysis measures such 0L 02 03 0405, 06 07 08091
correlation dimension provide meaningful results.

It is worth mentioning that De Micceet al. [43] have Fig. 4. Evolution of the quantifiers on the complexity-epyaausality plane

recently shown that the permutation statistical COMPYes&n  for the numerical intensity time series as a function of thebedding delay
be used to determine the best sampling time of chaotic sgsterarameter- (1 < r < 50, increasing from left to right). Different embedding
by analyzing the behavior of this quantifier as a function ¢g§mensionst < D < 8 are considered. A well-defined maximum @j s is

. . obtained for an intermediate value.
the sampling frequency. They illustrated the results fa th
case of two paradigmatic examples: the Rdssler and Lorenz
chaotic attractors. Our approach is slightly different.eTh
original time series of the delayed feedback laser is effitye satisfiesN > D!. We have found that the values estimated
subsampled by changing the embedding delay of the symbdtic 75, are close to the optimal sampling time predicted by the
reconstruction, which appears to be a more adequate approdtyquist-Shannon sampling theorem, even though the chaotic
From Figs. 3 and 4 it can be concluded that increases system under study is not a bandwidth-limited signal. As
with D. In Fig. 5 the minimal required sampling timg, is it is depicted in Fig. 6, where the power spectrum of the
plotted as a function of the embedding dimensiorfor the numerical realization of the dynamical system is plottéa, t
numerical data. According to this plot, by increasing the enlNyquist-Shannon theorem predict that the time continuous
bedding dimensio the minimal required sampling time alsofunction is approximately determined and reconstructetth wi
increases. Therefore, higher valuedbéllow the use of larger an infinite sequence sampled &ts = 1/(2fmax) = 14 ps,
minimal required sampling times, retaining all the infotraa  with fmax = 36 GHz. This frequency roughly corresponds to
about the chaotic dynamics of the system under analysis. Ithe highest significant frequency in the power spectrum, i.e
necessary to consider that an appropriate statisticalysisal 99% of the full spectrum is taken into account. For smaller cut
can be only done if the number of points of the time seriadf frequencies the estimated values for the optimal samgpli
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Fig. 5. Minimal required sampling timey; as a function of the embedding Fig. 7. Experimental chaotic time trace recorded by using &Hz band-
dimensionD. The horizontal lines corresponds to the optimal samplimgt Width digital scope with a sampling rate of 40 Gsamples/séd6s = 25 ps).
predicted by the Nyquist-Shannon sampling theorem takibg &ccount the

90% (solid line, 28 ps), 95% (dashed line21 ps) and99% (dotted line,

14 ps) of the full spectrum.

regime [55]. This regime is defined by the time delays of
the feedback loop being much longer than the relaxation
oscillation period. In our experiment, the length of theeeral
fiber cavity is aboutL.,; = 3.5 m, i.e. the round trip time
delay is estimated to be around,, = 2%Let — 385 ns,
wheren is the refractive index in the optical fiber ands the
speed of light. When the laser is biased/at 18 mA, the
relaxation oscillation period i$ro = 0.24 ns, which is much
shorter than the time delay. The threshold current of therlas
is reduced to 10.33 mA (12% threshold reduction) when the
feedback fiber loop is optimized.
The intensity dynamics is detected via an AC-coupled
13 GHz bandwidth photodiode (Miteq DR-125G-A). The
‘ ‘ ‘ ‘ ‘ ‘ o ‘ converted electrical signal is then analyzed using a 16 GHZ
¢t T ey ety bandwidth digital scope with a sampling rate of 40 GSamples/
(LeCroy WaveMaster 816Zi) and by a spectrum analyzer with
Fig. 6. Power spectrum of the analyzed numerical intensine tseries. & 9 kHz-30 GHz bandwidth (Anritsu MS2667C). This is close
Vertical lines indicate the location of the different cuf &lequencies at the to the current technology limit for temporal detection ofigp
90% (solid line, 18 GHz), 95% (dashed line24 GHz) and99% (dotted line, time series, with a sampling time 6f = 25 ps. Time series
36 GHz) of the Tull spectrum. with N = 2.10° data points were recorded. We note that
different sampling rates are selected in the numerical and

o experimental analysis. This is because the small sampling
time increase. They are aroutl ps and28 ps when thé5%  period we have chosen in the numerical study can not be
and90% of the full power spectrum, respectively, is consideregkperimentally attained.

