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Malignant tumours of the brain represent one of the most difficult to treat

types of cancer due to the sensitive organ they affect. Clinical management of the

pathology becomes even more intricate as the tumour mass increases due to pro-

liferation, suggesting that an early and accurate diagnosis is vital for preventing it

from its normal course of development. The standard clinical practise for diagno-

sis includes invasive techniques that might be harmful for the patient, a fact that

has fostered intensive research towards the discovery of alternative non-invasive

brain tissue measurement methods, such as nuclear magnetic resonance. One of its

variants, magnetic resonance imaging, is already used in a regular basis to locate

and bound the brain tumour; but a complementary variant, magnetic resonance

spectroscopy, despite its higher spatial resolution and its capability to identify bio-

chemical metabolites that might become biomarkers of tumour within a delimited

area, lags behind in terms of clinical use, mainly due to its difficult interpretability.

The interpretation of magnetic resonance spectra corresponding to brain tissue thus

becomes an interesting field of research for automated methods of knowledge ex-

traction such as machine learning, always understanding its secondary role behind

human expert medical decision making. The current thesis aims at contributing to

the state of the art in this domain by providing novel techniques for assistance of

radiology experts, focusing on complex problems and delivering interpretable solu-

tions. In this respect, an ensemble learning technique to accurately discriminate

amongst the most aggressive brain tumours, namely glioblastomas and metastases,

has been designed; moreover, a strategy to increase the stability of biomarker identi-

fication in the spectra by means of instance weighting is provided. From a different

analytical perspective, a tool based on signal source separation, guided by tumour

type-specific information has been developed to assess the existence of different tis-

sues in the tumoural mass, quantifying their influence in the vicinity of tumoural

areas. This development has led to the derivation of a probabilistic interpretation

of some source separation techniques, which provide support for uncertainty han-

dling and strategies for the estimation of the most accurate number of differentiated

tissues within the analysed tumour volumes. The provided strategies should assist

human experts through the use of automated decision support tools and by tackling

interpretability and accuracy from different angles.
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who I want to apology for stealing some of her play time with daddy.

Noteworthy has also been the unconditional support from my parents

Albert and Rafi, as well as my sister Raquel, and my grandparents

Manel, Maria, Juan and Rafaela. A special consideration towards my

family in law Anatolii and Galyna, for always finding me a comfortable

place to work.



Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvii

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Discrimination between aggressive brain tumours us-

ing the biomarker paradigm . . . . . . . . . . . . . . . 7

1.1.1.1 Study 1 . . . . . . . . . . . . . . . . . . . . . 7

1.1.1.2 Study 2 . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 Diagnosis of most common brain tumours using the

mixture of tissues paradigm . . . . . . . . . . . . . . . 9

1.1.2.1 Study 3 . . . . . . . . . . . . . . . . . . . . . 9

1.1.2.2 Study 4 . . . . . . . . . . . . . . . . . . . . . 11

1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . 12

2 Medical background and materials 15

2.1 Some fundamentals of neuro-oncology . . . . . . . . . . . . . 15

2.1.1 Some basics about the brain . . . . . . . . . . . . . . . 16

2.1.2 Most common tumours of the Central Nervous System 18

2.1.3 Tumour diagnosis . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Brain tumour treatment . . . . . . . . . . . . . . . . . 22

2.2 Nuclear Magnetic Resonance in neuro-oncology . . . . . . . . 23

2.2.1 Magnetic Resonance Spectroscopy in neuro-oncology . 25

vii



CONTENTS

2.3 Biomedical data sets . . . . . . . . . . . . . . . . . . . . . . . 28

3 Technical background 33

3.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Supervised learning . . . . . . . . . . . . . . . . . . . 34

3.1.2 Unsupervised learning . . . . . . . . . . . . . . . . . . 34

3.1.3 Assessing predictive capability . . . . . . . . . . . . . 35

3.2 Ensemble learning . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Classical ensembles . . . . . . . . . . . . . . . . . . . . 40

3.2.1.1 Bagging . . . . . . . . . . . . . . . . . . . . . 40

3.2.1.2 Boosting . . . . . . . . . . . . . . . . . . . . 41

3.2.1.3 Random Subspace . . . . . . . . . . . . . . . 41

3.2.1.4 Random Forest . . . . . . . . . . . . . . . . . 42

3.3 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . 42

3.3.1 The feature selection problem . . . . . . . . . . . . . . 43

3.3.1.1 Filters . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1.2 Wrappers . . . . . . . . . . . . . . . . . . . . 45

3.3.1.3 Embedded methods . . . . . . . . . . . . . . 45

3.3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . 46

3.3.2.1 Principal Components Analysis . . . . . . . . 46

3.3.2.2 Independent Components Analysis . . . . . . 47

3.3.2.3 Non-negative Matrix Factorisation . . . . . . 47

3.4 Algorithmic stability . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Stability of feature selection . . . . . . . . . . . . . . . 48

3.5 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Application of Machine Learning and Pattern Recognition to

the diagnosis of brain tumours . . . . . . . . . . . . . . . . . 51

4 Ensemble learning 55

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Base learners . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Aggregation strategy . . . . . . . . . . . . . . . . . . . 58

4.2.3 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



CONTENTS

4.3 Breadth Ensemble Learning . . . . . . . . . . . . . . . . . . . 60

4.3.1 Base learners . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Aggregation strategy . . . . . . . . . . . . . . . . . . . 62

4.3.3 Diversity by feature selection . . . . . . . . . . . . . . 62

4.3.4 Algorithm’s workflow . . . . . . . . . . . . . . . . . . 64

4.4 Experimental evaluation of the proposed method . . . . . . . 65

4.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Single classifier vs. ensemble . . . . . . . . . . . . . . 66

4.4.3 Breadth Ensemble Learning vs. classical ensembles . . 68

4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Stability of feature selection 75

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Sample and hypothesis margins . . . . . . . . . . . . . 77

5.2.2 Feature selection techniques . . . . . . . . . . . . . . . 78

5.2.3 Measures for assessing feature selection stability . . . 80

5.2.4 Previous studies on improving feature selection stability 82

5.3 Recursive Logistic Instance Weighting . . . . . . . . . . . . . 86

5.3.1 A new instance weighting method . . . . . . . . . . . 87

5.3.2 Weighted feature selection algorithms . . . . . . . . . 89

5.4 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Limitations of Margin Based Instance Weighting . . . 92

5.4.3 Suitability of Recursive Logistic Instance Weighting . 94

5.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Non-negative Matrix Factorisation 99

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Non-negative Matrix Factorisation variants . . . . . . 102

6.2.2 Supervised Non-negative Matrix Factorisation . . . . . 104

ix



CONTENTS

6.2.3 Non-negative Matrix Factorisation for Magnetic Res-

onance Spectroscopy in neuro-oncology . . . . . . . . 106

6.3 Discriminant Convex Non-negative Matrix Factorisation . . . 109

6.3.1 Objective function . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Optimisation procedure . . . . . . . . . . . . . . . . . 110

6.3.3 Prediction of unseen instances . . . . . . . . . . . . . 111

6.3.3.1 Prediction using Expectation-Maximisation . 112

6.3.3.2 Prediction using Reconstructed Sources . . . 115

6.4 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 116

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Probabilistic Matrix Factorisation 125

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.1 Classical Matrix Factorisation . . . . . . . . . . . . . . 127

7.2.2 Probabilistic Matrix Factorisation . . . . . . . . . . . 128

7.2.2.1 Hierarchical Bayes . . . . . . . . . . . . . . 130

7.2.3 Bayesian Probabilistic Matrix Factorisation . . . . . . 131

7.2.3.1 Conjugate priors . . . . . . . . . . . . . . . . 132

7.2.3.2 Sampling approximations . . . . . . . . . . . 133

7.2.3.3 Model selection . . . . . . . . . . . . . . . . . 137

7.2.4 Probabilistic Non-negative Matrix Factorisation . . . . 138

7.3 Probabilistic Semi and Convex Non-negative Matrix Factori-

sation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3.1 A probabilistic formulation for Convex Non-negative

Matrix Factorisation . . . . . . . . . . . . . . . . . . . 141

7.3.1.1 Maximum a Posteriori approach . . . . . . . 142

7.3.1.2 Hyperparameter estimation . . . . . . . . . . 144

7.3.1.3 Empirical evaluation . . . . . . . . . . . . . . 146

7.3.2 Full Bayesian Semi Non-negative Matrix Factorisation 149

x



CONTENTS

7.3.2.1 Gibbs sampling approach . . . . . . . . . . . 151

7.3.2.2 Marginal likelihood for model selection . . . 152

7.3.2.3 Empirical evaluation . . . . . . . . . . . . . . 155

7.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8 Conclusions and future work 165

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.3 Open problems and potential extensions of this research . . . 169

8.4 List of publications . . . . . . . . . . . . . . . . . . . . . . . . 172

References 173

A Mathematical derivations of the Discriminant Convex Non-

negative Matrix Factorisation optimisation function 189

A.1 Update rule for mixing matrix H . . . . . . . . . . . . . . . . 189

A.2 Update rule for unmixing matrix W . . . . . . . . . . . . . . 191

A.3 Update rule for vector q in the prediction phase . . . . . . . 193

B Discriminant Convex Non-negative Matrix Factorisation: proof

of convergence 195

B.1 Proof of convergence for the H update rule . . . . . . . . . . 196

B.2 Proof of convergence for the W update rule . . . . . . . . . . 198

B.3 Proof of convergence for the q update rule . . . . . . . . . . . 200

C Mathematical derivations for the Bayesian Semi Non-negative

Matrix Factorisation Gibbs sampler 203

C.1 Conditional posterior density of S . . . . . . . . . . . . . . . 204

C.2 Conditional posterior density of H . . . . . . . . . . . . . . . 206

C.3 Conditional posterior density of σ2 . . . . . . . . . . . . . . . 207

xi



CONTENTS

xii



List of Figures

2.1 The brain and its surrounding structures . . . . . . . . . . . . 17

2.2 Main parts of the brain . . . . . . . . . . . . . . . . . . . . . 18

2.3 Distribution of Primary Brain and Central Nervous System

tumours by histology . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Distribution of Primary Brain and Central Nervous System

tumours by brain region . . . . . . . . . . . . . . . . . . . . . 20

2.5 Nuclear Magnetic Resonance variants . . . . . . . . . . . . . . 24

2.6 Main metabolites present in 1H-MR spectra of the brain . . . 26

3.1 General ensemble structure . . . . . . . . . . . . . . . . . . . 39

3.2 A representation of bias and variance decomposition . . . . . 40

4.1 Breadth Ensemble Learning structure . . . . . . . . . . . . . 61

4.2 Single Voxel 1H-MRS frequency appearances . . . . . . . . . 70

4.3 Average glioblastoma and metastasis spectra . . . . . . . . . 71

5.1 The sample and hypothesis margins . . . . . . . . . . . . . . 78

5.2 A weighting example . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Feature subset stability of Margin Based Instance Weighting

on synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Feature subset stability of Margin Based Instance Weighting

using SVM-RFE on real microarray data . . . . . . . . . . . . 93

5.5 Feature subset stability of Margin Based Instance Weighting

using RelievedF-RFE on real microarray data . . . . . . . . . 94

5.6 Feature subset stability of Recursive Logistic Instance Weight-

ing using RelievedF-RFE on the microarray data . . . . . . . 95

xiii



LIST OF FIGURES

5.7 Feature subset stability of Recursive Logistic Instance Weight-

ing using RelievedF-RFE on the real 1H-MRS data . . . . . . 96

6.1 Correlation between glioblastomas, metastases and sources at

short TE for the analysed synthetic data . . . . . . . . . . . . 119

6.2 Correlation between glioblastomas, metastases and sources at

long TE for the analysed synthetic data . . . . . . . . . . . . 119

6.3 Discriminant Convex Non-negative Matrix Factorisation data

cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1 Sources retrieved by different Non-negative Matrix Factorisa-

tion variants in the glioblastoma vs. astrocytoma II problem . 149

7.2 Sources identified by Bayesian Semi Non-negative Matrix Fac-

torisation after model selection . . . . . . . . . . . . . . . . . 162

7.3 Three-source decomposition of single voxel 1H-MRS data ac-

cording to Bayesian Semi Non-negative Matrix Factorisation . 163

xiv



List of Tables

2.1 Content of the INTERPRET database . . . . . . . . . . . . . 29

2.2 Microarray gene expression database . . . . . . . . . . . . . . 30

4.1 Breadth Ensemble Learning performance using different base

classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Performance of different ensemble methods on 1H-MRS data 69

5.1 Configuration of different parameters in the Margin Based

Instance Weighting experiments . . . . . . . . . . . . . . . . . 92

5.2 Average balanced accuracies and their standard errors on the

microarray datasets . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Balanced accuracies and standard errors achieved by a linear

SVM in discriminating between glioblastomas and metastases

using 1H-MRS data . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Balanced accuracies and correlation for the test set using the

synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Repeated double cross-validation balanced accuracies for the

real 1H-MRS data . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Correlation between tumour type averages and estimated sources

in a repeated double 10-fold cross-validation for the real 1H-

MRS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1 Area under the Receiver Operating Characteristic curve and

correlation for real long TE 1H-MRS data . . . . . . . . . . . 147

xv



LIST OF TABLES

7.2 Area under the Receiver Operating Characteristic curve and

correlation for real short TE 1H-MRS data . . . . . . . . . . 148

7.3 Best number of reconstructing sources for each tumour type

using real long TE 1H-MRS data . . . . . . . . . . . . . . . . 156

xvi



List of

Acronyms

ac2 Astrocytoma Grade II.

gbm Glioblastoma.

met Metastasis.

nom Normal cerebral tissue, white mat-

ter.

ACC Accuracy.

ACGT Advancing Clinico Genomic Tri-

als on Cancer.

AI Artificial Intelligence.

ANN Artificial Neural Networks.

ASSIST Association Studies Assisted by

Inference and Semantic Technolo-

gies.

AUC Area Under the ROC Curve.

AUH Area Under the Convex Hull of the

ROC Curve.

BAC Balanced Accuracy.

BEL Breadth Ensemble Learning.

BER Balanced Error Rate.

BSD Bayesian Spectral Decomposition.

BSS Blind Source Separation.

CART Classification and Regression

Trees.

CBTRUS Central Brain Tumor Registry

of the United States.

CDP Centre Diagnòstic Pedralbes.
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Chapter 1

Introduction

According to a report published by the World Health Organisation (WHO)

[1] in February of 2015, cancer is a leading cause of death worldwide. In

2012, 8.2 million people passed away due to this condition, lung cancer (ac-

counting for 1.59 million deaths), liver cancer (754, 000 deaths), stomach

cancer (723, 000 deaths), colorectal cancer (694, 000 deaths), breast cancer

(521, 000 deaths) and esophageal cancer (400, 000 deaths) being its most

frequent types in terms of cause of decease. More importantly, far from di-

minishing, these numbers are expected to rise in the following years reaching

up to a predicted 13.1 million deaths in 2030.

Although 70% of all deaths linked to cancer occur in low- and middle-

income countries, mainly due to their difficulty to deliver proper treatment

to their patients, high-income countries are also affected by this disease and

poor prognosis cannot be avoided for certain types. Only in Catalonia, more

than 33, 700 new cancer cases were annually diagnosed during the period

between 2003 and 2007 [2]. In fact, it is estimated that 50% of men and

33% of women will develop cancer at some point throughout their life. In

2004, cancer was the first cause of death for males (33.55% of total deaths)

and the second one for women (22.02% of total deaths), just surpassed by

deaths caused by pathologies of the circulatory system. In a study published

in 2008 [3], the projections foresaw a stabilisation in the diagnosis and a

decrease in its related mortality by 2015.
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1. INTRODUCTION

Tumours of the Central Nervous System (CNS) and, particularly, brain

tumours are an especially challenging type of cancer, given the poor prog-

nosis associated to some of their subtypes. The Central Brain Tumor Reg-

istry of the United States (CBTRUS) [4] estimated the prevalence of this

pathology to be 221.8 per 100, 000 inhabitants in 2010, meaning that around

688, 000 were living in the United States with a diagnosis of Primary Brain

and Central Nervous System (PBCNS) tumour that year, of which more

than 20% were malignant.

This is a relatively low prevalence, but, unfortunately, several types of

brain tumour have a very poor prognosis associated. The Surveillance, Epi-

demiology, and End Results (SEER) program [4] estimated a five year rel-

ative survival rate of 32.6% for males and 35.3% for females, following di-

agnosis of a malignant PBCNS tumour, using data between years 1995 and

2011 in the USA.

Early and accurate diagnosis of tumour proliferation can decrease the

mortality rates as well as improve the quality of life for these patients by

means of providing the proper treatment in order to cure the disease or pal-

liate its effects. This need for accurate diagnosis lays the foundations of the

current thesis, which aims to provide semi-automated computer-based deci-

sion support for expert radiologists in whom ultimately the final diagnostic

decision making resides.

The most reliable procedures doctors currently use for evaluating masses

of uncontrolled cell proliferation in intracranial regions involve invasive tech-

niques, such as the biopsy (the current gold standard in the field), which

consists in extracting a sample from the tissue of interest and performing a

histopathological study in a laboratory so as to provide accurate diagnosis

and prognosis.

The application of invasive techniques is often harmful for the patient,

who undergoes surgery with uncertainty about collateral damage that this

clinical procedure might induce to the patient’s cognitive abilities, with the

non-negligible probability of getting severely impaired, depending on the re-

gion of the brain the tumour is located. This strong inconvenience has led

biomedical engineers to design, and physicians to use over the last decades,
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alternative non-invasive indirect measurement techniques to harmlessly in-

spect the affected mass.

Radiology can indeed play an important role in the discrimination be-

tween brain tumour types. The diagnoses of some types of tumour are not

always obvious from conventional Magnetic Resonance Imaging (MRI), as

images from different tumours may be too similar for discrimination. Fur-

ther diagnostic support can be obtained from the so-called physiological

Magnetic Resonance (MR) techniques. Most of them use the infiltrative

pattern of growth of tumours to accomplish the diagnostic differentiation.

These techniques include perfusion MR and diffusion MR. Alternative tech-

niques include two-dimensional Turbo Spectroscopic Imaging information

[5], Diffusion Tensor Imaging [6, 7] and multiple-voxel Magnetic Resonance

Spectroscopy (MRS) with 2D Chemical-Shift Imaging (CSI) and peak ampli-

tude ratios [8]. Recent studies have also resorted to Morphometric Analysis

of MR Images [9].

Among the most matured techniques in radiological practise are those

relying on the resonance of certain chemical nuclei present in human tissue

under magnetic fields, the already mentioned MRI and its MRS counterpart.

Making sense of the complexity of the data that MRS yields is far from

being a trivial matter, even for expert radiologists. This has led, in re-

cent years, to the search for alternative answers from the field of pattern

recognition and multivariate statistics. The interest in these fields is also

related to the possibility of designing at least semi-automated, computer-

based Medical Decision Support Systems (MDSS) to facilitate radiologists’

task and ease the interpretation of results [10, 11]. The current thesis aims

at contributing to the area by developing new techniques aligned to these

needs.

Over the last decade, European-funded research has focused on the prob-

lem of automated diagnosis and prognosis for oncology. The European

Commission Information and Communication Technologies (ICT) for Health

Unit of the Information Society and Media Directorate General managed

several international research projects in the medical ambit, funded under
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1. INTRODUCTION

the Sixth Framework program (FP6). Within the program’s 4th call, Inte-

grated biomedical information for better health, several projects concerned

cancer research. All these projects involved data analysis, and some of them

realised it through Data Mining or Computational Intelligence methods, of-

ten related to Machine Learning (ML). They included Advancing Clinico

Genomic Trials on Cancer (ACGT) [12], which aimed to fill-in the techno-

logical gaps of clinical trials for two pathologies: breast cancer and paediatric

nephroblastoma, and used data mining tools and the R statistically-oriented

programming language in a grid environment; ASSIST [13], which aimed to

provide medical researchers of cervical cancer with an environment that will

unify multiple patient record repositories; and the Computational Intelli-

gence for Biopattern Analysis in Support of eHealthcare (Biopattern) [14],

whose goal was to develop a pan-European, intelligent analysis of a citizen’s

bioprofile and to exploit this bioprofile to combat major diseases such as

ovarian, breast and brain cancers, leukaemia and melanoma.

More recent European projects in the field, all part of FP7, include ML

for Personalized Medicine (MLPM) [15], a Marie Curie Initial Training Net-

work for the pre-doctoral training of scientists in research at the interface

of ML and medicine; Epigene Informatics [16], a Marie Curie action to in-

vestigate ML approaches to epigenomic research; and Metoxia (Metastatic

Tumours Facilitated by Hypoxic Tumour Micro-Environments), a project

for the analysis of metastatic tumours facilitated by hypoxic tumour micro-

environments that includes the development of a ML-based classifier of tu-

mour hypoxia [17].

Research efforts at the European level have also specifically focused on

the use of pattern recognition for the analysis of brain tumours from MRS

data. An example of it is the International Network for Pattern Recognition

of Tumours Using Magnetic Resonance (INTERPRET) [18] project (2000-

2002), whose main objective was to facilitate the use of MRS into clinical

routine by first constructing a large European database of standardised brain

tumour spectra and clinical data; and secondly, using this database to build

a user-friendly computer program for spectral classification.
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Another example is eTumour [19] (2004-2009), in which a web accessible

MDSS for brain tumour diagnosis and prognosis was developed, incorporat-

ing in vivo and ex vivo genomic and metabolomic data.

Finally, the HealthAgents project [20] (2006-2008) sought to develop an

agent-based distributed MDSS to assist in the early diagnosis and prognosis

of brain tumours. Parallel to it, a distributed data-warehouse was built,

becoming the world’s largest database of clinical, histological and molecular

phenotype data for brain tumours.

These three projects became a milestone in the research of tumour diag-

nosis using MRS data, providing researchers with a sizeable and standard-

ised set of spectra, from which useful and actionable knowledge could be

extracted.

In Spain, research in the area include the Red Temática de Investigación

Cooperativa en Centros de Cancer (RTICC), specialised in bioinformatics,

biostatistics and image-base diagnosis; The Grupo de Redes Neuronales at

Universidad de Extremadura, who, together with Servicio Extremeño de

Salud developed the MAMMODIAG project [21] for the support in the

diagnosis of breast cancer; the Grup de Recerca de Sistemes Intel·ligents

(GRSI) at Universitat Ramon Llull in Catalonia and their HRIMAC project

[22], which uses Artificial Intelligence (AI) techniques for the support in the

breast cancer diagnosis.

The Grupo de Informática Biomédica (IBIME) at Instituto de Aplica-

ciones de las Tecnoloǵıas de la Información y de las Comunicaciones Avan-

zadas (ITACA) located at the Universitat Politècnica de València (UPV) has

also participated in several European research projects aiming at produce

integrated software solutions for biomedical problems, gaining high expertise

in AI tools applied to build MDSS.

The current thesis is linked to the research project AIDTumour: Her-

ramientas Basadas en Métodos de Inteligencia Artificial para el Apoyo a la

Decisión en Oncoloǵıa, led by the Soft Computing (SOCO) research group

at Universitat Politècnica de Catalunya (UPC) in Barcelona. Several re-

lated theses also became background for the current proposal. F. González-

Navarro [23] developed novel feature selection techniques for cancer diag-
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nosis from microarray gene expression as well as 1H-MRS data of brain

tumours. C.J. Arizmendi’s thesis [24] involved the development of advanced

signal processing techniques and their application to signal pre-processing for

1H-MRS. In her PhD thesis, S. Ortega-Martorell [25] developed new inter-

pretable feature selection and extraction techniques for aiding in single-voxel

(SV) 1H-MRS brain tumour diagnosis. Moreover, she also used multi-voxel

(MV) 1H-MRS for the delimitation of the tumour pathological area. All

this research was included in a made-to-measure software tool to be used

by physicians [26]. This tool was used as a starting point for the current

thesis, which gave us direct insights on the real applicability of last devel-

oped techniques, at the same time as we contributed back to the system by

including new functionality.

The present document provides a detailed and thorough account of our

research on the improvement of the state of the art in multivariate data

analysis techniques specifically designed for the accurate diagnosis of the

most aggressive conditions in neuro-oncology, therefore aiming to make these

techniques trustworthy and interpretable for their use by radiology medical

experts.

1.1 Contributions

Despite the fact that much research has already been carried out in the

field of Pattern Recognition and ML as applied to the analysis of MRS

information in neuro-oncology problems [24, 25, 23], a number of problems

still remain unsolved or have not been yet fully addressed. These are research

challenges to which this thesis aims to contribute by improving state of the

art techniques to aid in the diagnosis of brain tumours using SV-1H-MRS

data.

More precisely, all the work presented in this document has the ultimate

goal of contributing to the following important areas in neuro-oncology: the

first consists in making progress on the diagnostic tools when presented with

aggressive brain tumours, under the assumption that specific biomarkers

coinciding with specific frequencies within the MR spectrum exist. The
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second broadens the object of study by focusing on the influence of different

tissues present in the vicinity of most common brain tumoural areas.

In the following lines, we explicitly state the different objectives that

have been pursued in the development of new techniques in the aforemen-

tioned subareas; the challenges that previous solutions were unable to over-

come and, finally, the contributions that our novel techniques provide to the

medical domain and to the community at large.

1.1.1 Discrimination between aggressive brain tumours us-

ing the biomarker paradigm

1.1.1.1 Study 1

Goal The goal of this research is to increase the discriminative power of

current analytical tools in terms of their ability to discriminate between the

most aggressive brain tumour types, namely glioblastomas and metastases.

Challenges The main difficulties that current techniques face when dis-

criminating between these tumour types are summarised next:

• High intra-class dissimilarity, meaning that the recorded MR spectra

of patients sharing the same tumour type pathology are very different

one to another.

• High inter-class similarity, which can be explained as the great degree

of resemblance that can be encountered between two spectra, each

related to different tumour types.

• Few frequencies contribute to the discrimination: out of the large

amount of measurements performed in an MR scanning, only a small

quantity of metabolites might be related to the tumour type being

investigated.

Limitations of current solutions

• From an application domain point of view, no attempt to use a mixture

of learners able to capture the heterogeneity of spectra has been made.
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• The technical reasons for such lack of applicability can be traced back

to the fact that classical ensemble techniques strongly rely on the ran-

dom selection of features (i.e., frequencies or metabolites in our do-

main), which lead to suboptimal solutions given the nature of the

data being analysed.

Research contributions For the current domain of application, reaching

the pursued goal is by itself a contribution. From an ML perspective, the

contributions of the current study are:

• The development of a novel ensemble learning technique able to sub-

divide the input space according to the most adequate feature subsets,

in which specialised classifiers are built, leading to the maximisation

of the overall discrimination accuracy.

• The derivation of an embedded feature selection strategy specifically

designed to address the few frequency contribution challenge.

1.1.1.2 Study 2

Goal The second goal of our research is to increase the interpretability of

the results provided by our techniques by finding more reliable metabolites

which attribute to tumour-type discriminative power.

Challenges The principal problems found when aiming at reaching this

goal are related to the concept of algorithm instability, which is defined as the

incapacity to provide similar solutions over executions when small variations

in the input are present. Three factors contribute to this phenomenon:

• Small sample size: when the amount of patients to be studied is very

low to obtain statistically significant results.

• High dimensionality; that is, when the number of spectral measure-

ments is very large as compared to the sample size.

• Redundancy of frequencies is a property that arises when the same

piece of information is provided by several different features.
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Limitations of current solutions

• To the best of our knowledge, no previous attempt to deal with the

current goal has been proposed in our domain.

• The need for a brand-new feature selection stability technique can be

explained by analysing the available tools, in which resampling tech-

niques are the prevalent solutions. They present a high computational

cost, added to the already existing pitfalls that are implied when sam-

pling from a low number of samples.

• Finally, the limitations found when studying current importance-weighting

solutions were an invitation to contribute to this field.

Research contributions

• A strategy to weight instances according to their typicalness is defined.

• An algorithm able to select the most adequate features for a specific

task maintaining certain degree of stability is designed.

1.1.2 Diagnosis of most common brain tumours using the

mixture of tissues paradigm

1.1.2.1 Study 3

Goal Identify the most relevant tissue types in a voxel contributing, in

varying degrees, to the measured MRS signal; by exploiting prior knowledge

on the nature of the signal they generate, as well as tissue-specific properties.

Challenges In-depth analysis of the available data motivates a paradigm

shift on the research in order to approach the aforementioned goal from a

different perspective. Challenges we face in this new setting include:

• The measured signal in an MR scanning can not be attributed to a

single phenomenon, but to the interrelation of multiple sources due to

the coexistence of several tissue types within a voxel, or to interferences

from neighbouring ones.
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• The possibility that the measurements contain coherent negative val-

ues that need to be unavoidably dealt with.

• The necessity to assess the contribution of each source of signal to

every frequency measurement.

• Appropriately incorporate tissue-specific knowledge to increase the

technique’s capabilities.

Limitations of current solutions

• Previous studies in the current domain of application have shown the

potential of Non-Negative Matrix Factorisation (NMF) techniques to

successfully address most of the challenges we introduced. However,

no study has used the available tissue-specific information to better

extract the signal generating sources and their contributions.

• Technical barriers in the form of lack of algorithms able to apply Con-

vex NMF (CNMF) from a supervised perspective are behind the in-

ability to incorporate tissue-specific knowledge in our domain.

Research contributions

• An algorithm able to extract relevant source information from SV-

1H-MRS data and their contribution to the final measured signal is

derived.

• This algorithm is, moreover, able to deal with both positive and neg-

ative values present in the signal generating sources.

• Interpretable degree of contribution from each source is also obtained

as a byproduct.

• The ratios among metabolite values are preserved.

• Quality of all the above is improved by including tissue-specific infor-

mation.
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1.1.2.2 Study 4

Goal Automatic determination of the most appropriate number of tissues

making up the MR signal for each specific pathology is the primary object

of this last study. On the way, a mechanism to evaluate the certainty on the

predictions is also sought.

Challenges Care must be taken when carrying out this research, since,

besides all the difficulties stated in the previous study, we must add to the

list:

• The estimation of the most adequate number of relevant tissues usually

becomes a tedious and time-consuming process.

• Confidence on the predictions is undermined by the small number of

subjects available in our data sets.

• Another consequence of the small data size is the possible occurrence

of the overfitting phenomenon in the learning process.

Limitations of current solutions

• To the best of our knowledge, no study provides a probabilistic de-

scription of NMF in the domain of brain tumour signal separation

from SV-1H-MRS data able to respect all the constraints imposed by

these data.

• The main rationale explaining such failure lays in the fact that out-

of-the-box probabilistic NMF solutions are not able to address the

singularity of data being employed, such as the evidence of sources

showing positive and negative values and the constraints stating that

their contributions must be positive.

Research contributions

• The obtained probabilistic solution is able to deal with positive and

negative values.
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• An efficient automatic selection of most appropriate number of tissues

explaining the majority of the obtained signal is derived.

• A measure of confidence on the prediction is readily available as a

byproduct of the whole process.

• Automatic control of regularisation is supplied, relegating overfitting

to a rare phenomenon.

• Prior domain knowledge on both sources and contributions can explic-

itly be used to improve the results.

• The impact of parameter initialisation in terms of the obtained solution

is diminished, since local minima are avoided.

1.2 Overview of the thesis

This thesis is structured in 8 chapters, the remaining of which are organised

as follows:

Chapter 2 gives a brief introduction to the neuro-oncology domain, pre-

senting the most frequent tumoural pathologies associated with the brain,

the regular-practise diagnostic tools and the most common forms of treat-

ment. Then, the applicability of various Nuclear Magnetic Resonance prod-

ucts as non-invasive techniques for tumour diagnosis is shown. Finally, a

characterisation of the analysed biomedical data sets is also provided.

Chapter 3 intends to provide a general outlook on the large variety of

technical strategies that are addressed throughout the thesis. Specifically,

we glance at the broad domain of ML, focusing our attention on the concept

of Ensemble Learning, typical dimensionality reduction approaches and dif-

ferent forms of instability which learning algorithms might suffer from. The

last technical block corresponds to a gentle and self-contained introduction

to the Bayesian framework of inference. The chapter ends with some exam-

ples of ML applications in the domain of brain tumour diagnosis.

Chapter 4 consists in a more in-depth analysis of Ensemble Learning

theory, reviewing the fundamental parts that any algorithm of this kind
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must be composed of, as well as discussing the rationale behind putting

this type of approaches in place for the current domain. This is followed

by a thorough explanation of our Breadth Ensemble Learning algorithm,

specifically tailored to deal with the difficult discrimination of the most

aggressive brain tumour types. Its suitability is assessed and the predefined

hypotheses validated.

Chapter 5 analyses the stability phenomenon of Feature Selection algo-

rithms. More precisely, it starts by showing the nature of our current domain

data which directly affects the stability of the learning algorithms being used,

as well as the limitations of available solutions. Then, stability measures and

contemporary feature selection algorithms are reviewed, together with previ-

ous attempts to correct instability in Feature Subset Selection (FSS). Next,

our proposal, named Recursive Logistic Instance Weighting, is introduced

and evaluated to match the initial hypotheses.

Chapter 6 dives into the source separation problem. In particular, NMF

variants are presented as suitable techniques to identify the different tissue

types coexisting in a voxel, as well as their contribution to the retrieved MR

signal. Discriminant Convex Non-Negative Matrix Factorisation (DCNMF)

is derived and validated as a supervisedly-improved version of the CNMF,

the most prominent technique in our domain.

Chapter 7 shifts the point of view from classical approaches of NMF to-

wards a Bayesian interpretation of these techniques, incorporating the added

value that such framework provides to our domain of application. First part

of the chapter is a journey from frequentist to Bayesian paradigms as ap-

plied to Matrix Factorisation. Thereafter, our contribution in the form of

Probabilistic CNMF and Bayesian Semi Non-negative Matrix Factorisation

(SNMF) is laid out and their applicability to the neuro-oncology domain

corroborated.

Finally, Chapter 8 summarises the progress made by this thesis in the

neuro-oncology domain, providing some discussion on those aspects that

require additional attention; it also states some concluding remarks and

paves the way for further improvement in the data-driven diagnostic tools
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for neuro-oncology area. Moreover, a list of publications emanating from

the research carried out during this thesis is also supplied.
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Chapter 2

Medical background and

materials

The current chapter aims at providing some up-to-date foundations in the

medical field of diagnosis and insights about treatment techniques regarding

the unfortunate event of tumoural tissue proliferation in the brain.

We start it by summarising some notions about the composition of the

brain and introducing the most prevalent tumour types of the CNS. Then,

different techniques for tumour diagnosis are briefly presented, before intro-

ducing the standard forms of treatment. This is followed by some fundamen-

tals about brain tissue information acquisition through Nuclear Magnetic

Resonance Spectroscopy, which is the focus of this thesis, and its use as a

diagnostic tool from its analysed output. The chapter ends with a review

of this data output that will be the basis of the analyses reported in the

experimental chapters of the thesis.

2.1 Some fundamentals of neuro-oncology

Human beings are composed of different types of tissues, each of them suited

to the function it has to perform. They are, in turn, made up of small entities

called cells. There are also distinct types of cells according to the task they

are entrusted with within a living body.
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Despite differences among cells, most of them repair themselves and re-

produce in a similar way. The latter is accomplished by dividing themselves

in a controlled manner (using, for instance, processes of mitosis or meiosis).

However, and for a variety of reasons, these processes may be corrupted

and the cells can end up reproducing in an uncontrolled fashion, leading

to the development of tumour pathologies. If the tumour does not spread

into the surrounding tissues, we are facing a benign tumour. Otherwise,

if the tumour invades surrounding tissues (i.e., proliferates), it becomes a

malignant tumour.

In the specific case of brain tumours, we can differentiate between pri-

mary, which have their origin in the brain, and secondary, which, having

originated in other parts of the body (e.g., lungs, kidneys, colon, etc.), spread

to the brain.

The WHO has defined standards for diagnosing and managing the treat-

ment of brain tumours worldwide. They have published a system of grading

the malignancy of different brain tumours, known as the WHO grading of

the CNS. In its last revision, dating from 2007 [27], they define four cate-

gories of malignancy according to multiple histologic features:

• Grade I: Lesions with low proliferative potential and the possibility of

cure following surgical resection alone.

• Grade II: Neoplasms generally infiltrative in nature and, despite low-

level proliferative activity, often recur, sometimes progressing towards

higher levels of malignancy.

• Grade III: Lesions with histological evidence of malignancy.

• Grade IV: Cytologically malignant, mitotically active, necrosis-prone

neoplasm typically associated with rapid pre- and postoperative dis-

ease evolution and a fatal outcome.

2.1.1 Some basics about the brain

The brain is a mass of soft tissue that controls the activity of the other

organs of the body. It is protected by the bones that form the skull in the
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outer part and by a three-layered protective envelope called the meninges

in the inner part (Figure 2.1).

Figure 2.1: The brain and its surrounding structures - [28]

Three main structures make up the brain: the cerebrum, the cerebellum

and the brainstem (Figure 2.2). The largest one is the cerebrum which is

responsible of the high-level cognitive functions such as learning, memory,

attention, sensory processing and motor control, amongst others. It is di-

vided into two halves: the left hemisphere, that controls the movement of

the right part of the body, and the right hemisphere which controls the op-

posite side. The cerebellum is in charge of balance, coordination and other

complex semi-autonomous functions. The brainstem is the oldest part of

the brain from an evolutionary point of view; it connects the brain with

the spinal cord. Its tasks are of vital importance for maintaining the body

alive; they include, for instance, the control of breathing, blood pressure, or

blinking.

As in any other organ of the body, the brain tissue is made up of cells.

Nearly 40 billion interconnected nerve cells or neurons form a complex net-

work which conveys information back and forth in the form of electrical

impulses and chemical signals. These neurons are fixed in place by the

aid of other cells called glial. Different types of glial cells (e.g., astrocytes,
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Figure 2.2: Main parts of the brain - [28]

oligodendrocytes or ependymocites) are often the origin of the most frequent

tumour types.

2.1.2 Most common tumours of the Central Nervous System

The WHO recognises more than 120 different tumour types affecting the

CNS. They are classified into seven categories according to the tissue that

has originated the neoplasm [27]. For the sake of brevity, we just name

the seven categories and introduce the most common ones. Details of the

prevalence of each tumour type, according to a statistical study developed

during the years 2006-2010, and the malignancy of each type according to

WHO grading can be found in [29]. A fairly detailed distribution of brain

tumours according to their histological origin can be seen in Figure 2.3.

Category 1 groups all those tumours originated in the neuroepithelial

tissue. Also known as astrocytic tumours or gliomas, they constitute the

most frequent tumour types present in adults, accounting for 31.2% of all

primary CNS tumours. Among them, we can differentiate between astro-

cytomas (6.1% – grade I, II and III), glioblastomas (15.6% – grade IV),

oligodendrogliomas (1.7% – grade III), medulloblastomas and primitive neu-

roectodermal (PNET) (1.2% – grade IV), and ependymomas (1.9% – grade

II).

Category 2 contains those types whose source lie in the cranial and

paraspinal nerves (8.1%). The most frequent tumours in this group are
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benign schwannomas (grade I) and nerve sheath tumours (grade II, III and

IV).

Category 3 deals with tumours affecting the meninges, meningiomas

(35.8% – grade I) being a highly frequent type.

More rare tumour types can be found in categories 4 and 5 relative to

the haematopoietic system (such as lymphoma, 2.1% – grade IV) and germ

cell tumours (0.4% – grade IV), respectively.

Category 6 includes tumours in the sellar region (pituicytoma, 14.7% –

grade II and craniopharyngioma, 0.8% – grade II ).

Figure 2.3: Distribution of Primary Brain and Central Nervous Sys-

tem tumours by histology - CBTRUS Statistical Report: NPCR and SEER

Data from 2006-2010. N = 326,711 patients. [29]

Category 7 includes metastatic tumours, conforming the group known

as secondary. This kind of tumours are the ones presenting the highest

incidence rate; the breast, lung and melanoma cancers being the most likely

sources to spread the tumour to the brain.

Neoplasms of the CNS can also be classified according to different crite-

ria. Figure 2.4 shows the affectation of primary with respect to the region

of the brain they raised from.
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Figure 2.4: Distribution of Primary Brain and Central Nervous Sys-

tem tumours by brain region - CBTRUS Statistical Report: NPCR and

SEER Data from 2006-2010. N = 326,711 patients. [29]

2.1.3 Tumour diagnosis

A tumour growing in the brain often increases the pressure within the skull,

inducing a set of different effects. Among the most frequent are headaches,

sickness, nausea or even seizures. A range of other symptoms depend on

the affected part of the brain. However, pressure is not the only cause of

symptoms, since for those tumours of invasive nature, the own damage of

the tissue also contributes.

Once any of these symptoms is present, the patient should visit a special-

ist (a neurologist, an oncologist, or a radiologist), who will carry out tests,

often using non-invasive techniques, to determine the presence or absence of

a tumour, and, in the former case, its type and malignancy.

It is of vital importance to correctly assess the tumour’s characteristics at

this stage, because the treatment and prognosis of a tumour highly depends

on them and varies according to its profile.
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2.1 Some fundamentals of neuro-oncology

Biopsy The gold standard and most reliable test for the determination

of the tumour type and level of malignancy is the biopsy. A biopsy is a

surgical operation where a small piece of the tumour tissue is removed from

the brain in order to be examined in a laboratory. The brain is accessed by

performing a small hole in the skull with the purpose of introducing a fine

needle that removes the targeted sample of tissue.

In certain cases (i.e., when the tumour is deep inside the brain) a spe-

cific kind of biopsy might be performed. In a guided biopsy (e.g., stereotac-

tic biopsy, neuronavigation) the procedure is pretty similar to an ordinary

biopsy with the difference that, in such cases, imaging technologies are used

to help guiding the needle.

Despite the reliability of this test, it presents a blatant drawback, which

is the non-negligible risk involved in the manipulation of such a sensitive

organ as the brain is. Therefore, alternative non-invasive methods have

been developed and are applied whenever possible for the same purpose.

Magnetic Resonance Imaging Magnetic Resonance Imaging (MRI) and

Spectroscopy (MRS), details of which are presented in the next section, are

non-invasive signal acquisition techniques based on the physical phenomenon

of Nuclear Magnetic Resonance (NMR). MRI, as its name indicates, is an

imaging technique used by expert radiologists to visualise the brain tissue

in certain detail. It provides good spatial resolution, but no information

concerning the tumour metabolism. MRS, instead, generates a signal in

the time domain that is processed and transformed into the frequency do-

main. Its spatial information is less obvious to interpret, but it provides a

metabolic signature of the analysed tissue. At best, both modalities (imag-

ing and spectroscopy) can be used in parallel (MRSI) [30].

Computerised Tomography Computerised Tomography (CT) is a tech-

nique that uses X-rays flowing throughout the body with the objective of

constructing 3D images of the tissues. Some of the radiation of the rays that

pass through the body is absorbed differently by the tissues. The remaining

signal that arrives to the electronic receptors is computer-processed so that
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various cross-sectional images or slices of the inspected part of the body are

generated. The superposition of several slices forms a 3D volume image,

which is then analysed by the physician [31].

Positron Emission Tomography In a Positron Emission Tomography

(PET) scan, a radioactive sample of glucose is injected into the patient’s

bloodstream. The compound eventually flows to the brain, carried by the

blood. The accumulation of the liquid is detected by a scanner, monitorising

the accumulation of this radiotracer and generating a computer-based image.

Although this technique is not routinely used to diagnose brain tumours, it

can be useful for the determination of their malignancy [31].

2.1.4 Brain tumour treatment

The prognosis of a tumour and the evolution of the patient will highly de-

pend on the tumour type, its malignancy and the given treatment. Here,

we very briefly introduce the most common treatments used to diminish the

proliferation of brain tumours. Notice that each treatment does not exclude

the others and several might be applied simultaneously or consecutively. For

instance, it is not uncommon to apply radiotherapy after a craniotomy in

those cases where a tumour could not be removed in full.

Craniotomy A craniotomy is a surgical operation that consists in opening

the skull and removing the region affected by the tumour. Depending on

the tumour location and spatial distribution, a complete removal may not

be possible or advisable and only a partial resection is performed. It might

be the case that the tumour is difficult to reach and accessible only through

healthy tissue, which might be damaged in the process.

Chemotherapy Chemotherapy is a treatment in which specific drugs are

given to the patient with the purpose of shrinking a tumour or slowing

down its growth with the final aim of reducing its symptoms. It will rarely

be effective for complete tumour removal. Chemotherapy may be delivered

after surgery and might be complemented with radiotherapy. The form of
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2.2 Nuclear Magnetic Resonance in neuro-oncology

intake might be oral in form of pills, intravenously or by means of an implant

introduced during surgery, which slowly releases the appropriate dosage of

medicine into the body.

Radiotherapy Radiotherapy is a technique that uses high-energy rays

aimed at destroying the targeted cancerous cells while not affecting the

healthy ones. It is often used after surgery to kill cancerous cells that might

have been left over; also for treating secondary brain tumours, or in recurrent

primary tumours reappearing after surgery. It is administered by providing

high dosage beams focusing the tumourous cells through several sessions,

but can also be applied to the whole brain in smaller dosage to deal with

secondary tumours. It can be delivered alone or together with chemotherapy.

2.2 Nuclear Magnetic Resonance in neuro-oncology

The physical phenomenon in which atom nuclei placed in strong magnetic

fields absorb and emit electromagnetic energy is known as Nuclear Magnetic

Resonance (NMR or MR for short). In medicine, this effect is used to ex-

tract, non-invasively, information from regions of the body that are difficult

to reach, such as the brain. This information can be computer-processed to

generate images or other types of signal and is investigated by experts in

the area of neuroradiology.

MR scanners apply a uniform magnetic field to the body (in the region

of interest, or ROI) in order to align the magnetic moment of many protons.

Then, a radiofrequency pulse at a specific frequency is transmitted and

its energy absorbed by the protons, which flip their spin magnets. This

radiofrequency pulse is then switched off and the protons return to their

normal state, releasing the previously absorbed energy to the environment.

This remaining energy is collected by the receiver coils in order to quantify

the nuclei involved in all this process. The most widely used nucleus in

medical MR is the proton of the isotop hydrogen 1 (i.e., 1H) due to its

abundance in living tissue.
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Because different tissues release the absorbed energy at different relax-

ation rates, it is thus possible to construct an inner picture of the explored

body by identifying tissue types. In MRI, in order to obtain a visually con-

trasted image, there exist a number of acquisition parameters that can be

tuned: for instance, the use of gradient magnetic fields to locate the source

of the signal, or the use of different echo times.

Figure 2.5: Nuclear Magnetic Resonance variants - Signals obtained

with different MR modalities [25]: A) Single-voxel MRS; B)MRI; C) Multi-

voxel MRS; D) Multi-voxel-MRS with imaging information superimposed.

In MRS, efforts often focus on a specific small volume ROI, called voxel

(e.g., ∼1 cm3), from which signal in the time domain, subsequently trans-

formed into the frequency domain, is extracted (single-voxel proton MRS,

or SV-1H-MRS). The resonance frequency of several metabolites of interest

is well documented, so that SV-1H-MRS provides a metabolic signature of

the explored tissue.

Note that, while MRI provides a space-related morphologic characteri-

sation of tissues in the explored body, MRS provides localised biochemical

information. MRSI, as a combined extension of MRS and MRI, was de-

veloped with the purpose of skimming the best of both techniques, taking

advantage of the complementary information they provide. This technique

provides spatially-located biochemical knowledge by performing several SV-

MRS and plotting them in a grid-like fashion over an MRI. This way, multi-

voxel (MV) information is made available to the radiologist, obtaining not

only a picture of the inner tissues, but also information about their biological

composition and metabolical behaviour.
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2.2 Nuclear Magnetic Resonance in neuro-oncology

2.2.1 Magnetic Resonance Spectroscopy in neuro-oncology

MRS can be extremely valuable when applied to the brain tumour diagnosis,

since the increment or decrement of certain metabolites involved in tumoural

tissues can be observed in an MRS and compared to normal tissue.

Among the parameters that must be set to perform an MRS scan, the

time of echo (TE) is paramount. This is the elapsed time between the

moment in which the radiofrequency pulse is switched off and the data

acquisition starts. Usually, this time varies in the range of 18 and 288 ms

in in vivo 1H-MRS, and is characterised as either short time of echo (STE)

TE ≤ 45 ms, or long time of echo (LTE) otherwise.

Scans at STE (usually 20-35 ms) are fast and robust and provide spectra

with good resolution for certain metabolites. However, they present several

overlapping peaks and are prone to include noisy artefacts. On the other

hand, LTE spectra (around 135 ms) may not show T2 resonances, with the

consequent loss of information, but they present less baseline distortion and

frequently become easier to analyse.

Some of the most relevant metabolites in the analysis of human brain

tumours are described in some detail next [32] (Figure 2.6):

N-Acetyl Aspartate (NAA, 2.01 ppm - parts per million) is the highest

MRS peak in normal brain tissue. Although the exact role of this metabolite

is unknown, it is usually interpreted as a neuronal marker. Being a 35% more

present in grey and white matter than in the thalamus, with a proportion

of 1.5 in grey matter with respect to white matter, the reduction of NAA

means a reduction of the number of neurons in that region. It thus becomes

a clear sign of dysfunction or death of neurons.

Creatine (Cr, 3.02 ppm) is understood to be an indicator of energy

metabolism. It can be used as a reliable marker of cellular integrity. Usu-

ally, Cr is assumed to be quite stable in tumoural and non-tumoural tissues,

which makes it a good candidate for the calculation of ratios with respect

to other metabolites. A decrease of Cr can be found in brain lesions lacking

kinase, as meningiomas, limphomas or metastatic brain tumours, as well as

in aggressive tumours and hypoxic tissues.
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Figure 2.6: Main metabolites present in 1H-MR spectra of the brain -

Example mean spectrum of brain normal tissue (black) and glioblastoma (red)

from a real MRS database, shown with the tags of the main tissue metabolites.

The plot represents data acquired at LTE and STE, on the left and right part

respectively (divided by a vertical line). Y-axes represent unit-free metabolite

concentrations and X-axes represent frequency as measured in parts per million

(ppm). Notice that not all the mentioned metabolites show a peak signal in

this plot, given that their presence depends on the pathology.

Choline (Cho, 3.20 ppm) is a metabolic marker of membrane synthesis,

density and integrity, which is found in higher concentration in glial cells

than in neurons. Elevated concentrations of Cho may be associated with

cell proliferation, hence generally increasing in tumoural areas, showing a

correlation with malignancy. High Cho values are present in high-grade

gliomas and glioblastomas, but also in infarction and inflammation. On the

contrary, necrotic regions show low Cho signal.

Glutamine and glutamate (Glx, 2.05 - 2.46 ppm) are two metabolites that

can be detected along the specified range, and they are usually considered

together as Glx. They are found in neurons and astrocytes. While glutamate

is a neurotransmitter, they both carry out detoxification and regulation

tasks of neurotransmitters. High values of Glx might represent toxicity of

the brain as well as indicate an altered energy metabolism, involving partial

oxidation of glutamine. Elevated concentrations of Glx are often present in

meningiomas.
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Lactate (Lac, 1.31 ppm) appears as an inverted (usually negative) peak

under the baseline in signal acquired at LTE and above that line in STE

in MRS performed at brain regions in abnormal state. Lac does not show

up in normal MRS. An increase in Lac might be due to a variety of condi-

tions (e.g., hypoxia, ischemia, reduced oxygen supply, accelerated glycosis,

inflammation, etc.), but it usually indicates a failure in the normal aero-

bic oxidation mechanism (meaning that oxygen may not be flowing to the

analysed area through the vascular system). High-grade malignant tumours

often generate high Lac peaks.

myo-Inositol (mI, 3.26 and 3.53 ppm) is a carbohydrate that is absent in

neurons, synthesised in glial cells, hence being a glial marker. An increase

of mI indicates a glial proliferation that could be caused by inflammation.