(see Figs. 5 and 6). The detected time trace of the intensity dynamics for a bias
current of/ = 18 mA is shown in Fig. 7. The dynamical time
IV. EXPERIMENTAL RESULTS scales of the laser in the coherence collapse regime [56] are
Experiments on the delayed feedback dynamics of a sergsociated with the relaxation oscillation frequency oksal
conductor laser were performed using a fiber pigtailed sen@#Hz. Therefore, we can sufficiently resolve the temporal
conductor laser lasing at 1542 nm, fabricated by Eblagynamics of the laser output with the sampling time and fre-
Photonics. The threshold current of the solitary laseljs= quency resolution of our detection scheme. The fast intgnsi
11.7 mA at 20 °C. The laser exhibits single-mode emissiodynamic of the laser displays irregular oscillations [52, it
above the lasing threshold. The side-mode suppressiam ratin be seen in the inset of Fig. 7. The temporal separation
of this device is overd0 dB when the laser is biased atamong individual pulses is in a range 240 to 400 ps.
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I = 18 mA. The temperature is stabilized up #0.01 K. In Fig. 8 we plot the normalized permutation entropy
This device has been packaged without an optical isolator @aod the permutation statistical complexity obtained frdra t
that optical feedback studies can be performed. experimental time series as a function of the embedding

The external optical feedback has been introduced usidglay = for an embedding dimensio®® = 8. We verify
a fiber loop, such that the laser operates in the long cavigxperimentally that the permutation entropy is minimized a



the permutation statistical complexity maximized when th~
embedding delay of the symbolic reconstruction takes value: 1( T T
near 7.,:, i.e. for 7 close t01540 (7e.:/0s = 1540). We ]

have also found the other extrema when the embedding de 095k
matchesharmonics and subharmonics of 7.,;. In analogy to
the numerical case, they are less noticeable. The diffeseinc
peak resolution found when comparing Fig. 2 and Fig. 8 a

0.9

due to the different sampling periods. We consider thatehe <
experimental results confirm the reliability and robussnet 085
our permutation information theory approach to identife th
feedback time delay in a real situation. 08

We have also analyzed the permutation information quan
fiers for small embedding delays looking for the other reitva o075
fast time scales of the laser. As it can be seen from Fig.
for the current experimental sampling timé, (= 25 ps) 05
the permutation information quantifiers take values near tl 0451
optimal ones, i.eHs ~ 0.7 andC;s ~ 0.5, for the smallest 04f
embedding delayr(= 1) and the largest embedding dimensiol 0351
(D = 8). Comparing Figs. 3 and 9, we conclude that th ol
experimental sampling time is very close to the minime¢
required sampling time for an embedding dimension= 8. <o
Numerical and experimental results are not directly comp o2
rable because.,; > 7. However, we have numerically 015F
checked that the minimal required sampling time is the sar 04}
for different feedback delays; in the long cavity regime o_osr j
(250 ps 500 ps 1 ns 10 ns 20 ns 30 ns, and40 ns). For these ol |

N
N

IN Embedding delay

257 f—
386
441 —
515

1.544 =

different feedback time delays there is hardly any change
the chaotic bandwidth. Consequently, we find that the mihima
required sampling time, directly related to the fastestwaht Fig. 8. Permutation entropys (top) and permutation statistical complexity
time scales in the system, is independent of the feedbael defss (bottom) as a function of the embedding delaywith embedding
tme in this regime. The signature of the relaxation osgdla_SmensensD) — 5 fo e experment) tme serie, Locaon of e local
period appears around = 4, as it is shown in the inset of detailed. Notice that the extremum obtained for= 441 corresponds to a
Fig. 9. Notice the vertical enlargement necessary to uthkeil subharmonic oR73.

presence of the extremum.

In order to demonstrate experimentally the presence of the
maximum of the permutation statistical complexity for sima’
embedding delays we have analyzed experimental chaotc ti 1 —
traces obtained with lower bias current & 13 mA) and | , , : ié-lsf
feedback strength, where the bandwidth of the chaotic syst: s
decreases. Hence, the minimal required sampling time gho
increase. As it can be seen in Fig. 10, a clear maximurd for 07
is found for a small embedding delay( = 2) while Hs is an 2 06]
increasing function of in this range. This is an experimenta <
confirmation of the identification of the fast time scale o £
the laser with the permutation information analysis. THeeot 047
extrema observed in Fig. 10 for both quantifiers whegs 8 03}
are associated to the relaxation oscillation peridgd). For
this lower bias current we have found thito ~ 2.2 GHz.
Then, the location of the extrema is neaflyo /2 supporting
the relaxation oscillation signature found in the numeérici 0
analysis.
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Fig. 9. Permutation entrop}{s and permutation statistical complexify; s
as a function of the embedding delaywith embedding dimensions < D <

: : or the experimental intensity time series. Small embegldime delays are
We have shown both numenca”y and eXpe”menta”y thégnsidered 1 < 7 <10). D increases from top to bottom f6 s and from

a permutation information theory analysis, based on thie esottom to top forC; 5. The relaxation oscillation signature is shown in the
mations of permutation entropy and statistical complexgy inset.

able to identify characteristic time scales present in traotic

V. CONCLUSIONS
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