Astrocytomas and low-grade gliomas are usually associated with an increase

of mI.

Glycine (Gly, 3.55 ppm) is an amino acid found in high concentrations

in astrocytomas and absent in meningiomas. Recent studies show it as a

promising biomarker of malignancy in paediatric brain tumours [33].

Taurine (Tau, 3.42 ppm) is an organic acid that can only be observed

at STE. It is difficult to measure because its peak overlaps with those of mI

and Cho. It is routinely used as a biomarker for paediatric medulloblastoma

and for measuring apoptosis in gliomas.

Alanine (Ala, 1.47 ppm) is an amino acid that can be found as an inverted

peak in LTE in some meningiomas and pyosenic abscesses, but undetectable

in normal brain. Its function is uncertain.

Mobile Lipids (ML, 1.3 and 0.9 ppm) are the major components of the

brain, although no significant peak intensities of these components are found

in normal MR spectra. Apparently, these lipids come from cell membrane

during the ongoing metabolic changes associated with programmed apopto-

sis. The appearance of these peaks is usually associated with necrosis and

hypoxia, which is often the case in high-grade tumours and metastases.
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2.3 Biomedical data sets

The methods designed throughout this PhD thesis are assessed using, when

appropriate, both artificial and real data. The real data are SV-1H-MRS

data acquired in vivo from brain tumour patients; and microarray gene

expression for different diseases. For that, we have access to different data

sources, whose characteristics are described next.

The INTERPRET 1H-MRS database The database built as part of

the INTERPRET (The Multi-Centre International Database of MR Spec-

tra from Brain Tumours) European research project [18] is the main source

of real data for this thesis. The creation of this database was coordinated

by the Grup d’Aplicacions Biomèdiques de la Ressonància Magnètica Nu-

clear (GABRMN) at Universitat Autònoma de Barcelona (UAB, Barcelona -

Spain) and was gathered from four different international institutions: Cen-

tre Diagnòstic Pedralbes (CDP, Barcelona - Spain), Institut de Diagnòstic

per la Imatge (IDI, Barcelona - Spain), Saint George’s Hospital Medical

School (SGHMS, London - UK) and University Nijmegen Medical Centre

(UMCN, Nijmegen - The Netherlands).

The data are SV-1H-MRS acquired using Point-Resolved Spectroscopy

(PRESS) and Stimulated Echo Acquisition Mode (STEAM) sequences at

both STE (30 - 32 ms) and LTE (135 - 136 ms), including 512 spectral fre-

quencies. The collected samples were validated and included in the database

only if they complied with the following criteria:

• The voxel had to be positioned on the nodular part of the tumoural

mass, avoiding cystic, oedematous or contralateral areas. In the case

of normal volunteers, the voxel had to be positioned in a normal white

matter region.

• The voxel had to be positioned in an area validated as the place where

the biopsy or tumour resection was performed.

• The short echo spectrum from the validated voxel should not have

been discarded because of acquisition artefacts, or for other reasons.
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2.3 Biomedical data sets

• Histopathological diagnosis had to be agreed among a committee of

neuropathologists.

Table 2.1: Content of the INTERPRET database

Tumour type STE LTE

Astrocytomas grade II 22 20

Astrocytomas grade III 7 6

Brain abscesses 8 8

Glioblastomas 86 78

Haemangioblastomas 5 3

Lymphomas 10 9

Metastases 38 31

Meningiomas 58 55

Normal cerebral tissue, white matter 22 15

Oligoastrocytomas 6 6

Oligodendrogliomas 7 5

Pilocytic astrocytomas 3 3

Primitive neuroectodermal tumours and medulloblastomas 9 9

Rare tumours 19 18

Schwannomas 4 2

This table contains a list of the available tumour types and their number of

cases acquired at STE and LTE [24].

The final database contains MR spectra from 266 patients at LTE and

304 at STE. The spectra were labelled according to the WHO system for

diagnosing brain tumours determined by histopathological analysis of biopsy.

Some of them might also contain MR images with the selected voxel to

perform the MRS explicitly marked as well as a detailed patient anonymous

profile.

The exact number of cases per tumour pathology is described in Ta-

ble 2.1.

eTumour 1H-MRS data set Further data that were made available to

this thesis were obtained as part of the European Union-funded eTumour

[19] research project .

These data were acquired, amongst others, from three clinical centres

in the Barcelona metropolitan area: CETIR-CDP (Centre Diagnòstic Pe-

29



2. MEDICAL BACKGROUND AND MATERIALS

dralbes, Unitat Esplugues, Esplugues del Llobregat), Corporació Sanitària

IAT (Institut d’Alta Tecnoloǵıa, Barcelona) and IDI-Badalona (Institut de

Diagnòstic per la Imatge, Unitat Badalona, Badalona). The data set con-

sists in 1H-MRS data (both at STE and LTE) from 10 patients affected by

glioblastoma brain tumours and 30 records from patients diagnosed as hav-

ing a brain metastasis. Similar acquisition conditions and preprocessing as

previous INTERPRET project was required, a fact that makes these data

directly comparable to those from INTERPRET.

Microarray gene expression database A widely-used collection of mi-

croarray gene expression data sets presenting a variety of diseases is used

in this thesis. In particular, each one of them shows the expression levels

of a large number of genes corresponding to different individuals (i.e., af-

fected patients and controls). The high feature dimensionality (genes) with

respect to the number of samples (patients) makes these data sets suitable

to validate our models.

Table 2.2: Microarray gene expression database

Dataset patients genes

Colon cancer [34] 62 2,000

Leukaemia [35] 72 7,129

Prostate cancer [36] 102 6,034

Lung cancer [37] 181 5,000

Breast cancer [38] 97 5,000

Melanoma [39] 70 5,000

Parkinson [40] 105 5,000

This table contains information regard-

ing the size of microarray gene expression

data sets after pre-processing.

In the case of Prostate cancer data set, a preprocessing similar to the

one in [41] is performed: it consists in fixing a valid range of values for each

gene to lay between [10, 16000]. Any value out of this interval is set to its

closest limit. Subsequently, genes presenting low variability (max/min < 5

or max−min < 50) are removed.
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For the Lung, Breast and Melanoma cancer data sets, as well as for

the Parkinson data set, a standard t-test was applied, retaining the 5, 000

top genes [42]. No pre-processing was applied to the Colon and Leukaemia

cancer data sets. Table 2.2 summarises the properties of each data set.
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Chapter 3

Technical background

In this chapter, we summarily present some general technical concepts of

relevance to the thesis. We start by providing an introductory overview of

Machine Learning (ML) approaches and we do follow this by self-contained

descriptions of ML techniques and problems of relevance to our work, in-

cluding ensemble learning, dimensionality reduction, algorithmic stability

and Bayesian inference. The chapter concludes with a brief review of the

state of the art in the application of pattern recognition and ML techniques

to neuro-oncology problems.

3.1 Machine Learning

Machine Learning, a field of research under the umbrella concept of Artifi-

cial Intelligence, aims at developing new algorithms able to learn (model)

an unknown function f from a set of observed data. By running an ML

algorithm on the available data, a model is trained for a specific task (that

is, f is learnt). The ultimate goal of this trained model is to be capable of

predicting realistic outcomes for unseen data.

Depending on the task to be performed, diverse approaches can be

adopted, giving rise to different subfields within ML. In this section, we

summarily review the two categories traditionally considered as the most

relevant: supervised and unsupervised learning.
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3.1.1 Supervised learning

Given a data set D containing N pairs {(x1, t1), ..., (xN , tN )}, where xn ∈ X
is a multivariate data point and tn ∈ T its corresponding so-called label

(for instance, class information representing membership in classification

tasks), a supervised algorithm attempts to learn a function f : X → T such

that a label t̂n ∈ T for new unlabeled data yn ∈ X is coherently inferred:

t̂n ← f(yn), such that t̂n is the most probable realisation for f(yn).

Classic learning algorithms for this setting [43] include, but are not lim-

ited to, Nearest Neighbour (NN), which assigns yn the label t̂n of its most

similar instance from D; Decision Trees (DT), that build a tree-like hi-

erarchical model (according to D) to be used as a flow-chart guiding the

inference from the root to the leaves, evaluating the appropriate attribute

at each level until the proper label is finally assigned in the resulting leaf;

Linear Discriminant Analysis (LDA), that aims at finding a geometrical

representation that maximises the distance between the classes’ averages

while minimising the variance between instances of the same class; Logistic

Regression, which models the probability of t̂n for yn by fitting a logistic

function to D; Support Vector Machines (SVM), which searches for the hy-

perplane that maximises the separation between class boundaries; and Arti-

ficial Neural Networks (ANN), a biologically-inspired technique that mimics

the functionality of the brain by constructing a network of artificial neurons

capable to learn and infer on given data.

3.1.2 Unsupervised learning

In the unsupervised framework, the data set D lacks any information re-

garding class assignment. In this case, the goal is finding the underlying

structure of the data. Among the specific subtasks that have been widely

pursued among the research community, we pay special attention to Clus-

tering, which consists in inferring groupings of similar instances; and Blind

Source Separation (BSS), which attempts to find the underlying hidden sig-

nals from the observed data, a noisy mixture of which conforms each of our

xn.
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Well-established algorithms for the former include, amongst others, K-

means [44], where an iterative process assigns instances to each of the k

groupings according to the distance to its group prototype; Hierarchical

Clustering [43], that assumes that the grouping structure of the data oper-

ates at different levels of detail and strives to obtain a hierarchy of groupings

by merging similar elements; and Self-Organising Maps [45].

BSS usually borrows procedures from Feature Extraction, a form of di-

mensionality reduction that will be discussed in some detail in Section 3.3.2.

3.1.3 Assessing predictive capability

In order to quantitatively assess the modelled f function, different measures

have traditionally been used to evaluate the predictions on data that were

not present during the training. Here, we review some of these measures that

will be employed to determine the correctness of the new models generated

in this thesis.

In a typical binary classification setting under the supervised learning

paradigm described in Section 3.1.1, where t̂n ∈ {0, 1} is the outcome of

each prediction f(yn) for a set {yn}Nn=1, representing whether instance yn

belongs to the positive class (t̂n = 1) and tn is the real outcome, we say the

prediction falls within one of the following categories:

• True Positive:

TPn = TP(t̂n, tn) =

{
1 if t̂n = 1 & tn = 1
0 otherwise.

• False Positive:

FPn = FP(t̂n, tn) =

{
1 if t̂n = 1 & tn = 0
0 otherwise.

• True Negative:

TNn = TN(t̂n, tn) =

{
1 if t̂n = 0 & tn = 0
0 otherwise.

• False Negative:

FNn = FN(t̂n, tn) =

{
1 if t̂n = 0 & tn = 1
0 otherwise.
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Insights on the behaviour of the evaluated model can be obtained by ac-

cumulating the number of predictions falling in each category. For instance,

we define the precision (a.k.a Positive Predictive Value - PPV) as the frac-

tion of correct positive predictions out of all instances predicted to belong

to the positive class. That is:

PPV =

∑N
n=1 TPn∑N

n=1(TPn + FPn)
.

Similarly, sensitivity (a.k.a recall or True Positive Rate - TPR) is described

as the ratio of correct positive predictions out of all instances really belonging

to the positive class. In symbols:

TPR =

∑N
n=1 TPn∑N

n=1(TPn + FNn)
.

Contrarily, the specificity (a.k.a True Negative Rate - TNR) measures the

proportion of negative predictions correctly classified as such out of all real

instances belonging to the negative class, which can be derived as:

TNR =

∑N
n=1 TNn∑N

n=1(TNn + FPn)
.

Last measure of this kind being of interest in this thesis is the fallout (a.k.a

False Positive Rate - FPR), which is defined as the complementary of the

specificity by calculating the incorrectly predicted positive instances out of

all the real instances belonging to the negative class. Its formula is:

FPR =

∑N
n=1 FPn∑N

n=1(TNn + FPn)
.

While any of the above measures can be directly employed to evaluate

the performance of a model from different angles, it is quite common to

summarise the overall performance in a single measure. In this respect, we

encounter the widely used Accuracy (ACC) and its complementary Error

Rate (ER), which can be formulated as:

ACC = 1− ER =

∑N
n=1 (TPn + TNn)

N
.
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Despite being frequently used, there exists a major shortcoming in using

this measure when the dataset employed to validate the model is highly

unbalanced (i.e., the proportion of instances belonging to one class is much

higher than the other), leading to a false appearance of good performance

(e.g., a naive model always predicting the positive class achieves a 0.99

accuracy in a dataset made up of 99 positive instances and only 1 negative

instance). To overcome such phenomenon, the Balanced Accuracy (BAC)

and its Balanced Error Rate counterpart can be defined as:

BAC = 1− BER = 0.5× TPR + 0.5× TNR.

Another measure of interest is the F-measure (F), which corresponds to

the harmonic mean of precision and recall and is defined as:

F = 2× PPV × TPR

PPV + TPR
.

When classifications are based on a continuous random variable, we can

assess the probability of an instance belonging to a class as a function of

a decision threshold τ . Picking the appropriate τ that leads to the best

classification accuracy can be achieved by drawing a Receiver Operating

Characteristic (ROC) curve by plotting the TPR (y-axis) as a function of

the FPR (x-axis). The value of τ corresponding to the point at the top-left

corner of the plot will be the best choice. In certain cases it can be of in-

terest to summarise the predictive accuracy of a model regardless of τ in a

single score by calculating the Area Under the ROC Curve (AUC) [46], de-

spite some recent controversies on using this measure to assess classification

models [47, 48]:

AUC =

∫ 1

0
TPR(τ)× FPR(τ)dτ

In certain cases, the AUC is underestimated due to the procedure used

to approximate the integral. When this happens, an optimistic estimate

evaluating the Area Under the Convex Hull of the ROC curve (AUH) can

be of interest. A thorough description of a fast algorithm to calculate it can

be found in [49].

Apart from the measures introduced in this section to assess the predic-

tive capability of the generated models, there exist other formulae that will
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be used in this thesis to evaluate other aspects of the ML experiments, such

as the effective stability in feature selection algorithms or the correlation

between inferred and real data. They will be thoroughly explained in their

respective chapters, when required.

3.2 Ensemble learning

The different techniques mentioned in the previous section may be suitable

for a broad range of problems. Nonetheless, there are some situations (i.e.,

when f is not smooth) in which single learners are not able to properly

capture the properties of the function.

To address this limitation, the ML community borrowed a concept from

the fields of psychology and social sciences, known as the wisdom of the

crowd, and applied it to its domain. As on a trial, where a fair verdict

might come from a popular jury, even though each one of the individuals

may have a different background and does not need to be an expert in the

domain, it seems plausible to use an algorithmic analogy of this approach

in which a combination of different learners are used to obtain a final single

classification or regression decision.

Within the ML community, this analogous concept is known as Ensemble

learning and is instantiated in the form of an ensemble of classifiers or a

committee. Its purpose is to improve the prediction accuracy of the single

models by aggregating, in different ways, their individual outputs.

All ensemble techniques share the same overall structure (Figure 3.1):

• A set of different base learners that conform the committee.

• An aggregation strategy.

• A process responsible of generating diversity.

Behind the intuition of why ensembles work, there is a sound statistical

theory, known as the bias-variance decomposition [50], which helps in ex-

plaining this phenomenon. It states that the error of any model can be split

into three different terms:
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Figure 3.1: General ensemble structure - General ensembles consist of

three main modules: the base learners, the aggregation strategy and the diver-

sity generator.

• Bias: a quantity measuring the difference between the models’ average

guess and the real hypothesis.

• Variance: a quantity measuring the spread of individual models with

respect to the average guess.

• Intrinsic noise: a quantity measuring the minimum achievable loss of

the model, known as the Bayes error.

Notice that bias usually increases when a model has insufficient flexibility

to model the data adequately. Conversely, when increasing model flexibility

in an attempt to decrease bias, sampling variance is increased. Therefore, in

any process of prediction, error minimisation can be considered as a trade-off

between bias and variance.

In the case of ensemble learning, its purpose is to increase prediction

accuracy by reducing either bias, variance or both components of this equa-

tion by means of aggregating multiple models. A graphical representation

of the bias and variance decomposition is shown in Figure 3.2.
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Figure 3.2: A representation of bias and variance decomposition -

Model bias is represented as the distance between the true function F ∗(x)

and the models’ average guess F̄ (x). Variance is shown as the spread of the

different models F̂ (x) around their average F̄ (x) [51].

3.2.1 Classical ensembles

A handful of ensemble techniques have been proposed over the last decades.

Here, we introduce some of them; they constitute the core of approaches

worth describing in some detail.

3.2.1.1 Bagging

Bagging (Bootstrap aggregating) [52] is an algorithm to create an ensemble

of classifiers that uses bootstrap samples to generate the diversity among its

base learners. The procedure consists in uniformly sampling M instances

from the training set with replacement for each of the L classifiers. For a

large value of M , the ratio of different instances in each bootstrap sample is

1− 1
e , which corresponds to a 63.2%. This value justifies the use of unstable

learning algorithms (e.g., ANN or decision trees) able to predict differently

with this limited diversity. Finally, the aggregation of the predictions pro-

vided by the classifiers is performed by a simple majority voting. This

algorithm aims at reducing variance to improve accuracy, given that it is

composed of unstable classifiers, which are known to produce high variance.
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3.2.1.2 Boosting

Adaboost [53] is the most representative algorithm using the boosting strat-

egy. It creates an ensemble of classifiers by iteratively sampling from the

training set using different probabilities to pick each instance, in order to

construct every base learner.

That is, it starts by constructing the first learner using a sample from

the training set, where each instance has probability 1/N to be chosen. A

classifier is built using this sample and the prediction for each instance is

computed. Then, the probability to pick each instance is modified according

to the errors obtained, giving higher probability to those instances that have

been misclassified (i.e., harder instances to predict). The next classifier is

created by sampling from the training set using the new probabilities. This

process is carried out until all classifiers are created.

Moreover, each classifier also calculates its weight within the ensemble

by computing its generalization error. This value is taken into account in the

aggregation phase, where the ensemble prediction is obtained by weighted

majority voting.

Its success can be devoted to a reduction in variance by averaging differ-

ent hypotheses; however, the effect of forcing the weak learner to concentrate

in different instance space also contributes to a decrease in bias.

3.2.1.3 Random Subspace

The Random Subspace method [54] is a strategy originally devised to con-

struct ensembles of classifiers based on decision trees, although it can be

used with other learning methods.

Let L be the number of base classifiers that conform the ensemble, D

the number of features of the data and d << D the number of features

to be used by each classifier. A selection of d different features out of D

is performed and the data is projected into the d-dimensional subspace,

where a tree learner is grown. The ensemble is constructed by applying this

procedure L times, leading to the construction of the required number of

base classifiers. In the prediction phase, their outputs are aggregated using
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one of the many variety of techniques already commented in order to obtain

the ensemble prediction. Success of Random Subspace method resides in

diminishing variance yet the explanation of why this happens is far from

obvious.

3.2.1.4 Random Forest

Random Forest [55] is a technique used to build a committee of experts

made of tree classifiers. It borrows ideas from both Bagging and Random

Subspace with the purpose of devising a technique able to make the most

of both strengths.

Let N be the number of instances, D the number of features and L

the number of classifiers conforming the ensemble. For every learner l, a

bootstrap sample of N instances (with replacement) is retrieved. Then a

tree classifier is built using these samples where at each node of the tree, a

subset of features d << D is randomly selected. The best split for the d

features is kept as the decision made at this node.

This process is repeated at every node for each learner until achieving

a whole ensemble made of unpruned trees. The final ensemble prediction is

aggregated using usual strategies.

According to Breiman’s experiments [55], results suggest that Random

Forest acts as a bias reducer, yet the explanation on why this happens is

not trivial.

3.3 Dimensionality reduction

A recurrent challenge when classifying high-dimensional data is the curse

of dimensionality [56], which hinders the process of knowledge extraction

from data using ML techniques. Among the drawbacks it generates, the

most frequent is the inability of many pattern recognition techniques, which

perform very well in a low-dimensional space, to maintain their accuracy

and robustness when dimensionality increases due to data sparsity; or the

instability that uninformative or misleading features can generate in those

techniques for the task at hand.
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In certain application domains, as in the one this thesis deals with, keep-

ing data dimensionality low is crucial for the sake of achieving visualisation

and interpretability, this being an often mandatory requirement for knowl-

edge extraction.

For the reasons explained above, as well as others, many techniques to

reduce the dimensionality of data have specifically been designed for either

classification purposes (i.e., supervised methods which take into account

the class label of every instance) or for general purpose (i.e., unsupervised

methods which use correlations among features to rank their importance).

In this section, we revise the most commonly used.

3.3.1 The feature selection problem

Feature subset selection (FSS) in a set Y of size D is commonly seen

as a search problem where the search space is the power set of Y , P(Y )

[57]. Without loss of generality, we assume that the evaluation measure

L : P(Y )→ R+ ∪ {0} is to be maximised. The criterion L may be problem-

independent or may depend on the classifier that will be used to solve a

classification problem. In any case, we will refer to L(X) as the usefulness

of feature subset X.

Let L be an evaluation measure to be optimised (say, to maximise). The

selection of a feature subset can be carried out under two premises:

• Find X∗ ⊂ Y , such that:

X∗ = arg max
X∈P(Y )

L(X) (3.1)

• Set a real value Lmin, that is, the minimum L that is going to be

accepted. Find the XK ⊆ Y with smaller K such that L(XK) ≥ Lmin.

Alternatively, given ε > 0, find the XK ⊆ Y with smaller K, such that

|L(XK)− L(Y )| < εL(Y ).

Notice that, with this definition, the optimal subset of features always ex-

ists but is not necessarily unique. Also noteworthy is the fact that, denoting
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by X∗ one of the optimal solutions, either of L(X∗) > L(Y ), L(X∗) = L(Y ),

L(X∗) < L(Y ) may occur.

Ideally, feature selection methods search through all the subsets of fea-

tures and try to find the best one. It is clear though, that if we had to test all

possible subsets of features using either of the methods, we would be faced

by a combinatorial explosion of possibilities. If our initial set of features is

Y and |Y | = D, the number of evaluations we would have to do would be

equal to the cardinality of the power set of Y : |P(Y )| = 2D. A complete

search (as with the Branch and Bound method), is a feasible procedure to

guarantee the finding of an optimal subset; this method also requires the

monotonicity of the inducer evaluation. This implies that when a feature is

added to the current subset, the value of the criterion or evaluation function

does not decrease. In most practical applications, this approach is compu-

tationally prohibitive and the mainstream of research on FSS has thus been

directed to sequential suboptimal search methods.

A Sequential Feature Selection Algorithm (SFSA) is a polynomial-time

computational solution that is motivated by a certain definition of useful-

ness. An important family of SFSAs perform an explicit search in the space

of subsets by iteratively adding and/or removing features one at a time until

some stop condition is met. These methods typically share the same basic

steps:

1. The subset generation to produce candidate subsets for evaluation

2. The evaluation criterion providing the usefulness of each subset

3. The stopping criterion to decide when to stop

Looking at the evaluation criterion, [58] divided the feature selection

methods into two main approaches: filter methods and wrapper methods.

These two families of methods only differ in the way they evaluate the can-

didate sets of features. A third group of methods called embedded methods

are a more recent approach to feature selection where the selection process

is done implicitly as part of the classifier design.
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3.3.1.1 Filters

These methods use a problem independent criterion. The basic idea of these

methods is to select the features according to some prior knowledge of the

data. For example, selection of features based on the conditional probability

that an instance is a member of a certain class given the value of its features

[59]. Another criterion commonly used by filter methods is the correlation

of a feature with the class (i.e., selecting features with high correlation [60]).

A well known family of filter algorithms is Relief [61], which estimates the

usefulness of features according to how well their values distinguish between

the instances of the same and different classes that are near to each other.

3.3.1.2 Wrappers

These methods suggest a set of features that is then supplied to a classifier,

which uses it to classify the training data and returns the classification

accuracy or some other measure thereof [62]. The search is guided by the

classifier used as a black box (i.e., the feature selection process does not

depend on how the classifier works). It is suggested in the literature that

wrapper methods, although they tend to overfit, perform better than filters

[58, 62] because using the classifier error rate used as the evaluation criterion

catches the structure and properties of the classifier better. Among the

proposed algorithms for attacking this problem, we find Sequential Forward

Generation (SFG) and Sequential Backward Generation (SBG), the Plus l -

Take Away r or PTA(l, r) proposed by Stearns [63], or the Floating Search

methods [64]. They both introduce methods for the generation of the sets

of features by combining steps of SFG with steps of SBG, but keep using a

certain L(X) as evaluation criterion.

3.3.1.3 Embedded methods

The idea here is to optimise the evaluation criterion L(·) directly and to

perform feature selection as part of the classifier training. This mechanism

can be found in algorithms like SVM [65], Adaboost [53], or Classification

and Regression Trees (CART) [66].
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Filter measures (as probabilistic separability measures) do not induce

the same preference order as would be obtained by comparing classification

error rates. This is due to the fact that error rates capture not only class

separability but any structural error imposed by the form of the classifier. As

the second aspect is not reflected in FSS based exclusively on filter measures,

the resulting features may perform poorly when applied as the input of the

classifier. Therefore, the legitimate way of evaluating feature subsets must

be through the error rate of the classifier being designed [62].

3.3.2 Feature extraction

In Feature Extraction (FE), we aim to find a new set of features that are

a combination of the original D observed data dimensions. The number of

these extracted features is often lower than D, thus achieving dimensionality

reduction. This approach works on the hypothesis that the observed features

are not the true variables from the source, but a noisy combination of the real

hidden, unobserved, or latent variables generated by the underlying process

that created the data. Some linear FE techniques are described next.

3.3.2.1 Principal Components Analysis

Principal Components Analysis (PCA) [67] is an unsupervised FE technique

that projects the data into a new orthogonal D-dimensional space in such a

way that the variance in each linearly uncorrelated dimension is maximised.

The projection is performed by defining the first Principal Component (PC

or dimension) as the axis along which the data accounts for most of the

variability. The rest of the components are defined sequentially as the or-

thogonal axes that explain the remaining variance in decreasing order.

In other words, the PCs are the eigenvectors of the covariance matrix

ranked in order of importance according to their eigenvalues.

The reduction in dimensionality is often achieved by using only those

PCs that explain a given (reasonably high) amount of the data variability

(e.g., using the K PCs accounting for 75% of data variance).
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3.3.2.2 Independent Components Analysis

Independent Components Analysis (ICA) [68] is a statistical BSS method

that seeks to decompose a data set into independent subparts. In this model,

it is hypothesized that the observed data V (matrix of D features by N in-

stances) is a product of combining the non-Gaussian, mutually independent

latent variables W (D by K) with the mixing matrix H (K by N). Hence,

algorithms implementing ICA find the proper combination of V ≈ WH

such that the statistical independence among the estimated components is

maximised.

3.3.2.3 Non-negative Matrix Factorisation

Non-negative Matrix Factorisation (NMF) [69] is an alternative technique

for matrix factorisation (V ≈WH), similar to ICA, but with the difference

that it imposes the constraint that all matrices V, W and H must be non-

negative (i.e., all elements must be equal to or greater than 0). Moreover,

in its initial formulation, the goal of NMF is to minimise the divergence

between V and WH.

3.4 Algorithmic stability

An important aspect to address when designing a learning algorithm, besides

its capability to predict accurately, is its stability. Stability is defined here as

the robustness of an algorithm to possible perturbations to its inputs. That

is, if small changes in the inputs lead the models learnt at different runs of

the algorithm to provide completely different outputs, we deem the learning

algorithm as unstable; otherwise, the learning algorithm is considered to be

stable.

One of the biggest impacts of unstable learning algorithms is on the trust

that domain experts can place to the model. Such experts are bound not

to trust a model that makes different decisions at each execution, despite

consistently providing high prediction accuracy.

Traditionally, emphasis has been placed in analysing and improving sta-

bility in learning algorithms. This idea was first introduced in [70], who not
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only provided a formal definition for that concept, but also a figure of merit

to quantify stability based on the level of agreement between the outputs of

two perturbed learnt models.

A major contribution in the field was published in [71], where stability

of learning algorithms was linked to the concept of generalisation error. The

study concluded that stable models tend to generalise better than unstable

ones.

3.4.1 Stability of feature selection

As stated in Section 3.3.1, FSS is employed in many domains to aid learn-

ing algorithms improve their performance in high-dimensional data spaces.

Most of the efforts in this field have been made in the design of algorithms

that are able to obtain a minimum subset of features that best captures

the properties of data for the ultimate goal of building a classification or

regression model.

Special attention has been paid to identifying and reducing the redun-

dancy among the selected features. Redundant features increase data di-

mensionality while not providing new information for the task at hand.

Therefore, it is common practise to keep any of the relevant redundant fea-

tures while discarding the rest. Notice that such approach might end up

damaging the stability of feature selection. In other words, if several re-

dundant features are equally relevant and probable, different runs of a FSS

algorithm might select different features to explain the same phenomenon,

which translates into a decrease in stability.

Instability of FSS is especially harmful in knowledge discovery, whose

main purpose is to identify those features that best explain the differences

between groups of samples. An example can be found in the field of biological

sciences (particularly in the -omics sciences), where FSS techniques are used

to obtain a set of potential biologically relevant feature candidates (a.k.a.

biomarkers) that must be further validated in costly biological settings.

Another source of instability of FSS arises when the number of data

instances is very small as compared to the dimensionality of data. In such
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cases, very different subsets of features might be equally good for explaining

the target concept.

Despite being identified as an important issue, stability of FSS has only

scarcely been addressed in ML research. Most of the existing studies deal

with providing measures for assessing the stability of FSS [72, 73, 74], and

only recently, a few studies have proposed strategies for actively increasing

the stability of FSS algorithms while maintaining their predictive capability

[75, 76, 42]. Notice at this point that nobody is likely to be interested in

a highly stable FSS algorithm at the cost of major decrease in prediction

accuracy.

3.5 Bayesian inference

Up to this point, we have been using the so-called frequentist approach to

explain our methods, which is just one of the two main avenues of ML in

a statistical setting. The philosophy of frequentists explains the world to

be made up of a set of fixed (either known or unknown) phenomena. This

translates in assuming that data are repeatable (i.e., sampling is infinite)

and the parameters defining the underlying process that generates them are

fixed (although unknown). Moreover, there is no information to be used

prior to the model specification; hence, inference is based only on processed

data.

The other side of the coin is known as the Bayesian paradigm. This

setting views the world probabilistically, meaning that unknown quantities

(i.e., model parameters) are defined to be an instantiation of a random

variable from a probability distribution. It also assumes all the available

data to be fixed and contained in the sample realisation. It is therefore

important to account for prior information of interest.

This alternative method uses Bayes’ rule for updating a probability esti-

mate of a predefined hypothesis as new evidence (i.e., in form of new data)

is observed:

P (H|E) =
P (E|H) · P (H)

P (E)
,
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where H stands for hypothesis and E for evidence. In this equation, P (H)

is the so-called prior probability, which models the previous belief on the

hypothesis before any evidence has been observed; P (E|H) corresponds to

the likelihood of the model, and accounts for the probability that evidence

E occurred under hypothesis H; finally, P (E), usually known as marginal

likelihood or model evidence, acts as a normalising constant ensuring that

probability integrates to 1. The resulting P (H|E), known as posterior prob-

ability, is the probability that hypothesis H occurs after observing evidence

E.

The Bayesian paradigm is not only a probabilistic interpretation of clas-

sical frequentist methods; it also provides a number of advantages mainly

due to the power of the marginalisation, allowing to integrate all nuisance

variables out instead of estimating them [77]. Next, we present some of the

advantages of using a Bayesian approach.

The first benefit is that Bayesian inference is based on solid statistical

theory, providing a reliable tool that experts can employ confidently.

Secondly, it provides a full probability model, meaning that the output

of a model is not only a sharp decision, but a probability. For instance,

in the context of classification, this probability can express the degree of

membership for a given class prediction.

Moreover, the unavoidable uncertainty of predictions is straightforwardly

dealt with by means of providing credible intervals to the solution.

Any prior domain knowledge can be easily incorporated into the model

using prior probabilities. This is especially interesting in those cases where

few data are available (e.g., in medical contexts). Continuing with small

sample size-related problems, the Bayesian approach allows avoiding resam-

pling strategies such as cross-validation that further reduce these small data

sets in the learning phase of the model.

Another advantage is the capacity to automatically update a given model

as new data are obtained. That is, the previous model can be used as prior

information for building the new model using the new obtained data. This

means that there is no need to fully retrain the model, but we can use an

automatic update instead.
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Further gains include the property of automatically avoiding overfitting

due to the integrating out operation on the parameters. Additionally, model

complexity is regulated (as an implementation of Ockham’s razor), given

that over-complex models are penalised through assignment of lower poste-

rior probabilities.

The final advantage we want to highlight is the ability of Bayesian in-

ference to provide a framework for model selection, using Bayes’ factor [78]

to compare among different models.

Nevertheless, there is a main drawback that has to be taken into account

when designing Bayesian models in real scenarios, related to their compu-

tational complexity. Some of the operations involved in the resolution of

Bayes’ rule (e.g., determining the marginal likelihood) involve the computa-

tion of difficult integrals which often cannot be analytically solved. Different

approaches based on approximations have been proposed to overcome this

limitation, giving rise to active fields of research. They can be broadly

grouped into stochastic and deterministic solutions [79]: the first uses sam-

pling techniques by means of Monte Carlo methods (e.g., rejection sampling,

importance sampling) or the more sophisticated Markov Chain Monte Carlo,

including the Metropolis Hastings algorithm or Gibbs sampling. The second

group is based on analytical approximations to the posterior distribution,

including Variational Inference and Expectation Propagation.

To sum up, the Bayesian paradigm shows a wide range of useful proper-

ties for data modelling, but they come at the price of complex derivations,

or high computational time. This is the reason why in certain practical set-

tings, the frequentist approach (based on efficient optimisation) is just good

enough.

3.6 Application of Machine Learning and Pattern

Recognition to the diagnosis of brain tumours

In current medical practise, and unless absolutely necessary, the diagnosis

and prognosis of human brain tumours are carried out on the basis of infor-
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mation obtained through non-invasive techniques such as those described in

the previous chapter.

The availability of this information in electronic format requires computer-

based processing. As a result, it becomes suitable for analysis using pattern

recognition methods stemming from the fields of statistics, computational

intelligence and ML [11].

As previously mentioned, MRS is a promising data acquisition technique

that provides the expert with detailed local information about the metabo-

lites present in the analysed tissue. However, the interpretation of MRS

requires the expertise of specialised radiologists, which do not abound in

the field. Therefore, research on pattern recognition in general and ML in

particular has emerged over the last two decades with the goal of providing

analytic support for diagnostic and prognostic decision making in neuro-

oncology.

Back in 1992, a review on the available literature about in vivo MRS of

human cancers, conducted by W. Negendank [80], identified the potential of

certain metabolites to become prognostic indices for different brain tumours

and laid out the main foundations of research in this problem, emphasizing

the need of improving diagnostic specificity and the use of statistical analysis

of multiple spectral features (multivariate statistical analysis).

In 1996, Preul et al.[81] proposed, for the first time on record, the use of

pattern recognition techniques for the classification of brain tumours on the

basis of MRS data. They employed spectra retrieved at LTE to differenti-

ate between different grades of astrocytoma (II, III and IV), meningiomas,

metastases and non-tumoural tissue. LDA classification was performed us-

ing six well-known selected metabolites (Choline, Creatine, N-Acetyl Aspar-

tate, Alanine, Lactate and Lipids), achieving up to a 99% success rate.

Hagberg [82] performed a thorough review on the most successful tech-

niques used to date regarding FSS and classification applied to the problem

of brain tumour diagnosis. Among them, PCA, LDA and Optimal Discrim-

inant Vector, together with peak integration and intensities, were used for

FSS. As for classifiers, the most employed were LDA and ANN. Results var-

ied, and the classification settings were too different to conclude that any

52



3.6 Application of Machine Learning and Pattern Recognition to
the diagnosis of brain tumours

technique showed clear advantages over the others. Since then, the relative

merits of different techniques and approaches to tackle these problems have

been discussed in some detail [83, 84, 85, 86].

De Edelenyi [87] introduced the concept of nosologic images to deal

with the problem of heterogeneity within a tumour. The problem is clear:

depending on the voxel of choice, tissue within it can be tumoural, non-

tumoural, or a mixture of both, which has an impact on the resulting spec-

troscopic pattern. In nosologic images, we move from a SV measurement

to multiple ones (MV), overlaying this information with a corresponding

tumour image. Then, the spectrum of each voxel forming the tumour is

classified as belonging to one of the histopathological classes and a colour is

assigned to each of the classes, conforming a spatially-informative image.

Much work has been carried out specifically using data from the Eu-

ropean INTERPRET project, the multi-centre study at the origin of some

of the data sets analysed in this thesis. In 2003, Tate and colleagues [88]

classified cases retrieved from three different centres using different acquisi-

tion protocols. The samples were split into three groups (meningiomas, low

grade astrocytomas and aggressive tumours). Accuracies up to 92% were

achieved using simple LDA classifiers.

Opstad [89] used the LCModel approach [90] followed by LDA to differ-

entiate among astrocytoma grade II, astrocytoma grade III, glioblastoma,

metastasis and meningioma. The results obtained reached an accuracy

of 94% when differentiating high-grade gliomas, astrocytoma grade II and

meningiomas (a reasonably easy problem), and 82% when astrocytoma grade

III were also included. For the classification of glioblastomas from metas-

tases, an inherently difficult problem, the score was 70%.

In 2004, Opstad [91] also analysed the problem of differentiating between

metastases and glioblastomas. A sample of only 23 glioblastomas and 24

metastases was used. It was concluded that the Lipid and Macromolecule

signals might be useful for such discrimination. Values of 80% sensitivity

and 80% specificity were achieved.

In the doctoral thesis carried out by L. Lukas [92], discrimination be-

tween glioblastomas, meningiomas, metastases and astrocytomas was at-
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tempted using kernel methods. Specially successful was the use of linear

Least-Squares Support Vector Machines (LS-SVM), where an AUC bigger

than 0.90 for LTE and over 0.95 for STE was achieved in the classifica-

tion of these tumour types, with the only exception of the discrimination of

glioblastomas from metastases.

Simonetti et al. [93] coupled the information provided by multi-voxel

MRS and different MRI products to perform classification of tumour grade

at every voxel. More precisely, they constructed a feature space by using

7 features from MRS (by means of PCA or peak integration) and 4 fea-

tures (image variables) from T1- and T2-weighted image, proton density

and Gadolinium-enhanced image respectively. They also provided a prob-

ability value that assesses the confidence of the prediction in each one of

the voxels. A voxel might be left unclassified if its confidence was not good

enough.

In [94], STE and LTE spectra were combined in an attempt to improve

the discrimination between tumour types. Multiple feature selection and ex-

traction techniques were applied, such as the sequential selection algorithm,

Relief-F and PCA. LS-SVM and LDA were used for the classification task.

Significant differences among performance estimations were obtained when

using short, long or both TE together. More recently, Vellido et al. [95]

also used the concatenation of data from both times of echo to discriminate

between glioblastomas and metastases using a Single Layer Perceptron. An

AUC of 0.86 was obtained using only a subset of 5 features which were

automatically determined by the system. For further reviews on the ap-

plication of Machine Learning and Pattern Recognition to the diagnosis of

brain tumours and to cancer in general, see, for instance, [11] and [96].
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Chapter 4

Ensemble learning

In Chapter 2, we described the different tumour types of the CNS, the

tissues they affect, their varying degree of malignancy and some of the ex-

isting treatment techniques for the patient. Among the tumour pathologies

that can be found in the brain, glioblastomas (gbm) and metastases (met)

are especially sensitive due to their poor prognosis. There exists a real

need to accurately differentiate these two types of tumours because the re-

quired treatment is completely different depending on the pathology. Given

the difficulty to interpret indirect measurements obtained with non-invasive

techniques (e.g., SV-1H-MRS), reliable automatic analysis of the spectra

becomes a big challenge. Up to date, most published research has failed in

this task of discriminating them with acceptable success, mainly due to the

similar MRS profiles that the two types present.

In this chapter, we will provide tools to overcome the limitations of pre-

vious studies by presenting a new ensemble-based technique that is able to

obtain state of the art accuracy results, assessed on the established INTER-

PRET and eTumour data sets. We proceed by first motivating the reader

with the known issues that lead to the failure of current techniques and the

hypotheses on how to tackle them. Next, we provide an overview of the

ensemble learning field and the different strategies used to develop each of

the basic components conforming an ensemble architecture. Afterwards, we

explain the workings of our proposed novel technique for the current specific
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problem, followed by an empirical evaluation proving its suitability, before

wrapping up the chapter with some conclusions.

4.1 Motivation

Despite many attempts to design robust models to accurately diagnose

whether a patient’s tumour belongs to the gbm or met type, truth is that

very few of them have achieved acceptable results (Section 3.6). We conjec-

ture that solutions based on classical single classifiers are unlikely to properly

accomplish their task due to the heterogeneity on the spectral signature that

these types of tumour show:

• High intra-class dissimilarity: two different tumours of the same type

might present very different MRS spectra.

• High inter-class similarity: two tumours of different type might be

described by very similar spectra.

We assume that algorithms able to subdivide the input space, searching

for similar patterns within tumour subtypes, might be required. In that

sense, ensemble techniques emerge as natural candidates to deal with this

hypothesis.

However, we also assume that most of the features in a spectrum are of

little relevance for the discriminating problem we face. Coupling the previ-

ous statement with the fact that most of the current cutting-edge ensemble

techniques rely on random selection of features (see Section 3.2.1), makes us

postulate that they will be of little help to fulfil the commended job.

Furthermore, by joining the facts of high data heterogeneity and low

number of relevant features to explain the discrimination, we think that

sub-grouping might be better accomplished by projecting the data into the

space spanned by a subset of features instead of a subset of instances.

Hence, we hypothesize that a solution able to succeed in the current task

must:

1. Present an ensemble-like structure capable of subdividing the input

space, with a base learner specialised in each subdivision.
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2. Each subdivision is obtained by projecting the data into the space

spanned by different subsets of features.

3. An embedded wise feature selection strategy must be considered, where

non-relevant features are dropped and the dimensionality is kept low.

4.2 State of the art

Chapter 3 contains a very brief introduction to the architecture of an ensem-

ble (Figure 3.1), naming its basic components and presenting a list of the

most successful solutions. Here we present a variety of traditional proposals

to implement each component.

4.2.1 Base learners

The core component of any ensemble is the set of different classifiers that

conform it. To fulfil their purpose, classical supervised learning methods,

such as those introduced in Section 3.1.1, can be used.

Special attention must be paid to those techniques presenting high in-

stability, meaning that a small manipulation of the learning process may

end up generating completely different classification rules. ANN and DT

are two examples of commonly used classifiers in ensemble learning.

Another desirable property is that each classifier must perform better

than random guess, and their errors must be produced independently. This

kind of learners, also known as weak classifiers, are the ones preferred when

building ensembles. On the contrary, if their individual accuracies are under

the random choice threshold, their combined outputs lead the ensemble to

increase its error [97].

We also argue that the use of learners that are able to output not only

a crisp classification label, but a class-conditional probability, as happens

with probabilistic classifiers, should be considered; since they provide richer

information than their crisp counterparts to the aggregation of outputs.
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4.2.2 Aggregation strategy

Building a module that is able to retrieve the individual outputs delivered

by the base learners and wisely combine them to obtain a single ensemble

decision, making the most of the underlying knowledge implicit in each

individual decision and the synergies among them, is of crucial importance

in the design of an ensemble.

There is agreement on the fact that any aggregation technique falls

within one of the two categories: either selection or fusion [98]. In fu-

sion all the outputs provided by the learners contribute, in some way or

another, to the final ensemble decision. When the outputs of the base clas-

sifiers are discrete (i.e., 1 or 0 whether an instance is predicted as belonging

to the true class or not), majority voting is a frequently employed strategy.

A more sophisticated technique might also compute the confidence on each

classifier and use it to calculate a weighted majority voting.

Whenever the base learners provide continuous values (e.g., when class-

conditional probabilities are outputted), aggregation methods include simple

algebraic functions, such as calculating the average or median; the weighted

average (i.e., a continuous version of weighted voting), or more elaborated

techniques such as fuzzy integral [99], which calculates the strength or con-

fidence of every possible subgroup of classifiers by means of a fuzzy measure

to properly combine the outputs.

In the selection schema, only one of the base learners is used to provide

the final ensemble decision. In that case a winner-takes-all strategy can be

used, where the most confident learner is the one whose output is taken

into account. The assumption behind it is that each learner specialises in a

specific subspace, becoming an expert in this neighbourhood.

A third approach entails using a hybrid between the two strategies ex-

plained above, for instance by selecting a subset of classifiers where its out-

puts are combined.

Following a different classification criterion, literature splits aggregation

strategies into static and dynamic, depending on the way a decision is made.

Static decisions occur when they are performed using the whole training set,
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without taking into account the current instance to be classified. An example

of this type is stacked generalization [100], a technique that aggregates the

base learners’ outputs by using a meta-classifier that uses them as its inputs.

On the other hand, dynamic decisions are made when the local charac-

teristics regarding the instance to be classified are taken into consideration

to influence on the base learners in charge of predicting the current instance.

Examples of this kind include dynamic selection and dynamic voting [101].

More precisely, they use cross-validation in the learning phase of the algo-

rithm to assess the goodness of the prediction provided by each classifier to

every instance in the training set and store this information in a table-like

structure. In the prediction phase, the most similar case in the table is

retrieved for every instance to be predicted, and its information taken into

account to select the most suitable classifier (in the case of selection), or to

ponder them accordingly (in the case of voting).

4.2.3 Diversity

It is sensible to say that no gain is achieved by an ensemble, as compared to

a single classifier, if all the base learners return the same outputs. Therefore,

there is a common sense property that we want our ensembles to fulfil: we

want the base classifiers to disagree among them. This concept is known in

the ensemble community as diversity.

Among the variety of strategies that has been used to ensure the ex-

istence of diversity, we present three different approaches in this section,

showing examples of algorithms exploiting each of them.

The first and most intuitive is to influence directly on the base learners.

This might be accomplished by using different groups of classifiers (e.g.,

an ensemble composed of three base learners: one ANN, one DT and one

LDA), or by using different parameters (e.g., different initial conditions, or

introducing other sources of randomness to the learners).

The second strategy consists in altering the training set in the learning

phase of each base classifier by sampling differently from the training set.

A different distribution of the instances is used for each learner leading the

ensemble components to diverge. Examples of this strategy are Bagging
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and Boosting algorithms (Section 3.2.1), or the cross-validation partitioning

[102], where the data set is split into K folds and each classifier Li is trained

using all folds except the i-th. This i-th fold is then used as a validation set

where model parameters are assessed.

The third strategy aims also at manipulating the training set, but in this

case, instead of sampling different instances per learner, we focus on using

different subsets of features. Each learner is specialised in a particular input

subspace where certain instances are easy to classify. When the information

is spread uniformly among all the features, the Random Subspace Method

[54] is a good choice. It constructs the base learners by pseudo-randomly

choosing the relevant features. Another study [103] used a genetic algorithm

to search the best features while explicitly calculating a trade-off between

accuracy and diversity. A further algorithm to be considered in this group

is Input Decimation [104]. This strategy proposes selecting the features for

each learner depending on the correlation with the class label while reducing

the error correlation among base learners.

The importance of generating diversity has been emphasized in this sec-

tion; however, we cannot forget that the final purpose of building a com-

mittee of learners is to increase their predictive ability by means of using

an ensemble structure. Therefore, a good trade-off between diversity and

accuracy should be actively sought for the success of ensemble classification.

4.3 Breadth Ensemble Learning

The proposed solution to overcome the limitations discussed in Section 4.1

is presented here under the name of Breadth Ensemble Learning (BEL).

Its basic structure, following the classical ensemble architecture previously

mentioned, can be seen in Figure 4.1 and includes: a diversity generator

module, called feature search since this module not only provides diversity,

but also divides the problem in sub-partitions of the input space; an ensemble

induction module containing the set of base learners; and the aggregation

strategy.
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Aggregation

ClassificationEnsemble induction

Feature search

Figure 4.1: Breadth Ensemble Learning structure - The system con-

sists of 3 main modules: the feature search (composed of different subsets of

features φi), the ensemble induction (made of several base classifiers Li) and

the aggregation strategy.

We first introduce each component in turn; their relationships will then

be explained to show the functioning of its workflow.

4.3.1 Base learners

The current component is built using a set of classifiers, these being of

any type from the available palette of techniques, or a combination thereof.

Nevertheless, some requirements led the choice of strategies. First, given

that we wanted to employ learners that were shown to be effective in the

domain under investigation, the feature selection module was kept to be the

only responsible for generating diversity; hence all the chosen learners in the

ensemble solution were of the same type and parameters.

Secondly, with the purpose of easing the aggregation phase, our pre-

dictors were required to have the ability to provide soft decisions in form

of posterior probabilities, so as to obtain not only a crisp class label, but

a qualitative measure of the prediction; therefore, probabilistic solutions
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became the first choice. More precisely, several classifiers of this type of

various degrees of complexity were used: the arguably weak-learner Naive

Bayes (NB [56]); the preferred single learner in the domain [105], LDA; and

the more complex Quadratic Discriminant Analysis (QDA [106]), both using

their probabilistic interpretation [56].

Due to its success in many fields, state of the art SVM was also employed.

Specifically, the linear LS-SVM [107] version with the add-on proposed by

Platt [108], where distances between support vectors and instances are fit-

ted into a sigmoid function to be used as an approximation to posterior

probabilities.

The last learning algorithm of interest, given that we are developing a

solution within an ensemble context, is the weak DT. Specifically CART [66]

was used, and the posterior probabilities were computed as the prevalences

in the final nodes.

4.3.2 Aggregation strategy

The main condition that the aggregation strategy was expected to fulfil

was simplicity, since we wanted to focus our attention in the feature selec-

tion component; another condition was to take advantage of the fact that

base learners output continuous values in form of probability, which can be

interpreted as the degree of membership to the positive class that the cur-

rent instance presents. Consequently, a static fusion aggregation strategy

was chosen; more specifically, the arithmetic mean [98] was employed to

combine individual outputs from each base classifier into a single ensemble

prediction. This simple measure provides a global ensemble decision which

is also a probability, expressing the degree of membership that the whole

committee assigns to the current prediction.

4.3.3 Diversity by feature selection

The feature selection component is very important in the proposed system,

since all the diversity for the ensemble’s success is generated there. Also,

the appropriateness of the input subspace projection directly depends on it.
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Assuming that the component is made up of N FSS modules: each mod-

ule generating a subset of features per base learner, we decided to implement

a Sequential Forward Generation algorithm (SFG) (see Section 3.3) to ob-

tain the proper subset of features for a given learner. Following the steps

introduced for this kind of methods:

1. Subset generation was implemented by defining three operands: adding

one feature to the current subset of features; removing one feature from

the subset; or leaving the subset unchanged.

2. Evaluation criterion was defined as the prediction ability (measured by

a chosen metric) of the whole ensemble on a validation set. Notice that,

by using this approach, the proposed SFG falls within the wrapper

category.

3. Stopping criterion was set to flag when no increase in ensemble pre-

diction ability occurred within two consecutive iterations.

Results should be validated by measuring ensemble prediction ability

on a test set; and, in our specific domain of application, by comparing the

selected features with radiologists’ knowledge on relevant MRS frequencies.

It is important to emphasize some singularities of the algorithm, given

the fact that it is embedded into an ensemble structure: first, at each iter-

ation, given a specific module, one operation is performed per feature, but

only the operation that maximises the overall ensemble performance is kept;

secondly, all modules are updated by one feature in turn at every iteration,

leading to a construction of the ensemble in breadth.

A justification for the functioning explained above is as follows: on the

one hand, a forward feature selection method was chosen due to the low

number of relevant features present in the MRS data for the current dis-

criminative task. Another reason for this decision was that, given the high

number of features and small sample size that often occur in the current

domain of application, LDA and QDA need to invert covariance matrices

which turn to be singular in this setting. On the other hand, approaching

the feature subset selection on a breadth basis is explained as the result of
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allowing each base learner to select the preferred dimension such that, when

added to its current dimensionality, the resulting data projection aids cer-

tain subgroups of data to be better classified, measured as an increment in

the overall ensemble performance.

4.3.4 Algorithm’s workflow

In order to better understand the BEL algorithm, the procedure is shown

here and some advice on implementation issues is provided.

Let Θ be the full set of features and let N denote the number of base

classifiers (which is constant). We denote by Li(φ) the i-th base classifier

developed using the feature subset φ. The ensemble at time (iteration) t can

then be expressed as L(t) = {L1(φ1(t)), . . . , LN (φN (t))}, where φi(t) ⊆ Θ.

The algorithm starts by assigning one feature to each module in the fea-

ture search component. Notice that, given that the feature updating works

in batch mode (i.e., modules are updated at the end of each ensemble’s it-

eration), it is important that the initial selected feature is different in each

module. Moreover, due to the fact that subset generation is approached

greedily, the algorithm is prone to be trapped in local minima; hence, start-

ing from an advantageous status is advisable. We propose to use the fast

classical RelievedF [58] filter algorithm to rank the features that best sep-

arate our two classes and sequentially assign the best remaining feature to

each module.

Then, every base learner is trained using all data in the training set

exploiting the characteristics exhibited by the data in the space spanned by

the selected features. A validation set is employed by each base classifier to

estimate a continuous output representing the membership of every instance

to each class, and finally, all the outputs provided by the classifiers are

aggregated to obtain a single ensemble prediction.

The resulting predictions provided by the ensemble are compared with

the true class label of the validation set and the ensemble performance P

is assessed (e.g., by using the AUC), by which the ensemble iteration is

completed.
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Next, subsequent iterations consist in finding best candidate updates to

every module in order to build the whole ensemble. Specifically, to form the

next ensemble L(t+ 1) from L(t), we proceed as follows. For the i-th base

classifier, three possibilities are considered: add the best feature to φi(t),

remove the worst feature from φi(t), or leave φi(t) unchanged. The choice

that leads to the highest overall ensemble performance will be selected. The

best feature Bi(t+ 1) for Li is the feature that, when added to φi(t), leads

to the best ensemble performance:

Bi(t+ 1) = arg max
θ∈Θ\φi(t)

P({L1(φ1(t)), . . . , Li(φi(t) ∪ {θ}), . . . , LN (φN (t))})

where P is the ensemble performance measure. Conversely, the worst feature

Wi(t + 1) for Li is the feature that, when removed from φi(t), leads to the

best ensemble performance:

Wi(t+ 1) = arg max
θ∈φi(t)

P({L1(φ1(t)), . . . , Li(φi(t) \ {θ}), . . . , LN (φN (t))})

Then, candidate φi(t+ 1) is set to either φi(t) ∪ {Bi(t+ 1)},
φi(t) \ {Wi(t+ 1)} or φi(t), depending on which choice leads to the best

performance when Li(φi(t+ 1)) is used. This process to find the best candi-

date updating is repeated for all the base classifiers to form L(t+1). Changes

are applied at the end of the iteration, when best candidate updates have

been found for all the base classifiers. The reason for employing a batch

mode is purely to improve computational speed.

The iterative process shown above continues until the stopping criterion

is met. A Matlab implementation of the presented algorithm can be found

at http://www.cs.upc.edu/~avilamala/resources/BEL_Toolbox.zip

4.4 Experimental evaluation of the proposed method

The proposed BEL algorithm was created with the problem of improving the

predictive discriminatory capability between gbm and met in mind. Here,

its suitability for such task is assessed and results are compared to single
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classifiers and classical ensemble techniques. A discussion on the biologi-

cal plausibility of automatically retrieved features as well as a theoretical

interpretation of technical issues is provided.

4.4.1 Experimental setup

The data used to evaluate the proposed technique (Section 2.3) corresponds

to a subset of the INTERPRET database, which is composed of 78 gbm and

31 met to be used as training set; and 30 gbm and 10 met from the eTumour

project that conform the hold-out set.

Only 195 out of 512 available frequencies, validated by experts as corre-

sponding to the most relevant frequency interval in the spectrum [32], are

used in the current experiments. Data acquired at both LTE and STE are

employed by concatenating both spectra (LTE + STE, 390 features); this

setup has been shown in previous studies [94] to have a differential advan-

tage for classification purposes. All data have been standardised prior to

analysis.

The training phase in any of the experiments consisted in applying a

leave-one-out cross-validation technique (LOO-CV, stated otherwise) over

the training set (using the corresponding class labels) for parameter esti-

mation and model selection, aiming at maximising the AUC measure of the

whole ensemble; while the hold-out set was used to validate the ensemble

performance in the prediction phase.

4.4.2 Single classifier vs. ensemble

This test consisted in assessing the appropriateness of each learner type in

becoming the base learner of choice for the BEL algorithm, by picking the

best performing one. Likewise, a comparison between single classifier versus

its ensembled counterpart was also evaluated.

The first choice involved the selection of the hyperparameter controlling

the number of base learners for BEL, which was set to 50.

The deterministic filter RelievedF algorithm was set to make use of only

the nearest neighbour, which means setting the K parameter to 1. Prelim-
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inary evaluations showed no significant difference in using more neighbours

for the purpose of initialising BEL.

For probabilistic learners (i.e., NB, LDA and QDA), priors were set

empirically as class proportions; µ was set to the empirical mean; σ2 in NB

was set to the empirical variance, Σ as the empirical covariance matrix for

LDA, and Σc as the empirical class-conditional covariance matrices in the

QDA learner.

Regarding LS-SVM, a linear kernel was chosen, setting the C parameter

to default 1 value. In the case of CART, no pruning was set and the prior

probabilities were set to be the class proportions. For the rest of parameters,

defaults were also used: they include setting k = 10, which corresponds

to the required number of instances per impure nodes to split, minimum

number of observations per leaf equal to one, and using the Gini index [66]

to guide the splitting.

The results obtained by each classification technique are summarised in

Table 4.1, where different evaluation measures are presented. Notice that,

given the deterministic nature of the used techniques (i.e., source of ran-

domness in neither classifiers nor LOO-CV strategy), only point values are

provided in the table, with the only exception being CART, which required

10-fold CV due to the excessive computation time involved in applying LOO.

The general pattern followed by all evaluated learning techniques is the

improvement of predictive performance achieved when using an ensemble

architecture as compared to a single classifier, fact that reinforces our hy-

pothesis that BEL predicts better than single classifiers. If we now focus

our attention on the best performing base classifier according to our results,

we can conclude that LDA should be the learner of choice in our setting.

This robust linear classifier yields better classification than the weak NB or

CART, but, interestingly, also outperforms the more complex QDA. Lin-

ear LS-SVM also operates quite well and could therefore be considered an

alternative choice.

67



4. ENSEMBLE LEARNING

Table 4.1: Breadth Ensemble Learning performance using different base clas-

sifiers

n AUC AUH ACC F BER

NB
1 0.59 0.68 0.80 0.80 0.40

50 0.61 0.74 0.85 0.87 0.33

LDA
1 0.79 0.83 0.82 0.86 0.35

50 0.88 0.91 0.87 0.88 0.22

QDA
1 0.58 0.68 0.77 0.79 0.37

50 0.61 0.72 0.77 0.81 0.47

LS-SVM
1 0.68 0.76 0.80 0.86 0.35

50 0.84 0.88 0.82 0.88 0.22

CART
1 0.58 ± 0.07 0.58 ± 0.07 0.75 ± 0.00 0.78 ± 0.05 0.46 ± 0.10

50 0.65 ± 0.06 0.74 ± 0.04 0.81 ± 0.02 0.83 ± 0.02 0.37 ± 0.03

The learning techniques used as base classifiers were Naive Bayes (NB), Linear Discrim-

inant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Least-Squares Support

Vector Machines (LS-SVM) and Classification and Regression Trees (CART). The en-

semble performance was calculated using different measures: Area Under the ROC

Curve (AUC), Area Under the ROC Convex Hull (AUH), accuracy (ACC), F-measure

(F) and Balanced Error Rate (BER). The ensemble was composed of either 1 or 50

base classifiers.

4.4.3 Breadth Ensemble Learning vs. classical ensembles

The predictive performance of BEL was compared to state of the art general

purpose ensemble techniques. Specifically, we evaluated Random Forests

(RF), Bagging (Bag) and Boosting (Boost). The number of grown trees

was set according to the authors’ advice (i.e., 500 for RF, 100 for the other

techniques). The rest of parameters were evaluated empirically:

For RF, we used 20 features per node, which approximately corresponds

to the square root of the total number of features; in Bag, the maximum

number of instances per node before splitting was set to 20 and increasing

its fit by 0.5; finally, Boost was set as its predecessor but the parameter

controlling the fit increment was set to 0.4.

Posterior probability values were calculated as the quotient of trees vot-

ing in favour of positive class over total of trees.

The first row in Table 4.2 shows the poor results obtained by the evalu-

ated general purpose ensemble techniques. Given that one of our hypothe-

ses in this chapter is that appropriate feature selection is required, we tried
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Table 4.2: Performance of different ensemble methods on 1H-MRS data

FSS Ens. AUC AUH ACC F BER

None

RF 0.67 ± 0.01 0.77 ± 0.01 0.77 ± 0.02 0.86 ± 0.01 0.44 ± 0.07

Bag 0.69 ± 0.04 0.72 ± 0.04 0.75 ± 0.05 0.83 ± 0.04 0.35 ± 0.04

Boost 0.71 ± 0.02 0.78 ± 0.02 0.74 ± 0.04 0.83 ± 0.03 0.36 ± 0.03

RelievedF

(m = 14)

RF 0.59 ± 0.02 0.68 ± 0.02 0.75 ± 0.00 0.86 ± 0.00 0.50 ± 0.00

Bag 0.62 ± 0.03 0.70 ± 0.03 0.73 ± 0.03 0.83 ± 0.02 0.39 ± 0.03

Boost 0.62 ± 0.04 0.68 ± 0.03 0.76 ± 0.03 0.85 ± 0.02 0.40 ± 0.05

RF

(m = 23)

RF 0.67 ± 0.01 0.74 ± 0.01 0.78 ± 0.02 0.86 ± 0.01 0.35 ± 0.02

Bag 0.71 ± 0.04 0.73 ± 0.04 0.75 ± 0.06 0.83 ± 0.05 0.34 ± 0.04

Boost 0.72 ± 0.02 0.77 ± 0.02 0.72 ± 0.04 0.81 ± 0.03 0.38 ± 0.03

Embed. BEL 0.88 0.91 0.87 0.88 0.22

The proposed ensemble techniques are Random Forest (RF), Bagging (Bag) and Boosting

(Boost) using CART, which were run with no feature selection prior to classification or

with either RelievedF or RF (ending up keeping 14 and 23 features, respectively), and the

proposed Breadth Ensemble Learning (BEL) using LDA as base learners. The ensemble

performance was calculated using different measures: Area Under the ROC Curve (AUC),

Area Under the ROC Convex Hull (AUH), accuracy (ACC), F-measure (F) and Balanced

Error Rate (BER).

to help these algorithms by performing feature subset selection as a pre-

processing step. More precisely, we used two different techniques to rank

the features: using RelievedF filter with parameter K = 1 and by calculat-

ing the averaged Gini index of each feature after 100 RF runs. The final

number of features m was chosen according to the elbow criterion [43]. None

of these attempts helped to increase the predictive power of the models, as

observed in rows 2 and 3 of the table.

4.4.4 Discussion

In light of these results, we conclude that regular ensemble learning algo-

rithms based on random selection of features and composed of weak base

learners (which are proved to be successful in many domains) do not per-

form well in our field. Trying to overcome such limitation by using a wiser

feature selection strategy does not help in accomplishing the task.

The BEL algorithm achieves its goal by training the base learners us-

ing different subsets of features, which have been obtained by means of a

parsimonious FSS strategy. In this context, sharing a feature between two
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subsets is not prevented; a feature can be freely shared among as many

subsets as required.

Figure 4.2: Single Voxel 1H-MRS frequency appearances - Relative

percentage of appearances for each feature (frequencies in ppm) from the SV-
1H-MRS spectrum using a BEL ensemble of 50 LDA. Deep red columns repre-

sent appearances in the Long Time of Echo spectrum whilst light green columns

are the appearances in the Short Time of Echo.

With the purpose to show the relevance of each feature (frequencies in

ppm from the SV-1H-MRS spectrum) for the current discriminative task

according to BEL standards, the relative percentage of feature appearances

in our successful BEL classifier made up of 50 LDAs as base learners is shown

in Figure 4.2. They must be compared and contrasted with results from

existing literature, as well as domain knowledge, for enforcing the model’s

reliability and pointing towards new findings in form of relevant frequencies

within the spectra.

Most of the highly selected features are consistent with those found

relevant in previous studies. For instance, frequencies located between

3.38 − 3.45ppm, which have been selected as relevant by our method in

LTE, might correspond to Taurine as shown in [23]. Similarly, those in the

interval 3.58 − 3.60ppm, corresponding to Glycine, have also been picked

up by both studies. A well-known important metabolite, namely Creatine,

usually observed at 3.03ppm is properly captured by BEL. N-Acetyl Aspar-

tate, at 2.05ppm, has been selected by our model: a metabolite of interest

for this specific discriminative task, as reported in [95]. This same study

also observed the prevalence of important features at LTE with respect to
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STE when both spectra are used in concatenation.
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Figure 4.3: Average glioblastoma and metastasis spectra - Mean spec-

tra as a function of frequency (in ppm) of gbm (solid blue) and met (dashed

red) from the INTERPRET database, for both long and short echo times (LTE

and STE, respectively).

Comparing the most selected frequencies in BEL with the mean spectra

in Figure 4.3, we observe that frequencies showing high amplitude in the

latter are not necessarily relevant, as appreciated in the former. In this re-

spect, notice the Choline (3.20ppm) and Lipids/Macromolecules (1.40ppm)

compounds, which present the highest peaks in the spectra, but are rarely

selected by our method.

New and previously unreported findings arise in our study, according

to the high occurrence of features located at 4.20ppm and 3.95ppm, which

might correspond to Choline and either Creatine or Alanine. They should be

taken into account in future research to elucidate whether they may become

consistent biomarkers.

We would not like to finish this discussion without commenting a few

technical aspects. The first one is the computational cost of the BEL al-

gorithm: we acknowledge the limitations of our approach in terms of time

complexity, given the number of learners that have to be trained every time

a new feature is considered. Nonetheless, taking the difficulty of the current

goal into consideration (i.e., discriminating between gbm vs. met), together

with the current situation in which no adequate models exist to solve such

discrimination, and added to the fact that BEL is expected to work in an
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offline environment, the benefits of accurate tumour classification using BEL

are worth the price of slow model building.

Besides, if BEL was to be applied in other domains which require faster

model learning, we should keep in mind that the algorithm has been de-

signed to achieve easy parallelisation with the purpose of alleviating the

time complexity bottleneck. Specifically, two levels of parallelisation can be

applied: the first consists in running the trial of every new feature in each

base learner distributedly; the second takes advantage of the batch mode up-

dating of subsets (i.e., candidate features per base module are not updated

until all modules have been treated), allowing module-basis parallelisation.

A final remark has to do with the bias-variance analysis of BEL’s error

improvement: according to [109], stable classifiers like LDA characteristi-

cally present low variance but can have high bias. Given the heterogeneity

on the spectral signature that the tumours under consideration present (see

Section 4.1), it seems plausible that single learners might show high bias.

Following this line of reasoning, since every base learner specialises in a

subspace, they better capture the singularities of their specific subproblem,

hence reducing bias. However, further research including theoretical analy-

sis of bias-variance decomposition of BEL should be carried out to validate

this interpretation.

4.5 Conclusions

The proposed Breadth Ensemble Learning is a technique that builds a com-

mittee of experts with an embedded feature selection strategy specifically

designed to overcome the limitations of current solutions attempting to dis-

criminate glioblastomas from metastases using SV-1H-MRS data. It has

been conceived following the premises stated in Section 4.1, which we re-

view next:

1. Present an ensemble-like structure capable of subdividing the input

space, with a base learner specialised in each subdivision: stable LDA

models have been used as base learners to become an expert in their

sub-domain, which provide probabilistic outputs to better interpret
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the reliability of the decision made, while allowing for a straightfor-

ward ensemble integration by means of averaging.

2. Each subdivision is obtained by projecting the data into the space spanned

by different subsets of features: the data being projected in different

subspaces not only allows the base learners to specialise, but also to

provide the diversity that the ensemble requires. Notice that subspaces

are created in breadth; that is, the new added dimension is the one

that best improves the overall ensemble predictive capability.

3. An embedded wise feature selection strategy must be considered, where

non-relevant features are dropped and the dimensionality is kept low :

a sequential forward feature selection algorithm is chosen to take ad-

vantage of the low number of relevant features for the commended

task. This strategy is tightly coupled with the subsequent base learner,

working in a wrapper fashion.

The good results obtained in our benchmark to differentiate these two

aggressive tumours rank with the best obtained to date for this kind of

problem, analytically reinforcing the validity of our hypotheses.
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Chapter 5

Stability of feature selection

It is widely accepted that ML models must provide high prediction accu-

racy. To fulfil this requirement, BEL followed, in the previous chapter, an

ensemble approach with a wise FSS strategy to improve prediction ability in

the specific problem of discriminating between gbm and met brain tumours.

This is, however, a perfect example of a problem where providing inter-

pretable outputs is as important (if not more important than) as achieving

high classification accuracy. In such situations, FSS is not only useful from a

technical viewpoint (i.e., assuaging the curse of dimensionality), but also by

providing more interpretable models: a human radiologist will better under-

stand the model’s output when few features (i.e., SV-1H-MRS frequencies

in the aforementioned problem) have been employed to provide a decision.

Nonetheless, simply applying FSS techniques to our problem is not

enough to obtain interpretable models that can be trusted by domain ex-

perts. An important hurdle in this respect relates to the instability of FSS

algorithms: if little variations in the input data translate into a different

selection of features considered relevant, the reliability on the model is ham-

pered regardless its relative predictive accuracy. This phenomenon not only

occurs in the domain under investigation, but in most of the situations in

which we deal with few observations of high-dimensional data.

In this chapter, we stick to the problem of discriminating between gbm

and met from SV-1H-MRS data, but acting upon FSS algorithms to in-

duce them to provide more stable subsets of important features at different
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runs while maintaining their predictive power. We start by showing some

properties of the domain data, which, together with the current techni-

cal limitations, set the premises over which to develop the new technique.

Then, we review the literature, searching for the last reported improvements

regarding feature subset stability. Later, the proposed technique for explic-

itly improving feature subset stability is presented, experiments on datasets

from different domains are reported and finally, some final conclusions are

summarised.

5.1 Motivation

When models capable of accurately discriminating between gbm and met

using SV-1H-MRS data were supplied to medical experts, they showed their

scepticism about models’ reliability, given the fact that FSS strategies often

choose very different subsets of features as relevant for the classification

every time the model is executed. The cause of such variability can be

attributed to the own instability of FSS algorithms, an event often observed

when using datasets containing:

• a small number of instances (small sample size),

• many features (high dimensionality).

In our domain, the number of spectra is in the order of tens per tumour type,

while the number of SV-1H-MRS frequencies is in the order of hundreds. In

such circumstances, the hypotheses space is too large, while the number of

constraints (i.e., instances) is limited, meaning that different configurations

(i.e., subsets of features) might equally approximate the real hypothesis,

leading to model overfitting.

As explored in the next section, the few studies addressing this prob-

lem mainly approach it through resampling strategies used to construct

ensemble-based FSS models; the principal shortcomings of this approach

are its high computational cost and the lost of learning capacity when sam-

pling from an already small dataset. An alternative approach is grounded

in the statistical concept of importance sampling [110]. This is an appealing
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approach to be taken into consideration in our domain, due to its simplicity

and efficiency. However, and despite sound formal analysis, empirical eval-

uation on the provided framework shows a number of limitations that need

to be overcome.

We will therefore base our study on two main hypotheses:

1. There are some instances that are typical regarding their underlying

distribution and others that show outlying behaviour. Due to the fact

that the latter type induce FSS algorithms to be unstable, we could

simply remove them for the sake of stability if the dataset is large

enough. In our case, with a small sample size, we can obtain a similar

effect by weighting their importance in the FSS process.

2. As discussed in the previous chapter, the high heterogeneity of in-

stances lead them to cluster in local neighbourhoods. This means

that FSS algorithms approaching the hypothesis-margin are likely to

be more suitable than the ones aiming at reducing the sample-margin,

as seen in the next section.

5.2 State of the art

The two types of margins mentioned previously are the first topic addressed

in the current section. This is followed by the review of two widely used FSS

algorithms, which turn out to be easy to adapt to the inclusion of information

regarding instances’ typicality. Next, we introduce several state of the art

measures to evaluate the stability of FSS techniques. Last, a thorough

survey of the few studies devoted to methods for explicitly increasing FSS

stability is carried out.

5.2.1 Sample and hypothesis margins

In a research project published in [111], margins were defined as important

elements to measure the confidence of a classifier with respect to its predic-

tions. Specifically, the work exposes two different approaches to characterise

the margin (or confidence) of a given instance:
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(a) Sample-margin (b) Hypothesis-margin

Figure 5.1: Two types of margin - Radius of dashed circles represent the

two types of margins for the hollow blue dot.

One is named sample-margin and is described as the distance between

an instance and the decision boundary induced by the classification rule.

Examples of learning algorithms using this type of margin include SVM,

where a separating hyperplane that maximises the sample-margin is sought,

or the K-NN version that defines a Voronoi tessellation.

Hypothesis-margin is the second type of margin, defined as the distance

between the given instance and the closest hypothesis that assigns an al-

ternative label to the given instance. This type of margin can be more

easily computed in a different K-NN version than the previous one, by sim-

ple Euclidean distance calculation instead of requiring the generation of a

tessellation.

Regarding FSS techniques, SVM-Recursive Feature Elimination (SVM-

RFE) [112] is an example of algorithm of the sample-margin type, while the

Relief family of algorithms falls into the hypothesis-margin type. See the

next section for a review of these algorithms.

5.2.2 Feature selection techniques

In Chapter 3, we gave a broad introduction to FSS techniques and presented

their three main types: filter, wrapper, or embedded methods. A different

classification can be done if we focus on the output that FSS strategies

78



5.2 State of the art

provide. In this respect, we might obtain a set of relevant features, all having

the same importance; an ordered list of features, where features at the top

of the list are more relevant than those ones at the bottom; and, finally,

weighting-score features, where a quantification of the importance of each

feature is provided. Notice that each of the subsequent presented output-

types introduces one more level of information. Due to the requirements

of our working domain (i.e., searching for equally relevant biomarkers), we

stick to the use of the more general set of features.

The Relief family of filter FSS algorithms, employing the hypothesis-

margin, aim at weighting each of the available features according to its

relevance regarding the target concept. Its first version was presented in

[61], consisting in randomly sampling P instances from the training set and

updating the weight W of each feature j according to the distance of the

selected instance xi to the closest instance of different (nearest miss: m(xi))

and same (nearest hit: h(xi)) class. Feature weights are calculated as:

W(j) =
P∑
i=1

(|xi,j −m(xi)j | − |xi,j − h(xi)j |) .

This idea was further extended in [113], developing a more robust algorithm

to deal with noisy data by averaging the distance to the K nearest hits and

K nearest misses. The solution was named Relief-A:

W(j) =
P∑
i=1

1

K

K∑
k=1

(|xi,j −mk(xi)j | − |xi,j − hk(xi)j |) .

In that same study, Relief-F was proposed as a generalisation for multiple

class prediction.

With the purpose of reducing variance due to the stochastic nature of

Relief techniques, a deterministic version was proposed in Relieved [58],

which proposed to use all N instances in the training set exactly once, in-

stead of sampling from it and computing the distances to all hits and misses.

An extension, defined to obtain a deterministic multi-class algorithm, was

introduced under the name of Relieved-F [62].

Another interesting algorithm, this time using a classifier of the sample-

margin approach with embedded FSS, is the SVM-RFE [112]. Its main idea
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consists in using the weights of a maximum margin classifier to produce a

feature ranking. In its initial version, a linear soft-margin SVM classifier is

trained by minimising the following objective function:

min
1

2
‖w‖2 + C

N∑
i=1

ξi,

where ξ is a vector of slack variables or deviations from the hyperplane; C

is the hyperparameter that controls the trade-off between separating with

maximal margin and allowing misclassifications; and

w =
N∑
i=1

αiyixi

is the weight vector, α, y,x being the Lagrangian parameters, class labels

(s.t. yi ∈ {−1, 1}) and instances, respectively. Once convergence is achieved,

the weight vector is used to compute the ranking criterion for each feature

as cj = |wj |.

Notice that the proposed FSS techniques do not really provide a subset

of selected features, but a weighting-score of features, instead. In order

to obtain a subset of relevant features, an RFE strategy can be adopted

by iteratively applying the proposed algorithms and removing the lowest

ranking features.

5.2.3 Measures for assessing feature selection stability

The suitable figure of merit to evaluate the stability of a FSS technique will

depend on the output-type the algorithm provides. There exist measures

specifically designed to assess stability between feature rankings, feature

scores and feature sets. In this part, we focus our attention on this latter

type and review the most frequently used measures.

The matter of evaluation is the stability of a FSS algorithm in selecting

a subset of k features out of the initial F features over a batch of M runs.

Let Si(k) be the subset of selected features of length k in the i-th run; and

E = {S1, S2, ..., SM} the set containing all the retrieved feature subsets. The
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first metric, termed Average Normalised Hamming Distance [114], makes use

of the pairwise information theoretic Hamming distance:

HD (Si(k), Sj(k)) =
F∑
f=1

|Si,f (k)− Sj,f (k)|,

which is averaged over the M runs to calculate the overall stability in E,

according to:

ANHD (E(k)) =
2

F ×M(M − 1)

M−1∑
i=1

M∑
j=i+1

HD (Si(k), Sj(k)) .

This equation outputs unity-bounded values, ranging from low stability (≈
0) to high stability as we approach a value of 1. Its main drawback is that

it does not account for the amount of intersection between two subsets.

Kalousis et al. [72] proposed to use the Tanimoto coefficient, which is a

generalised Jaccard Index for dissimilarity between two subsets:

JI (Si(k), Sj(k)) =
|(Si(k) ∩ Sj(k)|
|(Si(k) ∪ Sj(k)|

= 1− |Si(k)|+ |Sj(k)| − 2|Si(k) ∩ Sj(k)|
|Si(k)|+ |Sj(k)| − |Si(k) ∩ Sj(k)|

.

This measure is also bounded between 0 and 1, the former meaning no

intersection while the latter implies the two subsets to be the same.

Kuncheva [73] introduced the stability index (a.k.a. Kuncheva Index,

KI) of E(k) by computing the average of pairwise consistency index:

KI (E(k)) =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

KCI (Si(k), Sj(k)) ,

where

KCI (Si(k), Sj(k)) =
|Si(k) ∩ Sj(k)| − (k2/F )

k − (k2/F )
.

KI values are bounded to values between −1 and 1, the latter meaning

maximum stability. Values near 0 are interpreted as similarity drawn by

chance, and negative values show high dissimilarity (more than random).

Similarly, using the same averaging equation, but substituting the consis-

tency index (KCI) by the Jaccard Index (JI), Alelyani et al. [115] extended

the Kalousis’ similarity to multiple subsets.
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Krizeck et al. [116] developed a stability measure based on the Shannon

entropy, a concept borrowed from information theory:

KSE (E(k)) = −
C(F,k)∑
i=1

Gi(k) log2Gi(k)

where Gi(k) = Gi(k)
M ; Gi(k) being the number of occurrences of the set Si(k)

in the sequence of M subsets of size k; and C(F, k) =
(
F
k

)
the number of all

possible subsets of size k from F . Its values range from a minimum stability

of 0 to a maximum of log (min {M,C(F, k)}).
Finally, Somol and Novovičová [74] made a thorough review on existing

FSS stability measures, evaluated them and provided some modifications

and improvements. They also proposed a new measure, Relative Weighted

Consistency (RWC), aiming at achieving a unified measure while solving

some of the limitations they found on the reviewed ones:

RWC(E) =
F (A− V + Z)−A2 + V 2

F (W 2 +M(A−W )− V )−A2 + V 2

where A is the total number of occurrences of any feature in system E; V ≡ A
(mod F ); and W ≡ A (mod M); and Z =

∑
f∈F Hf (Hf − 1); Hf being the

number of occurrences of feature f in system E. The metric is bounded to

values between 0 and 1 and is able to compare subsets of different size.

Among all the provided measures to evaluate FSS stability, KI will be

the one to be used in this thesis, which, despite not showing the best prop-

erties (e.g., it is limited to subsets of same size), it is easy to interpret and

matches the requirements of our problem. Moreover, the fact that it is the

most widely used in the literature allows us to provide a direct comparison

between our proposed approach and previous studies.

5.2.4 Previous studies on improving feature selection stabil-

ity

According to the literature, few works address the problem of explicitly im-

proving the stability of FSS techniques. Next, we review the most prominent

ones.
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One of the first research studies tackling the aforementioned problem was

conducted by Saeys et al. [75]. They propose to stabilise the output of FSS

strategies by means of ensemble feature learning. Similarly to the theory of

ensemble learning exposed in Chapter 4, the goal is to build a committee

of feature learning algorithms and aggregate their output. More precisely,

four different ensembles made up of several feature learners from one of the

following types were proposed: Relief and Symmetrical Uncertainty [117],

from the filter family; and Random Forests and SVM-RFE, as embedded

candidates. Required diversity was achieved by instance perturbation using

bootstrap samples, and the aggregation strategy was either weighted aver-

age for feature rankings or voting for subsets of features. Experiments on

Deoxyribonucleic Acid (DNA) microarray and mass spectrometry datasets

provided evidence of the benefits in feature stability when the proposed

ensemble feature learning was used, Relief being the least stable algorithm

which most benefits from using the new strategy. Classification performance

of all methods remained comparable to that of single FSS.

Another interesting study was presented in [118]. Its solution is based

on two assumptions: first, the observation that in sample space, regions

showing high density (as measured by probabilistic density estimation) are

stable with respect to the features selected; second, that features near the

core of high-density regions are highly correlated to one another and, there-

fore, should have similar relevance with respect to class labels; hence, they

should be treated as a single group when ranking features. Having these

premises in mind, the Dense Relevant Attribute Group Selector (DRAGS)

framework is proposed. It consists of two main steps: finding dense instance

regions (applying the Dense Group Finder –DGF– algorithm) and deciding

their relevance. DGF uses the multivariate kernel density estimator [119] to

evaluate the density of each feature; then, a number of unique density peaks

in the data are identified using the mean shift procedure [120]; afterwards,

dense features close to the same density peak are grouped together. The

second step consists in finding the relevance of each feature group by aver-

aging the relevance of features within the group according to the F-statistic.

Finally, once relevance groups have been selected, one representative feature
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per group (the one with the highest average similarity to all other features

in the group) is picked up. The suitability of this method was assessed in

experiments concerning DNA microarray data.

Authors acknowledged two main limitations of DRAGS: first, identifying

dense feature groups using high dimensionality and low sample size makes

density estimation difficult and unreliable; second, the algorithm might miss

some of the most relevant individual features if they are located in the sparse

region of the data distribution. With the purpose to overcome them, they

published an improvement [76] called Consensus Group Stable (CGS) fea-

ture selection. An ensemble made up of DGF modules was constructed,

using bootstrap samples from the data as a strategy to generate diversity,

borrowing the instance-based aggregation approach from ensemble clustering.

This algorithm models each feature as an entity and decides the similarity

between each pair of instances based on how frequently they are grouped

together. Moreover, when CGS computes the similarity of every feature

pairs, agglomerative hierarchical clustering is applied to group features into

a final set of consensus feature groups. As in DRAGS, the last step in-

cludes selecting a feature candidate from each group (i.e., the closest feature

to the group centre) and determining the group relevance. In contrast to

DRAGS, all consensus groups in this solution are taken into account during

the relevance selection phase.

In a work published in [121], two main shortcomings of most current

ensemble feature selection methods were identified: they do not account for

interactions among features and they are not able to provide more than one

equally suitable feature set. Algorithms capable to fulfil this second require-

ment might supply insight into the problem under investigation by showing

different viewpoints (different, equally important sets of features). The re-

search addresses these issues by studying current aggregation strategies and

developing new ones in an ensemble environment similar to the ones exposed

previously. In particular, they differentiate between Single Model Aggrega-

tion Strategies, where a unique feature set is provided, and Multiple Model

Aggregation Strategies (MMAS), where several feature sets are outputted.
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The former can be split, in turn, into three categories: Univariate Strate-

gies, containing typical aggregation strategies such as voting and averaging,

which are advisable for univariate FSS strategies; Model Component Com-

bination Strategies (MCCS), which use Frequent Itemsets Mining [122] to

detect subsets of features often appearing together in several base learners

and bring them together to produce the final solution; and Exact Structure

Preservation Strategies (ESPS), that select the best candidate from the fea-

ture subsets (often a median measure after applying a clustering algorithm

to candidate subsets) generated by the base learners. The MMAS proposed

in the study performs exactly as MCCS and ESPS, with the difference that,

at the end, the top solutions are kept and not only the best one. Exper-

iments performed on proteomics, genomics and text mining datasets show

superior performance of MCCS as compared to ESPS, which show especially

poor performance.

The final study to be reviewed is Han’s doctoral thesis [123], analysing

the instability of FSS algorithms from a theoretical viewpoint using a bias-

variance decomposition approach. Specifically, instability is associated to

the variance term in the decomposition, which is tightly coupled to sample

size. Therefore, effort must be put on finding ways to decrease variance, a

goal that can be obtained by variance reduction techniques such as impor-

tance sampling [110]. According to this technique, the variance of a Monte

Carlo estimator can be reduced by increasing the number of instances taken

from the regions which contribute more to the quantity of interest and de-

creasing the number of instances taken from other regions, instead of by

i.i.d. sampling. Nevertheless, in practise (e.g., when using a limited biolog-

ical dataset), it is not possible to perform this tailored sampling, although

we can simulate its effect by weighting the instances accordingly. Based

on these observations, the author proposes an empirical framework called

Margin Based Instance Weighting (MBIW), which consists of three steps:

1. Transforming the original feature space into a Margin Vector Feature

Space (MVFS) for an easy estimation of the importance of instances.

For a dataset containing N instances, the MVFS is calculated following

85



5. STABILITY OF FEATURE SELECTION

the equation:

x′i,j =
M∑
l=1

|xi,j −ml(xi)j | −
H∑
l=1

|xi,j − hl(xi)j |. (5.1)

where M and H are the total number of misses and hits (such that

M +H + 1 = N); and ml(x) and hl(x) are the l-th nearest miss and

hit with respect to instance x.

2. Weighting each training instance according to its importance in the

MVFS:

ω(x) =
1/d̄(x′)∑N
i=1 1/d̄(x′i)

, (5.2)

where

d̄(x′) =
1

N − 1

N−1∑
p=1,x′

p 6=x′

‖x′ − x′p‖. (5.3)

3. Finally, performing the FSS as usual. The only requirement is that

the algorithm must be able to take instance weights into account. In

this study, specifically-modified versions of SVM-RFE and RelievedF

were employed.

The proposed framework was evaluated on synthetic data and real DNA

microarray datasets, showing its suitability in reducing variance, which

translates into an improvement of stability of FSS algorithms, while main-

taining prediction performance and keeping the computational cost low,

when compared to ensemble-like strategies.

5.3 Recursive Logistic Instance Weighting

The last study presented in the previous section supplies an empirical frame-

work that appears to be the perfect candidate to overcome the problem of

selecting stable feature subsets from SV-1H-MRS data that are relevant for

the task of differentiating between gbm and met tumours. A close look

to its functioning, though, warns us of existing shortcomings that must be

previously amended.
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A first concern appears when analysing the mapping of instances to the

new MVFS space. According to Eq. 5.1, a new coordinate is calculated

for each dimension of an instance, and then the evaluation of the instance

is typically carried out in the new space (Eq. 5.2). However, this explicit

mapping seems avoidable, given that all dimensions are considered at a time

by the Euclidean distance in Eq. 5.3. Hence, the evaluation of typicality for

each instance can be performed directly in the original space. We reckon

that this observation, despite being troublesome in terms of computational

cost, does not influence the performance of the framework.

Imposing a normalisation factor in Eq. 5.2, such that the sum of all

weights adds to 1, has a more serious effect. Given this constraint, the weight

associated to each instance does not depend on its individual contribution,

but on the total number of instances in the set (i.e., N), meaning that each

weight is downgraded by a factor of N . As described in the experimental

section, since the FSS algorithms employed in the study rely on distances

between instances, an undesirable effect due to improper weights is shown

to influence the algorithms’ performance.

The work that we present in this section attempts to solve these in-

conveniences by providing a new framework for stable FSS using instance

weighting.

5.3.1 A new instance weighting method

The first phase in our framework consists in weighting every instance of the

training set according to whether they lay far from opposite-class instances.

The reasoning is as follows: in a binary discrimination problem using small

sample size datasets, instances close to opposite-class instances and far from

same-class ones generate high instability, since the FSS outcome will highly

vary depending on whether they have been picked up for the training set, or

not. Contrarily, instances surrounded by same-class instances and far from

opposite-class ones contribute positively to the stability of FSS algorithms.

Therefore, we would like to reward the latter and punish the former.

Given the heterogeneity of the data used in our domain specific problem,

we make use of the hypothesis-margin (see Section 5.2.1) to evaluate the
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position of each instance with respect to same and opposite-class instances.

Formally, let D = {(x1, t1), . . . , (xN , tN )} be a training data set of length

N , each instance xi ∈ Rd with its corresponding class label ti , the margin

of a hypothesis x ∈ Rd can be calculated as:

θ(x) =
1

2
(‖x−m(x)‖ − ‖x− h(x)‖) , (5.4)

m(x) and h(x) being the nearest miss (instance of different class) and near-

est hit (instance of same class) in D, respectively.

Notice that only accounting for the single closest neighbour of each type

might be misleading if any of them present an atypical behaviour. Hence, a

more robust evaluation can be calculated by averaging over all neighbours

in D:

θ(x) =
1

M

M∑
i=1

‖x−mi(x)‖ − 1

H

H∑
i=1

‖x− hi(x)‖, (5.5)

where M,H are the total number of misses and hits. The sign of θ(x) is pos-

itive for those instances that are, on average, closer to same-class instances,

while a negative sign is obtained whenever they are mostly surrounded by

opposite-class instances; its value representing the strength in which the

corresponding condition occurs.

The following step consists in bounding θ(x) in order to decouple its

value, relative to the magnitude of the handled distances. For this purpose,

we decided to limit the weight to be a positive value in the range (0, 1) by

using a logistic function:

ω(x) =
1

1 + exp {−α z (θ (x))}
, (5.6)

α being a hyperparameter controlling the slope, and z(·) the standard score

z(x) = (x − µ̂D)/σ̂D, where µ̂D and σ̂D are the sample mean and stan-

dard deviation of θ(x), for all x ∈ D, respectively. Suitable values for α

are problem-dependent and must be set according to the user’s needs. As

a default value, we propose to set α = 3.03, which corresponds to assign-

ing a weight of 0.95 to an instance whose average margin is two standard

deviations from the mean, that is θ(x) = 2σ̂D.
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5.3 Recursive Logistic Instance Weighting

Finally, we divide each value by the mean. The reason for such opera-

tion is that the contribution of each instance (measured as distances within

the environment) in the weighted FSS algorithms is to be multiplied by its

weight, and we want to assign innocuous weights to typical instances (i.e.,

ω(x) ≈ 1); values < 1 for atypically bad instances (regarding their location

respect to all other instances); and > 1 for atypically good ones. Figure 5.2

shows an example of the ratings assigned by the proposed algorithm.
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Figure 5.2: A weighting example - Ratings assigned by the proposed

instance weighting approach to a synthetic dataset (N = 30). Data are gener-

ated by equally sampling from N (µ1,Σ) and N (µ2,Σ), where µ1 = [0, 0] , µ2 =

[0, 0.25] and Σ = [ 0.01 0.00
0.00 0.01 ]. Labels are set according to the distribution they

come from. Notice the low values assigned to instances close to the bound-

ary between classes and inside opposite-class region, while higher values are

assigned to instances in the same-class region.

5.3.2 Weighted feature selection algorithms

The proposed weighted feature selection methods used in this study are a

specifically modified version of the algorithms introduced in Section 5.2.2 to

account for instance weights, as presented in [42]. The first one is a variant

of the SVM-RFE:

min
1

2
‖w‖2 + C

N∑
i=1

ωiξi,
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where ωi = ω(xi) is the weight assigned to the i-th instance, according to

Eq. 5.6.

The second weighted FSS alternative consists in introducing the ratings

for the instance currently being treated, as well as for each miss and hit in

the RelievedF formulation:

W(j) =
N∑
i=1

ωi

k∑
l=1

(
ωMi,l |xi,j −ml(xi)j | − ωHi,l|xi,j − hl(xi)j |

)
, (5.7)

where ωi = ω(xi), ω
M
i,l = ω(ml(xi)) and ωHi,l = ω(hl(xi)), obtained in Eq. 5.6.

Having presented all the required components, the Recursive Logistic

Instance Weighting (RLIW) method is completed. It performs feature se-

lection by repeatedly applying Eqs. (5.5) and (5.6) to compute the ω

weights, uses them in a weighted FSS algorithm (e.g., either weighted SVM-

RFE or weighted RelievedF), removing the worst feature (or features), re-

computes the ω weights, and so on, until a stopping criterion is met. A

Matlab toolbox containing the presented algorithm is available at http:

//www.cs.upc.edu/~avilamala/resources/RLIW_Toolbox.zip

5.4 Empirical evaluation

The ultimate goal of the RLIW method introduced in this thesis is to im-

prove the stability of FSS algorithms in the discriminative task of diagnosing

a tumour as gbm or met without losing predictive performance. This sec-

tion shows two different groups of experiments from a technical viewpoint:

firstly, limitations of MBIW are empirically verified using the same data

as in its introductory study (i.e., synthetic and DNA microarray datasets);

secondly, the suitability of our novel method is assessed using microarray

DNA data and the SV-1H-MRS dataset that is the main matter of the study

of this thesis. A discussion on the benefits and risks of the new method is

included, prior to revisit the initial hypotheses in the conclusions.

5.4.1 Experimental setup

Three different data sources were used to perform the experiments. One is a

multivariate synthetic dataset [42] consisting of M = 500 training sets, each
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5.4 Empirical evaluation

of them of the form Xm ∈ RN×D, with N = 100 instances and D = 1, 000

features, for m = 1, . . . ,M . Every instance is equiprobably drawn from one

of two distributions: x ∼ N (µ1,Σ) or x ∼ N (µ2,Σ), where

µ1 = (0.5, ..., 0.5︸ ︷︷ ︸
50

, 0, ..., 0︸ ︷︷ ︸
950

), µ2 = −µ1,

and

Σ =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · Σ100

 ,
being Σi ∈ R10×10, with 1 in its diagonal elements and 0.8 elsewhere. Class

labels are assigned according to the expression:

yi = sgn

 D∑
j=1

Xi,jrj

 , r = (0.02, ..., 0.02︸ ︷︷ ︸
50

, 0, ..., 0︸ ︷︷ ︸
950

).

Notice that no test or hold-out sets are required to evaluate the stability of

FSS.

The second type of data consists of seven different DNA microarray

datasets, whose content, characteristics and pre-processing were discussed

in Section 2.3.

Finally, the third source is a subset of SV-1H-MRS data from the repos-

itory presented in Section 2.3. Specifically, 78 gbm and 31 met from the

INTERPRET database were used as training set, whereas 30 gbm and 10

met from the eTumour database were used as hold-out set (a separate set is

required because classification performance will also be assessed when using

these data). Two different data modalities, one containing data acquired at

LTE and the other containing data acquired at STE were employed. In these

evaluations, the a priori and, according to medical expertise, most relevant

195 out of 512 frequencies were considered [32].

The experimental procedure is the same in all settings: given a nor-

malised multivariate training set, importance of each instance is calculated

(using either Eqs. 5.1, 5.2 and 5.3 in MBIW, or Eqs. 5.5, 5.6 and normalisa-

tion to the mean in RLIW) and instance ratings are provided to a weighted
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FSS algorithm (either SVM-RFE or RelievedF-RFE), while removing the

worst 10% of features per iteration until all of them have been eliminated.

The procedure is repeated for each training set, calculating the KI at every

feature subset size.

5.4.2 Limitations of Margin Based Instance Weighting

The undesirable effect of imposing a normalisation factor in Eq. 5.2 has been

argued about in Section 5.3. We speculate that the improvement in FSS

stability when using MBIW is not due to this preprocessing step, but to the

influence that the normalisation factor has on the weighted FSS algorithms.

Different configurations of parameters (available at Table 5.1) were designed

to show such phenomenon.

Table 5.1: Configuration of different parameters in the Margin Based Instance

Weighting experiments

FSS algorithm Configuration C ω Marker

SVM-RFE

default Std-FS 1 − ◦
rectified MBIW-FS 1 N ×MBIW − FS ∗
rectified Std-FS N−1 − +

default MBIW-FS 1 MBIW − FS �

RelievedF-RFE
default Std-FS − − +

default MBIW-FS − MBIW − FS �

When the base FSS algorithm to use is SVM-RFE, an improvement in

terms of feature subset stability on the synthetic dataset due to MBIW

was reported in [42]. It corresponds to the configuration named default

MBIW-FS (C = 1 using MBIW-FS to weight instances) and is compared

to the poor performing default Std-FS (C = 1 using no instance weighting).

As evidenced by Figure 5.3a, we obtain the same improvement using no

instance weighting in the rectified Std-FS configuration, where C value has

been divided by N (same effect as the normalisation factor induces). Bad

results shown in a previous study in which no instance weighted was used has

also been mimicked by the rectified MBIW-FS, where the rating of instances

has been multiplied by N .
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Figure 5.3: Feature subset stability of MBIW on synthetic data -

The plots show the KI (vertical axis) over a set of RFE iterations (horizontal

axis). Parameters are set according to Table 5.1.

For the RelievedF-RFE (setting K = 10 as in previous study) as FSS

base algorithm, neither the default Std-FS (no instance weighting) nor the

default MBIW-FS (using MBIW-FS) configurations show any gain with re-

spect to their counterpart. Notice that no scaling factor was applied in this

setting because it does not affect the performance of RelievedF-RFE.
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(d) Lung

Figure 5.4: Feature subset stability of MBIW using SVM-RFE on

real microarray data - Each plot shows the KI (vertical axis) over a set of

RFE iterations (horizontal axis). Parameters are set according to Table 5.1.

This effect has been verified in a larger cohort of data by performing a set

of experiments over several DNA microarray datasets (the same ones as in

[42]). Different training sets were obtained through a 10-times 10-fold cross-

validation resampling strategy. KI was computed per feature subset length

at every inner 10CV and then the average over the 10 times was calculated.

Figure 5.4 and Figure 5.5 display the results obtained by SVM-RFE and
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Figure 5.5: Feature subset stability of MBIW using RelievedF-RFE

on real microarray data - Each plot shows the KI (vertical axis) over a set

of RFE iterations (horizontal axis). Parameters are set according to Table 5.1.

RelievedF-RFE, respectively, showing the same trend as in the experiments

with synthetic data.

In light of these results, we reassert the initial hypothesis that MBIW by

itself has little effect to the improvement on the stability of FSS algorithms.

5.4.3 Suitability of Recursive Logistic Instance Weighting

In this block, we shift our focus to the evaluation of the performance of

the proposed RLIW method as compared to the use of standard FSS (Std-

FS) algorithms without any instance weighting as preprocessing. For each

experiment, the stability of the resulting feature subset as evaluated ac-

cording to the KI, as well as the predictive performance of the subsequent

classifier, measured by BAC, are provided. The FSS method of choice is

RelievedF-RFE. The reason for not employing SVM-RFE is the high com-

putational cost of adjusting the C parameter at each RFE iteration. More-

over, our preliminary results agree with the statement made in [75], stating

that SVM-RFE is a highly stable algorithm, in contrast to Relief; therefore,

unstable Relief is the family of filters that would most benefit from stability

improvement strategies.

The first battery of experiments use all the DNA microarray datasets in-

troduced in Section 2.3 with the purpose of selecting the subset of features

that best discriminates among pathological and control subjects. Specif-

ically, we employed a double 10-fold cross-validation resampling strategy

to obtain the required number of independent sets allowing us to perform

FSS, parameter adjustment and evaluate generalisation performance. Class
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Figure 5.6: Feature subset stability of RLIW using RelievedF-RFE

on the microarray data - Each plot shows the KI (vertical axis) over a set

of RFE iterations (horizontal axis). Red squares: standard (unweighted) FSS;

blue asterisks: RLIW.

predictions were obtained using linear-SVM, where the C parameter was

adjusted according to the BAC measure in the inner 10CV in a logarithmic

scale. The final subset of features corresponds to the one reaching maximum

stability among those containing less than 20% of total features. The re-

ported results are achieved in the outer 10cv for both feature subset stability

(KI) and predictive performance (BAC). As seen in Figure 5.6, they show a

clear gain in stability when RLIW is applied for most of RFE iterations in

Colon, Leukaemia, Lung, Brest, Melanoma and Parkinson pathologies, an

exception being the Prostate dataset, for which we have no clear explanation

beyond the specificity of the dataset. Looking at the predictive capability of

the selected subsets of features (Table 5.2), similar accuracies are shown for

most of the datasets but Breast and Parkinson, for which a price of almost

10% less predictive capability is paid for the gains in stability.

The final experiment consists in assessing whether the proposed method-

ology is suitable for improving the stability of feature subset selection in the

discrimination of gbm from met using SV-1H-MRS data, which has been our

ultimate goal from the beginning. The existence of a real test set permits to

design the experiment using a 10 times 10-fold cross validation (10x10CV)

95



5. STABILITY OF FEATURE SELECTION

Table 5.2: Average balanced accuracies and their standard errors on the

microarray datasets; feature subset size is shown in parentheses

Dataset Std-FS RLIW-FS

Colon 0.82± 0.05 (22) 0.79± 0.05 (22)

Leukaemia 0.97± 0.02 (40) 0.98± 0.02 (3)

Prostate 0.94± 0.02 (5) 0.92± 0.03 (1239)

Lung 0.98± 0.01 (1026) 0.97± 0.01 (19)

Breast 0.76± 0.05 (1026) 0.66± 0.05 (1026)

Melanoma 0.98± 0.02 (3) 0.97± 0.02 (187)

Parkinson 0.78± 0.04 (1026) 0.68± 0.05 (923)
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Figure 5.7: Feature subset stability of RLIW using RelievedF-RFE

on the real 1H-MRS data - Each plot shows the KI over the successive RFE

iterations. Red squares: standard (unweighted) FSS; blue asterisks: RLIW.

resampling technique for setting the C parameter in the linear-SVM learner

and generating enough variability. The generalisation performance of the

learner was assessed by calculating the BAC in the test set, while feature

subset stability was evaluated as the average KI over the 10 times. Accord-

ing to the plots in Figure 5.7, RLIW achieves higher stability values, this

being especially evident for the LTE dataset. Moreover, as shown in Ta-

ble 5.3, the same or even better predictive performance is obtained in both

validation and test sets when RLIW is applied with respect to Std-FS, using

almost half of the features, fact that represents another advantage in this

setting.
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Table 5.3: Balanced accuracies and standard errors achieved by a linear SVM

(number of selected features in parentheses) in discriminating between gbm and

met using SV-1H-MRS data.

10x10CV Test

STE
Std-FS (36) 0.62± 0.01 0.67± 0.07

RLIW-FS (17) 0.65± 0.01 0.68± 0.07

LTE
Std-FS (28) 0.62± 0.01 0.60± 0.08

RLIW-FS (15) 0.65± 0.01 0.60± 0.08

5.4.4 Discussion

Based on the obtained results in multiple datasets, despite some cases where

the stability of feature subset selection algorithms can be increased with-

out losing predictive performance, a sensible analysis would be to accept

a trade-off between stability and accuracy, as a general trend. From this

perspective, the decision on what measure to prioritise will be domain- and

problem-specific. For instance, in an email spam filter, accuracy is the only

measure that matters; nonetheless, in a knowledge discovery context, as for

instance, identifying candidate genes as biomarkers to encode the existence

of a specific pathology, focus on feature stability would be advisable. A third

important actor in this decision might well be the final number of features

to be used, that might relegate stability and accuracy to a subsidiary role.

An example of this last case involves building a 3D viewer within a Decision

Support System, where the number of final dimensions (features) must be

exactly three.

Another observation we want to make is that, given the large dimen-

sionality and small sample sizes of certain datasets, it might well be that

previous results, obtained with little concern for stability are subject to large

variability and over-optimistic in their evaluation of performance.

5.5 Conclusions

Recursive Logistic Instance Weighting is a novel technique that works as a

data preprocessing step and whose task is to rate instances in a small dataset
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(such as in the discriminative problem of glioblastomas vs. metastases from

SV-1H-MRS) according to their typicality in order to create an importance

sampling effect in those situations where no sampling is available, to be sup-

plied to FSS algorithms capable to deal with instance weights to obtain more

stable subsets of features over different executions. The obtained solution is

based on the assumptions introduced in Section 5.1:

1. There are some instances that are typical regarding their underlying

distribution, while others present outlying behaviour. Due to the fact

that the latter type induces FSS algorithms to be unstable, we could

simply remove them for the sake of stability if the dataset is large

enough. In our case, the sample size being small, we can obtain a sim-

ilar effect by weighting their importance in the FSS process: a multi-

variate weighting technique based on distances to same- and opposite-

class instances has been designed to evaluate typicality.

2. The high heterogeneity of instances leads them to cluster in local neigh-

bourhoods. This means that FSS algorithms approaching the hypothesis-

margin are more likely to be suitable than the ones aiming at reducing

the sample-margin: we have adapted the hypothesis-margin based Re-

lievedF FSS algorithm to deal with instance weights.

Results of the experiments on INTERPRET and eTumour datasets cor-

roborate the suitability of the proposed technique as a candidate for ef-

ficiently improving stability in feature subset selection algorithms in the

current domain, where high-dimensional sparse datasets are commonplace.
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Chapter 6

Non-negative Matrix

Factorisation

SV-1H-MRS data have so far been used in this thesis to build models that

accurately discriminate gbm from met, or to provide relevant biomarkers for

better understanding which metabolites are directly involved in such differ-

entiation. All these improvements have been achieved under the assumption

that the measured biochemical components that are present in a voxel are

of a single type (e.g., a specific tumour pathology or normal tissue). For a

variety of reasons, including interferences from neighbouring voxels and co-

existence of different tissues in the relatively large space conforming a voxel,

measurements read by NMR scanners in real practise consist of a mixture

of signals from different sources.

From this realisation, we now turn our attention towards strategies able

to identify the signal generating sources and their relative contribution to

the signal measured in a specific voxel. Previous studies analysing this phe-

nomenon on similar data [124, 125, 126, 25] have shown success by employing

BSS techniques, such as PCA or ICA; recently, a comparatively novel tech-

nique of this family, Non-negative Matrix Factorisation (NMF), which is the

subject of this chapter, has shown encouraging results.

The ensuing sections in this chapter are structured as follows: a thorough

explanation motivating the need for a new supervised algorithm for source

extraction with a variety of restrictions imposed by the application domain
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under investigation is exposed in the next section. We then review sev-

eral studies that partially fulfil some of the requirements before introducing

our proposed solution, deriving iterative algorithms for both training and

prediction. Next, the performance of the new algorithm is assessed when

addressing typical oncological questions using various data sets and, finally,

our initial hypotheses are validated in the conclusions section.

6.1 Motivation

The assumption that the 1H-MRS signal captured in each voxel can be

exclusively attributed to a unique phenomenon occurring in the tissue of that

specific voxel is a very strong one that does not often match real radiological

practise. A frequently encountered pattern results in the measure being a

mixture of various signals emitted from different components. The causes

for this to happen include the existence of several different biological tissues

within the voxel volume and the influence of interfering neighbouring voxels.

Another important issue, directly coupled with the previous statement,

that needs to be questioned is the actual meaning of individual MRS fre-

quencies in the spectra: under the conjecture that the measured signal is a

composite, single point frequencies do not have entity by themselves (e.g.,

a biomarker corresponding to a specific tumour type), but they are instead

a composite measure made up of the contributions from different sources.

According to this new paradigm, it seems plausible to aim at assessing the

contribution of each source to every frequency, as an alternative to singling

out isolated frequencies to be labelled as biomarkers.

Importantly, when manipulating data to perform an analysis, a couple

of restrictions must be kept in mind: it is common to use the ratio be-

tween certain metabolites (e.g., N-Acetyl Aspartate/Creatine, N-Acetyl As-

partate/Choline or Choline/Creatine) to analyse spectra in order to come

out with a diagnosis; also, some metabolites at specific spectral frequencies

may contain negative values. Therefore, any attempt to shape the data to

fit the restrictions of our algorithms that overlooked these two issues might

lead to biased results.
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Having described the properties of SV-1H-MRS data in this new context,

we aim at designing a new solution that fulfils the following requirements:

1. It must be able to identify the underlying sources present in the re-

trieved signal.

2. It needs to assess the contribution of each source to the signal.

3. Both the sources and their contributions must be easily interpretable.

4. The solution must naturally deal with both negative and positive val-

ues.

5. Ratios between values of metabolites at certain frequencies must be

preserved.

6. Distances between values of metabolites at specific frequencies must

be kept.

7. Supervised information must be easily included in the solution when

labelled data are available.

6.2 State of the Art

NMF is a low rank approximation technique that aims at factorising a given

matrix of non-negative instances X ∈ RD×N+ into a matrix of sources S ∈
RD×K+ , and a mixing matrix H ∈ RK×N+ ; N being the number of instances,

D the dimensionality of data, and K the number of sources. That is,

X+ = S+H+ + E ≈ S+H+

where E is some reconstruction error. A characteristic feature of this decom-

position compared to other well-known BSS strategies is the constraint that

all values in the matrices involved must be non-negative, a restriction that,

for practical purposes, translates into facilitating the interpretability of the

decomposition, given that any instance in X is approximated by a positive

combination of the sources in S, the contribution of which is encoded in H.
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Most of the algorithms obtain the decomposition by minimising a cost

function that calculates the difference between the original data and the

reconstructed signal by an iterative procedure. The cost function is denoted

as

Ω(X||SH).

6.2.1 Non-negative Matrix Factorisation variants

The first study to propose a solution for NMF was reported in [69], although

they termed it Positive Matrix Factorisation. The cost function was denoted

as follows:

ΩF (X||SH) = min‖X− SH‖2F , (6.1)

where ‖A‖F is the Frobenius norm of A. The proposed Alternating Least

Squares procedure consists in randomly initialising S and H and iteratively

updating each matrix in turn according to:

H←
(
S>S

)−1
S>X, S← XH>

(
HH>

)−1
,

setting all negative values to 0, until convergence is reached.

It was not until a publication in Nature by Lee and Seung [127], under the

name of Non-negative Matrix Factorisation and mostly oriented towards im-

age analysis, that the decomposition began to attract mainstream attention.

In subsequent work [128], these authors proposed an information theoretic

formulation based on the Kullback-Leibler divergence:

ΩKL (X||SH) = min

D∑
d=1

N∑
n=1

(
Xd,n ln

(
Xd,n

[SH]d,n

)
+ [SH]d,n −Xd,n

)
. (6.2)

A multiplicative update rule within a Gradient Descent strategy, preserving

the non-negativity constraint, was provided to optimise ΩKL (X||SH):

Hk,n ← Hk,n

(S>X)k,n/ (JKDSH)k,n
(S>JKN )k,n

, (6.3)

Sd,k ← Sd,k
(XH>)d,k/ (SHJNK)d,k

(JDNH>)d,k
, (6.4)
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where JIL is a I × L unit matrix. In the same study, similar update rules

for ΩF (X||SH) cost function were also derived:

Hk,n ← Hk,n
(S>X)k,n

(S>SH)k,n
, Sd,k ← Sd,k

(XH>)d,k
(SHH>)d,k

.

Although Frobenius and Kullback-Leibler cost functions using multi-

plicative update rules are the most widely used strategies to solve the NMF

decomposition, attempts to formalise the problem using other cost func-

tions also exist. In this respect, we want to mention the Csiszár [129] and

the Amari alpha divergences [130], which have recently been used for NMF

purposes.

More efficient update rules have also been proposed in the literature, as

the Alternating Least Squares using Projected Gradient bound-constrained

optimisation method [131] for ΩF (X||SH):

H← P
[
H− αS> (SH−X)

]
, S← P

[
S− α (SH−X) H>

]
,

where P[·] = max[·, 0] is a bounding function ensuring the solution remains

feasible; or a Second-Order Quasi-Newton optimisation for Amari alpha

divergence [130].

A particularly interesting family of NMF variants is that in which the

non-negativity constraint is relaxed, allowing values of any sign in both the

original matrix X and the obtained sources S, extending the applicability

of NMF techniques to a broader range of applications. Semi Non-negative

Matrix Factorisation (SNMF) [132] is a technique that specifically deals with

this setting. In symbols,

X± ≈ S±H+.

This study also derived a restricted version of SNMF, namely Convex NMF

(CNMF), a formalism that forces the matrix of sources to be a convex com-

bination of original instances (i.e., S = XW), gaining in interpretability,

since the obtained sources can be read as class centroids:

X± ≈ X±W+H+.
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Now the Frobenius cost function is expressed as

ΩF (X||XWH) = min‖X−XWH‖2F . (6.5)

The corresponding update rules maintaining non-negativity constraints be-

come

Hk,n ← Hk,n

√
[W>(X>X)−WH + W>(X>X)+]k,n
[W>(X>X)+WH + W>(X>X)−]k,n

,

Wn,k ← Wn,k

√√√√[(X>X)−WHH> + (X>X)+H>
]
n,k[

(X>X)+WHH> + (X>X)−H>
]
n,k

,

where (A)+ = (|A|+ A) /2 and (A)− = (|A| −A) /2 .

6.2.2 Supervised Non-negative Matrix Factorisation

There are domains where the problems to be solved are clearly classification-

oriented, meaning that desirable NMF role is not only to provide consistent

interpretable bases, but also to supply class-separable subspaces. In those

circumstances in which labelled instances are available, research has focused

on enhancing NMF solutions by incorporating discriminant factors to the

cost function. The first studies dealing with supervised NMF [133, 134] pro-

posed to include Fisher’s Linear Discriminants (LDA) to the ΩKL (X||SH)

cost function. To understand their functioning, let us first introduce the

notion of scatter matrices. On the one hand, the within-class scatter matrix

(Sw) is a figure that evaluates the class-specific dispersion of instances; on

the other hand, the between-class scatter matrix (Sb) computes the intra-

class variability. They can be calculated as follows:

Sw =

R∑
r=1

∑
iεCr

(ui − µr)(ui − µr)
>,

Sb =

R∑
r=1

Nr(µr − µ)(µr − µ)>,

where,

µr =
1

Nr

∑
iεCr

ui, µ =
1

N

R∑
r=1

Nrµr,
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ui being each D-dimensional instance, R the total number of classes, Cr the

set of instances belonging to r-th class and Nr the cardinality of this set.

Equivalently, if we arrange all instances as columns in matrix U, the same

computations can be expressed in matrix notation:

Sw = UU> −UM̃U>,

Sb = UM̃U> − 1

N
UJNU>,

where JN is a N ×N square unit matrix and M̃ = MM†(M>)†M>; A† =(
A>A

)−1
A> being the left pseudo-inverse of A and M ∈ {0, 1}N×R a

matrix containing 1 in position Mn,r if instance n belongs to class r, and 0

otherwise.

The purpose of LDA is to find a mapping to a subspace such that Sw

is minimised and Sb is maximised. The same rationale is applied when

incorporating the scatter matrices into the cost function:

Ωfisher (X||SH) = min [ΩKL (X||SH) + γTr[Sw]− λTr[Sb]] , (6.6)

Tr[A] being the trace of matrix A, γ and λ two user-defined parameters

that regulate the trade-off between prioritising a solution encompassing low

reconstruction error or high separability. Scatter matrices are calculated

on the low-rank projection of instances represented by the mixing matrix:

U← H. The two previously mentioned studies differ from each other in the

way Sb is calculated (i.e., distance between each pairwise of class-centroids,

or between each class-centroid and global mean).

The same idea of including Fisher discriminants to NMF cost function

was used in [135], where the ΩF (X||SH) cost function was enhanced and

only the between-class variance was included as a discriminant, resolving

some of the issues in previous discriminant NMF algorithms.

Similarly, in [136], the ΩF (X||SH) cost function was employed; an im-

portant difference with previous studies is that scatter matrices are no

longer calculated on the mixing matrix, but in the actual projection; that

is U ← S†X; or U ← S>X for real non-negativity solutions. Update rules

105



6. NON-NEGATIVE MATRIX FACTORISATION

within an efficient Projected Gradient method were also provided:

H ← P
[
H− αS> (SH−X)

]
,

S ← P
[
S− α (SH−X) H> + γTr[Sw]− λTr[Sb]

]
,

where P[·] is max[·, 0].

A different approach towards supervised NMF strategies involves the in-

corporation of SVM-like maximum sample-margin classification constraints

[137] into the Kullback-Leibler-based cost function:

Ωsvm (X||SH) = λΩKL (X||SH) +
1

2
Tr
[
A
(
y>y

)
A
(
H>H

)
−AJN1

]
,

where A is a diagonal matrix of Lagrange multipliers, and y ∈ {−1, 1}N a

row vector of class labels. Multiplicative update rules are supplied in the

report.

We finish this section by reviewing an attempt to semi-supervised NMF

for those situations where neither instances nor labels are ensured to be

completed and missing values exist [138]. Let Q ∈ {0, 1}D×N encoding

whether value d in instance n is observed or not; R ∈ {0, 1}R×N where

the whole n-column is set to 1 whenever label for instance xn is known, 0

otherwise; and V ∈ RR×K the basis matrix for M>; the cost function to

optimise is:

Ωsemi (X||SH) = min
[
‖Q� (X− SH)‖2F + λ‖R�

(
M> −VH

)
‖2F
]
,

where � is the Hadamard product (i.e., element-wise multiplication).

An iterative procedure with multiplicative update rules for S, V and H

are provided in [138].

6.2.3 Non-negative Matrix Factorisation for Magnetic Res-

onance Spectroscopy in neuro-oncology

Since early studies such as [139] reported, where the Bayesian Spectral De-

composition (BSD) method was derived to decompose multivoxel Chemical

Shift Images (CSI-MRS) of the human brain into a non-negative matrix of

basic sources (representing muscle and brain tissue) and their correspond-

ing non-negative matrix of tissue contribution to each voxel, several research
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groups have contributed to enhance the literature of NMF variants applied

to the study of brain structure and, ultimately, the diagnosis of brain tu-

mours.

A much faster algorithm was presented in [140], namely Constrained

Non-negative Matrix Factorisation (cNMF), where traditional NMF [127]

was improved by incorporating a regulariser enforcing sparsity to the cost

function. Its suitability was evaluated using the same dataset as in the

previous study.

An evolution of the latter was materialised in [141] by stacking individual

cNMF modules to obtain a hierarchical architecture, which was proved to

achieve more meaningful physical sources for the same dataset. The paper

also stresses the potential of these techniques to aid in the diagnosis of brain

tumours.

Monitorisation of the response to chemotherapy in a patient suffering

from oligodendroglioma was conducted in [142], by employing cNMF to

process multivoxel CSI-MRS data of the brain.

In 2008, a study [143] was carried out in a group of 20 patients affected

by gliomas of different degree (half of the patients presented low-grade and

half high-grade gliomas). The goal was to extract relevant tissue types and

contribution of each tissue to every voxel in the MV-1H-MRS image by

means of traditional NMF.

A similar decomposition was attempted in [144] on a dataset of High-

Resolution Magic Angle Spinning MRS signals from several glioblastoma

tumour patients. The algorithm of interest in this study was Sparse Non-

negative Matrix Factorisation via Alternating Non-negativity-constrained

Least Squares [145].

More recently, the performance of a range of NMF variants was charac-

terised in the task of extracting meaningful sources from SV-1H-MRS data

of brain tumour and control patients [25]. Moreover, classification accuracy

of the methods was evaluated by direct comparison of the mixing matrices,

as well as using the aforementioned methods as a dimensionality reduction

step, previous to regular supervised classification. Results reported superior

performance in both tasks for CNMF.
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Following this same idea, a semi-supervised technique was designed in

[146], where labelled information representing tumour type was used to im-

prove the quality of the retrieved sources. More precisely, a metric able to

scale each dimension of the feature space according to the degree of rel-

evance regarding class membership (Fisher Information metric [147]) was

developed to subsequently project the unseen data to this new space, where

regular CNMF was applied. Superior classification accuracy was achieved

and higher quality interpretable sources were obtained for the same dataset

as in the previous study.

That same year a hierarchical NMF implementation was defined [148].

The strategy parsimoniously retrieved two sources at each level in order

to obtain compounding tissues in a dataset made of STE MRSI data of

glioblastoma multiforme. Proper discrimination of the three most relevant

tissue types (i.e., normal, tumour and necrosis) was obtained, a goal that

one-level NMF variants failed to solve.

One mandatory hyperparameter shared by any of the aforementioned

methods is that to select the appropriate number of sources to be extracted.

A recent study [149] aims at automatically determining such value by using

a Variational Bayes NMF method that uses priors enforcing sparsity. The

iterative process achieves its goal by discarding sources whose contribution

is negligible (i.e., either values in the mixing matrix are near zero or they are

highly correlated to other existing sources). Suitability of this new approach

has been gage on SV-1H-MRS data of patients affected by different brain

tumour pathologies.

For a thorough review of the most significant applications of NMF to

MRS data in the field of tissue typing methods for tumour diagnosis, please

refer to the recently published [150]; or to [151] for applicability on the more

general field of computational biology.
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6.3 Discriminant Convex Non-negative Matrix Fac-

torisation

Previous studies investigating SV-1H-MRS data for brain tumour diagno-

sis demonstrated the appropriateness of the LDA learning algorithms for

discriminating among tumour types [82, 92, 88]; another recent publication

[25] showing the suitability of CNMF as a technique to identify different

types of biological tissues in a voxel and their contribution to the retrieved

signal has been discussed in the previous section. Therefore, we considered

that developing a supervised version for CNMF by incorporating Fisher lin-

ear discriminants to the cost function was a natural step forward. This

development is described next.

6.3.1 Objective function

Out of the two most used cost functions for NMF (i.e., Frobenius norm

and Kullback-Leibler divergence), the Frobenius norm was chosen to be the

base cost function to assess the error between real instances and their re-

constructed versions. The reason for this choice is the fact that negative

values exist in the matrices being employed and the Kullback-Leibler func-

tion, designed to measure divergence among probabilities, does not handle

negativity. Hence, Eq. 6.5 is reformulated as:

ΩF (X||XWH) = Tr
(
XX> + XWHH>W>X> − 2XWHX>

)
.

In contrast to [134] and [136], scatter matrices are calculated in the recon-

struction space, since we want to obtain simplified versions of the original in-

stances containing higher discrimination capability despite losing similarity

with their counterparts. Moreover, we want to compute this discrimination

using the same unities (same order of magnitude) in the original space. For

this, we set:

S̃w = XWHH>W>X> −XWHM̃H>W>X>

and

S̃b = XWHM̃H>W>X> − 1

N
XWHJNH>W>X>.
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Therefore, the complete objective function that the method optimises is:

ΩDC (X||XWH) = (1− α) ΩF (X||XWH) + α
(
Tr(S̃w)− Tr(S̃b)

)
, (6.7)

α being a user-defined parameter that controls the balance between approx-

imating the reconstructed instances to the real ones or giving more power to

the discriminative factors; its values ranging from 0 to 1. Let X̃ = XWH;

we can alternatively express the cost function as:

ΩDC (X||XWH) = Tr
[
(1− α)XX> + X̃X̃> + (2α− 2)X̃X> (6.8)

−2αX̃M̃X̃> +
α

N
X̃JNX̃>

]
.

6.3.2 Optimisation procedure

We provide an iterative algorithm to optimise Eq. 6.8 based on multiplicative

update rules that alternatively update matrices W and H until convergence.

The procedure is summarised in Algorithm 1.

Algorithm 1 DCNMF algorithm

1) Normalise data X (L2-norm)

2) Initialise matrices W and H using K-means

3) Repeat until convergence:

a) Update H according to Eq. 6.9

b) Update W according to Eq. 6.10

4) Calculate S = XW

5) Normalise S (L2-norm) and H (L1-norm)

The proposed multiplicative expressions to update values of mixing and

unmixing matrices have the property that no negative value will occur. For

H matrix, the update is:

Hk,n = Hk,n

√√√√√√
(
B̆H

)
k,n(

V̆H

)
k,n

, where (6.9)

B̆H = W>(X>X)−WH

(
1 +

αJN
N

)
+ W>(X>X)+

(
(1− α) + 2αWHM̃

)
,

V̆H = W>(X>X)+WH

(
1 +

αJN
N

)
+ W>(X>X)−

(
(1− α) + 2αWHM̃

)
.
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And for W matrix, the rule is:

Wn,k = Wn,k

√√√√√√
(
B̆W

)
n,k(

V̆W

)
n,k

, where (6.10)

B̆W = (X>X)−WH

(
1 +

αJN
N

)
H> + (X>X)+

(
(1− α) + 2αWHM̃

)
H>,

V̆W = (X>X)+WH

(
1 +

αJN
N

)
H> + (X>X)−

(
(1− α) + 2αWHM̃

)
H>.

For a detailed derivation of Eq. 6.9 and Eq. 6.10 please refer to Ap-

pendix A. For an analysis of convergence, see Appendix B.

6.3.3 Prediction of unseen instances

The previous section introduced a procedure to obtain a set of sources S

which correspond to the underlying processes generating the data, as well

as a matrix of mixing coefficients H containing the contribution of each

source to the retrieved signal in every voxel of measured data X.

Now we are interested in mapping unseen instances into the new recon-

structed space showing better discriminative capability. However, there is a

key issue that complicates such mapping: the evidence we found in prelimi-

nary studies that the obtained sources do not capture much of the discrimi-

native power imposed in the objective function, but the mixing matrix is the

one absorbing most of the discrimination information. In other words, the

effect of including class labels in the objective function has a strong influence

on H, such that the reconstructed instances X̃ get more easily separable in

the original space, but not much influence is applied over S; hence no direct

use of S can be applied to predict unseen instances. With the purpose of

circumventing this limitation, we present two different approaches to pre-

dict new instances: the former repeatedly uses the expectation-maximisation

framework to obtain predictive values for the mixture of sources of every

unseen instance; the latter uses S̃, a convex combination of reconstructed

instances, instead of S as the matrix of generating sources.
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6.3.3.1 Prediction using Expectation-Maximisation

Let Y ∈ RD×Ny be the matrix of unlabelled instances whose low rank projec-

tion Q has to be predicted. That is, given a fixed source matrix S, our goal

is to find the best Q for Y ≈ SQ, such that Ỹ = SQ presents high discrim-

inatory capabilities. Given that S barely captures discrimination ability,

we propose to minimise an objective function to obtain Q that jointly uses

training instances X and labels Mx to guide the optimisation procedure.

The cost function of choice corresponds to Eq. 6.6, changing ΩKL by ΩF ,

and using the appropriate matrices: for the ΩF part of the equation, S is

fixed from the training phase, and the observed and mixing matrices are:

X̄ = X ∪ y,

H̄ = H ∪ q,

where y = Yi,: and q = Qi,: correspond to a single instance to be predicted.

Here, A ∪ B operation means to append columns in B to the end of A

matrix.

Despite using H to drive the optimisation process, we do not want its

values to be influenced, but only those values in q. That is why we split the

matrix H̄ into

H̄ = H ∪ q = H̄U> ∪ H̄v> = HU + qv,

U ∈ {0, 1}N×(N+1) and v ∈ {0, 1}1×(N+1) being an auxiliary matrix and

a vector, respectively. U is a mask matrix used to extract the training

part of the matrices. It contains 1’s in its diagonal elements from position

(1, 1) until position (n, n) and 0’s elsewhere. Vector v is used to separate the

unseen instances part of the matrices: it contains a 1 in its position (1, n+1)

and 0’s elsewhere. Similarly, we split observed instances into training and

predictive factors:

X̄ = X ∪ y = X̄U> ∪ X̄v> = XU + yv.

Using this technique, we express the task of matrix factorisation as:

X̄ ≈ SH̄ = S (HU + qv) = (SHU + Sqv) ,
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where only an update rule for q is required.

The second part of the cost function deals with maximising separability

among reconstructed instances according to the calculated scatter matrices.

Let us suppose we have a matrix my ∈ [0, 1]1×R containing the probability

of the current instance y to belong to each class; then, the matrix of known

class labels is

M = Mx ∪my.

Following a similar approach as in the previous paragraph, we split the data

as:

M = Mx ∪my = MU> ∪Mv> = MxU + myv.

The scatter matrices using all training instances plus one instance from the

prediction set become

S̄b = X̄ME−1M>X̄> − 1

N
X̄MJKM>X̄>,

where E =
(
PK,1P

>
K,1M

>JN,1P
>
K,1 + RK,1R

>
K,1M

>JN,1R
>
K,1

)
, JK is a K×

K unit matrix, and

S̄w = (X̄U> − X̄ME−1M>U>)(X̄U> − X̄ME−1M>U>)>

+ (X̄V> − X̄ME−1PK,1)VMPK,1(X̄V> − X̄ME−1PK,1)>

+ (X̄V> − X̄ME−1RK,1)VMRK,1(X̄V> − X̄ME−1RK,1)>.

Now, recalling

Ω̄F = ‖X̄− SHU− SqV‖2F ,

we already have all the components to define the cost function for prediction:

Ω̄DC = (1− α)Ω̄F + α
(
Tr(S̄w)− Tr(S̄b)

)
,

otherwise expressed as:

Ω̄DC = (1− α)X̄X̄> − (2− 2α)X̄U>H>S> − (2− 2α)X̄V>q>S>

+ SHĀH>S> + SHB̄q>S> + SqC̄q>S> (6.11)

− SHD̄H>S> − SHĒq>S> − SqF̄q>S>,
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which uses the following constants:

PK,K = PK,1P
>
K,1,

RK,K = RK,1R
>
K,1,

P̃ = PK,1VMPK,1,

R̃ = RK,1VMRK,1,

Ẽ = E−1M>U>UME−1,

F̃ = E−1(P̃P>K,1 + R̃R>K,1)E−1,

Ā = 1 + αUM

(
Ẽ + F̃ +

Jk
N

)
M>U>,

B̄ = αUM

(
2Ẽ + F̃ + F̃> +

2Jk
N

)
M>V>,

C̄ = (1− α) + αVM

[
(PK,1 + RK,1) +

(
Ẽ + F̃ +

Jk
N

)
M>V>

]
,

D̄ = 3αUM̄U>,

Ē = αUME−1
(

4 + P̃ + R̃ + RK,K + PK,K

)
M>V>,

F̄ = αVM
[
(PK,K + RK,K)E−1M>V> + E−1(P̃ + R̃ + M>V>)

]
.

The update rule for vector q is obtained by applying the same procedure

as for deriving the updating expression for H (for detailed information refer

to Appendix A):

qk = qk

√√√√√
(
B̆q

)
k(

V̆q

)
k

, where (6.12)

B̆q = (2− 2α)(S>X̄)−V> + (S>S)−
(
HB̄ + 2qC̄

)
+ (S>S)+

(
HĒ + 2qF̄

)
,

V̆q = (2− 2α)(S>X̄)+V> + (S>S)+
(
HB̄ + 2qC̄

)
+ (S>S)−

(
HĒ + 2qF̄

)
.

However, there is still one missing detail. Until now, we have assumed

that class membership probabilities for the instance to be predicted my ex-

ist, but we do not have such information. This limitation is overcome by

estimating class membership m̂y using the expectation-maximisation algo-

rithm [152]:

First, the algorithm initialises q to be the mean vector of training mix-

ing matrix H, and calculates the class specific mean µr and the covariance
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Σr from H. The expectation step consists in calculating the posterior prob-

ability of the current instance belonging to each class by approximating a

multivariate Gaussian distribution:

p(Cr|q̂) =
p(q̂|Cr)p(Cr)∑
j
p(q̂|Cj)p(Cj)

,

such that p(Cr) = Nr
N are the empirical priors (or known priors, were they

available), and

p(q̂|Cr) =
1

(2π)R/2|Σr|1/2
exp

{
−1

2
(q̂− µr)

>Σ−1
r (q̂− µr)

}
.

Once m̂y = (p(C1|q̂), ..., p(CR|q̂)) has been retrieved, the maximisation

phase is conducted, consisting in iteratively updating q according to Eq. 6.12

until convergence; then, in the next expectation step, the m̂y vector is re-

estimated using the new value for q. This expectation-maximisation proce-

dure is repeated until convergence, obtaining the final q vector. Given that

only one instance is predicted at a time, the whole process needs to be done

for each instance in Y to be predicted.

6.3.3.2 Prediction using Reconstructed Sources

Given the complexity of the prediction procedure using the expectation-

maximisation framework, described in the previous section, we have derived

an alternative approach. The idea is simple: instead of using S to predict

new samples, since this matrix of sources does not capture all the discrim-

inatory power included in H, we can use the reconstructed instances to

calculate a reconstructed version of the sources. That is:

Y ≈ S̃Q = X̃WQ = XWHWQ.

The prediction of the mixing matrix Q for the test instances Y can be

achieved by applying the update rule for the mixing matrix, as in the CNMF

algorithm:

Qik = Qik

√√√√√
[
(S̃>Y)+ + (S̃>S̃)−Q

]
ik[

(S̃>Y)− + (S̃>S̃)+Q
]
ik

.
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Matlab code of the proposed algorithms is available at http://www.cs.

upc.edu/~avilamala/resources/DCNMF_Toolbox.zip

6.4 Empirical evaluation

DCNMF has been designed to extract meaningful class-specific sources in

complicated classification problems by including discriminative information

from the training instances. This section presents the benchmark used to

assess the appropriateness of the proposed technique employing two differ-

ent sources of data: synthetically generated SV-1H-MRS-like and real SV-

1H-MRS instances corresponding to the most prevalent questions in brain

tumour diagnosis. Final remarks to better understand the obtained results

and design decisions are also provided.

6.4.1 Experimental setup

The proposed method is evaluated on realistic regular practise problems,

using data from two different sources: one consists of real SV-1H-MRS data

from INTERPRET repository (Section 2.3). Specifically, 22 astrocytomas

grade II (ac2), 86 glioblastomas (gbm), 38 metastases (met) and 22 normal

controls (nom), at STE using 195 out of 512 frequencies are included; and

also 20 ac2, 78 gbm, 31 met and 15 nom for data at LTE. The second source

of data contains synthetically generated SV-1H-MRS-like samples, which

have been built from fixed template sources (within-class tissue averages),

mixed using an example mixing matrix. Then, for every diagnostic problem,

the samples of each tumour type were averaged, becoming the artificial

sources, resulting in as many sources as classes. Afterwards, Gaussian noise

of different and increasing levels (5%, 15%, 25% and 35%) was added to the

standardised synthetic data, ensuring that noise added to each dimension

was proportional to its true standard deviation. The final data set includes

the same number of instances as the real dataset just presented, plus 50

instances per class to be used as a test set.

The initialisation of the algorithm entails normalising the current train-

ing set to vector unit length and setting appropriate values to H and W, this
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last choice being of great relevance, since the proposed method converges to

a local minimum. In a research study published in [153], an advantageous

initialisation based on K-means clustering algorithm was proposed; it works

by creating as many clusters as sources were desired to be extracted, defining

a matrix C ∈ {0, 1}K×N of cluster membership, and setting H0 = C+0.2E,

W0 = (C + 0.2E)>D−1, E being a K × N unit matrix and D a K × K
diagonal matrix with the number of instances belonging to each cluster as

diagonal entries. Such initialisation was proven to be an adequate procedure

in our domain [25]. The algorithm finishes its execution when convergence

is achieved. This convergence is expressed as the lack of sufficient varia-

tion (i.e., common threshold set to 10−4) in the objective function (Eq. 6.7)

between two consecutive iterations.

The composition of signal and the class membership for unseen instances

were predicted using the methods previously mentioned, namely expectation-

maximisation (EM in the acronym used in the tabulated results), recon-

structed sources (RS), and a mixture of both strategies (EMRS), where the

reconstructed sources were used in the EM algorithm aiming at making the

most of each method. Standard unsupervised CNMF was also employed for

comparison purposes.

The initialisation of Q was done differently depending on the prediction

algorithm: for CNMF and RS strategies, the distance between each instance

to be predicted and centroids of K-means from the training phase was used

to assign initial class memberships and, then, the initial values of Q were

set following the same approach as for H, while the average value of H was

used to initialise Q in EM and EMRS.

For the sake of interpretability, S was normalised to vector unit length

and each element of H and Q was divided by L1 norm of its column at

the end of every execution. The class membership for unknown labels was

assigned to the source contributing the most to the signal composition, as

evaluated by the highest value in H and Q.

The most adequate value for parameter α ∈ (0, 1) was estimated using

grid search at intervals of 0.05, such that the average BAC (class prediction

metric, Section 3.1.3) and the Pearson linear correlation (COR) between
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sources in S and class centroids over 10-fold cross-validation in the train-

ing set was maximised. COR between two random variables X and Y is

mathematically defined as:

COR =
Cov(X,Y )

σXσY
,

Cov being the covariance and σX the standard deviation of X.

The reported results are evaluated over the test set for synthetic data;

and repeated double 10-fold cross-validation, where the inner loop was used

in the training phase and the outer one for testing, in the real SV-1H-MRS

data scenario.

6.4.2 Results

Table 6.1: BAC/COR results for the test set using the synthetic data. The

values for each method are displayed columnwise. Each row corresponds to

one of the analysed diagnostic discrimination problems

Problem TE CNMF EM RS EMRS

met vs ac2

Short

0.96/0.99 0.97/0.99 0.97/0.99 0.97/0.99

gbm vs ac2 0.94/0.93 0.96/0.97 0.94/0.97 0.94/0.97

gbm vs met 0.52/0.69 0.56/0.99 0.54/0.99 0.56/0.99

met vs ac2

Long

0.86/0.94 0.96/0.96 0.86/0.96 0.94/0.96

gbm vs ac2 0.78/0.87 0.84/0.88 0.81/0.89 0.90/0.89

gbm vs met 0.59/0.82 0.60/0.98 0.61/0.98 0.61/0.98

The results obtained for the synthetic test data can be found in Ta-

ble 6.1. They consistently show equal or greater performance in classifica-

tion when using DCNMF variants as compared to CNMF alone, according

to the BAC measure. This gain is more evident in LTE data than STE,

reaching up to 12% in the discrimination between gbm from ac2 using the

EMRS technique. For LTE, the highest accuracy is obtained for the met

vs. ac2 problem, by increasing it up to 10% for EM and 8% using EMRS.

Notice the high difficulty of differentiating gbm from met at either LTE or

STE, where barely 60% accuracy is obtained at best. This result enforces

our hypothesis presented in the previous chapters that ad-hoc techniques
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Figure 6.1: Correlation between glioblastomas, metastases and

sources at short TE for the analysed synthetic data - The top row,

from left to right, shows the gbm average spectrum in the training set, the

estimated source for gbm using the EM algorithm, and the gbm average spec-

trum in the test set. The bottom row contains the same information for met.

The X-axes units are ppm.
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Figure 6.2: Correlation between glioblastomas, metastases and

sources at long TE for the analysed synthetic data - The top row,

from left to right, shows the gbm average spectrum in the training set, the

estimated source for gbm using the RS algorithm, and the gbm average spec-

trum in the test set. Bottom row contains the same information for met. The

X-axes units are ppm.
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including robust feature selection and ensemble techniques are required to

address it.

Nonetheless, the real value of the proposed solution in its multiple vari-

ants is its ability to retrieve class-specific sources; that is, the extracted

individual sources that highly correlate with mean spectrum of a tumour

type. Evidence of such quality can be appreciated noting that most of

DCNMF obtain a Pearson correlation coefficient over 0.89 (89%), equalling

or improving the CNMF’s results. Specially striking is the improvement

acquired by DCNMF in the gbm vs. met setting at STE, being more than

30% to its CNMF counterpart; this exemplifies the added value of DCNMF

which succeeds in generating very class-specific sources, even for a problem

with so much overlapping and ambiguity.

Table 6.2: Repeated double cross-validation BAC (means ± standard devia-

tions) results for the real SV-1H-MRS data

Problem TE CNMF EM RS EMRS

met vs ac2

Short

0.97 ± 0.05 0.95 ± 0.09 0.97 ± 0.05 0.95 ± 0.11

gbm vs ac2 0.92 ± 0.04 0.92 ± 0.05 0.90 ± 0.06 0.92 ± 0.05

gbm vs met 0.58 ± 0.10 0.59 ± 0.10 0.58 ± 0.11 0.58 ± 0.06

as2 vs nom 0.87 ± 0.13 0.85 ± 0.17 0.87 ± 0.21 0.80 ± 0.20

met vs nom 0.97 ± 0.05 0.97 ± 0.05 0.97 ± 0.05 0.97 ± 0.05

gbm vs nom 0.91 ± 0.07 0.92 ± 0.04 0.91 ± 0.08 0.92 ± 0.06

met vs ac2

Long

0.84 ± 0.11 0.84 ± 0.11 0.86 ± 0.14 0.85 ± 0.12

gbm vs ac2 0.71 ± 0.09 0.71 ± 0.09 0.74 ± 0.13 0.72 ± 0.10

gbm vs met 0.59 ± 0.15 0.59 ± 0.15 0.59 ± 0.17 0.57 ± 0.17

ac2 vs nom 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

met vs nom 0.90 ± 0.08 0.90 ± 0.08 0.92 ± 0.12 0.92 ± 0.12

gbm vs nom 0.72 ± 0.01 0.63 ± 0.19 0.67 ± 0.16 0.72 ± 0.01

To illustrate the DCNMF potential regarding the generation of class-

specific sources, Figs. 6.1 and 6.2 show the spectra that have been acquired

by our method when comparing gbm and met at STE using EM and LTE

with RS, respectively. Notice the high similarity between training averages,

retrieved sources, and unseen test means.

Turning our attention to real SV-1H-MRS dataset, the limitations of

dealing with such small sample size set, as well as the lack of a proper test
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set, become apparent. Nevertheless, and in consonance to previous experi-

ments, DCNMF solutions yield equal or better BAC values when compared

to CNMF ones (Table 6.2), although differences are smaller in this case. An-

other observation is that there is little difference among DCNMF algorithms,

the discrimination of low-grade astrocytomas and high-grade tumours being

quite complete, while the differentiation between gbm and met remains very

difficult. The extra discriminations involving nom controls are fairly easy.

Focusing on the correlation between extracted sources and class-specific

averages (Table 6.3), which is the ultimate goal of the study, we observe a

coherently similar or better performance when using DCNMF methods, in

comparison to CNMF. Once more, the improvement of 33% in the gbm vs.

met problem at STE using EMRS and the nearly 23% in gbm vs. nom at

LTE obtained by EM are especially significant. It seems obvious, though,

that finding the best DCNMF variant is a problem-dependent matter.

Table 6.3: Mean correlations (± standard deviations) between tumour type

averages and estimated sources in a repeated double 10-fold cross-validation

for the real SV-1H-MRS data, displayed as in the previous table

Problem TE CNMF EM RS EMRS

met vs ac2

Short

0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.03 0.99 ± 0.00

gbm vs ac2 0.97 ± 0.00 0.98 ± 0.00 0.96 ± 0.04 0.98 ± 0.00

gbm vs met 0.65 ± 0.02 0.71 ± 0.02 0.96 ± 0.04 0.98± 0.00

ac2 vs nom 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.01

met vs nom 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00

gbm vs nom 0.98 ± 0.00 0.98 ± 0.00 0.97 ± 0.01 0.98 ± 0.00

met vs ac2

Long

0.93 ± 0.00 0.94 ± 0.00 0.90 ± 0.06 0.94 ± 0.00

gbm vs ac2 0.78 ± 0.01 0.80 ± 0.01 0.82± 0.03 0.80 ± 0.01

gbm vs met 0.76 ± 0.02 0.80± 0.02 0.86± 0.15 0.80± 0.02

ac2 vs nom 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

met vs nom 0.96 ± 0.00 0.96 ± 0.00 0.92 ± 0.05 0.96 ± 0.00

gbm vs nom 0.70 ± 0.02 0.93± 0.01 0.72 ± 0.09 0.71 ± 0.03

6.4.3 Discussion

To begin with this discussion, we would like to remind of the primary goal

that the current solution was designed for: accurately identifying the inter-

pretable latent sources out of which the measured signal is made of, with the
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(a) Unclean data (b) Clean data

Figure 6.3: DCNMF data cleaning - An example of the type of cleaning

that DCNMF is performing in original feature space.

aid of labelled data that improves class-specific source determination. The

proposed algorithm is especially appealing for complicated problems where

the added value of supervised strategy is made clear.

The assessment of predictive ability by means of BAC has been per-

formed with the purpose of guiding the process and ensuring that no harm-

ful effect is caused by our method when compared to previous approaches.

However, no explicit effort has been made to improve classification perfor-

mance and hence, results are rather suboptimal. A more prediction-oriented

attempt might build a classifier using the low-dimensional representation of

instances stored in H.

A related decision in the construction of the evaluation benchmark has

been to constrain the number of generating sources to be equal to the number

of tumour types in the problem (i.e., r = k). The reason for such decision

is that we wanted to obtain class-specific sources resembling class-average

spectra, therefore a one-to-one relationship was forced. Nonetheless, nothing

prevents our algorithm to be applied using different values for r in those

cases where predictive performance is prioritised (allowing for a higher low-

dimensional representation of instances where to build the classifiers) or

several heterogeneous sources are allowed to represent a tumour type.
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The last remark we would like to make is about the ability of the method

to clean the data. By cleaning, we mean here obtaining a reconstructed

version of the initial signal data points in the original data space presenting

better discriminative properties. For instance, when using the synthetic

dataset in Figure 6.3, noisy or outlying instances falling in the opposite-

class region are reconstructed to a version falling in the same-class region.

6.5 Conclusions

The proposed Discriminant Convex Non-negative Matrix Factorisation is a

supervised signal processing method specifically designed to decompose the

measured multivariate data into two interpretable components: the under-

lying class-specific generating sources and the contribution of each source

to the measured signal in form of positive coefficients. The domain of ap-

plication for which it has been designed is that of SV-1H-MRS data for

brain tumour diagnosis, where multiple phenomena contributing to the sig-

nal measured by MR scanners in a voxel coexist. The following requirements

introduced in Section 6.1 are revisited to evaluate the completeness of our

approach:

1. It must be able to identify the underlying sources present in the re-

trieved signal : each column in matrix S contains an estimated source.

2. It needs to assess the contribution of each source to the signal : matrix

H contains the positive coefficients representing the source contribu-

tion to every instance.

3. Both the sources and their contributions must be easily interpretable:

source matrix S is provided in the same space as the input vectors,

while the instance coefficients in H are normalised to sum up to 1 in

the range (0, 1), becoming easily interpretable outcomes.

4. The solution must naturally deal with both negative and positive values:

this is addressed by imposing sources to be a convex combination of

instances.
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5. Ratios between values of metabolites at certain frequencies must be pre-

served : this is the rationale behind specifically dealing with negative

values instead of shifting the whole spectrum.

6. Distances between values of metabolites at specific frequencies must be

kept : the same reasoning as in previous statement applies here.

7. Supervised information must be easily included in the solution when

labelled data are available: the discriminant part of the objective func-

tion takes care of this requirement.

A benchmark including synthetic and real neuro-oncological instances

from INTERPRET database selected data sets has been designed to demon-

strate the ability of the proposed technique to extract tumour type-specific

sources in difficult discriminative problems such as the differentiation of

glioblastomas from metastases, obtaining notable improvements in certain

settings with respect to available state of the art algorithms.
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Chapter 7

Probabilistic Matrix

Factorisation

In the previous Chapter, we have developed a supervised method to extract

the heterogeneous sources responsible to generate the observed SV-1H-MRS

signal produced by the tissues in a specific voxel, as captured in a regular

scanning. This method was also able to quantify the contribution of each

source to the final signal.

During the development of the DCNMF technique, we have identified

some important issues that would require specific attention: one of these is-

sues is the selection of the most appropriate number of sources that conform

the retrieved signal. As the discussion in Chapter 6 argues, the heuristic used

to select the appropriate number of sources has consisted in matching the

number of tumour types in the current classification problem. This decision,

even if practical for interpretation purposes, might be far from optimal. A

second unaddressed issue is the assessment of the confidence that can be

placed on the possibility that the provided sources (or pieces of them) are

good candidates for the description of the tissues they represent. Such con-

cern is even more prominent in those situations where few instances are used

to extract the sources.

To confront the aforementioned issues and some other lower-level ones,

we derive a probabilistic interpretation of convex and semi NMF in the

current chapter, with the purpose of retaining all the known strengths of
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these techniques when applied to our current domain, while incorporating

the bonus features that the Bayesian framework may provide.

The structure of the present chapter is described next: a few paragraphs

motivating the change of paradigm we adopt is first presented; a guided

journey from classical Matrix Factorisation (MF) to full Bayesian treat-

ment for MF, while introducing important concepts to understand Bayesian

techniques is then presented. Thereafter, a more specific revision of pub-

lished research dealing with probabilistic versions of NMF is carried out as

an introduction to our detailed derivation of Probabilistic CNMF and fully

Bayesian SNMF. Experiments testing the proposed methods in the brain

oncology domain are performed and their results discussed. The last section

concludes the chapter by validating the initial hypotheses.

7.1 Motivation

Recall the plausible assumption from previous chapter, stating that the mea-

sured SV-1H-MRS signal is composed of a mixture of various signals emitted

by different compounds, which contribute with varying intensity. We have

seen how the purpose of CNMF is to retrieve, from measurements, both

the underlying sources and their contributions, taking into account all those

restrictions enumerated in Section 6.1, which, for the sake of brevity, are

not repeated here. Notice, though, that all the requirements in that list but

number 7 still hold in the current research.

In another order of things, we have seen in Chapter 5 the problem that

overfitting poses to our models in the context of feature selection, which

is equally relevant in source extraction. The constructed models will be

especially prone to this phenomenon when small size data samples are used

in their learning phase.

Bearing all these inputs in mind, the solution we propose must incorpo-

rate a list of new preconditions to the first six requirements in Section 6.1,

intending to ease the construction of models, avoid overfitting and provide

elements for a better interpretation and reliability of results:
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1. The possibility to incorporate prior knowledge on sources and their

contributions.

2. Automatic control of regularisation hyperparameters.

3. Appropriately handle uncertainty and provide an interpretable mea-

sure of confidence for the retrieved sources.

4. Suitable selection of the most appropriate number of underlying sources.

7.2 State of the Art

The NMF variants introduced in the previous chapter represent a (non-

negatively) constrained subset of a wider problem whose goal is to approx-

imate a real-valued matrix of observations by a lower-rank one. Singular

Value Decomposition is a technique often used to obtain such low-rank ma-

trix as a product of various low-dimensional matrices. However, there exist

certain domains (e.g., MF in recommender systems - RecSys [154]) where

this technique cannot be employed (due to the usually extreme sparsity of

the original matrix), and those matrices are found using optimisation-based

strategies. In this section, we review some work in the RecSys domain as

an example to introduce different scenarios that provide a probabilistic in-

terpretation of MF, while linking them to their classical counterparts.

7.2.1 Classical Matrix Factorisation

Let X ∈ RD×N be the matrix of observed instances, we aim at finding

two lower rank matrices S ∈ RD×K and H ∈ RK×N such that X ≈ SH.

A typical objective function to evaluate the proposed solution is one that

minimises the sum-of-squares error:

ΩLS(X||SH) =
1

2

D∑
d=1

N∑
n=1

(Xd,n − (SH)d,n)2. (7.1)

Notice the importance of choosing the rank K parameter in order to appro-

priately capture the latent factors underlying the distribution: a too small

value might incur a large error in reconstructing the instances (underfitting),

127



7. PROBABILISTIC MATRIX FACTORISATION

while a too big one might identify each latent factor as the source generating

a single instance (overfitting). The choice of the most adequate value for K

is a domain-dependent problem, which is difficult to solve using only prior

knowledge. A traditional strategy to avoid overfitting, widely employed in

Machine Learning literature, is regularisation. It consists in adding a term

to the objective function that forces the learned function to be as smooth as

possible, while keeping the faithfulness of data modelling acceptable. In our

context, the regularisation term is not applied directly to the K parameter,

but it is dealt with indirectly by keeping the values of the factorised matrices

low. This is accomplished in the Ridge Regression technique, which adds

the L2-norm as a regularisation term to the objective, in the form:

Ωridge(X||SH) =
1

2

D∑
d=1

N∑
n=1

(Xd,n−(SH)d,n)2 +
λ

2

D∑
d=1

‖Sd,:‖2F +
γ

2

N∑
n=1

‖H:,n‖2F ,

(7.2)

λ and γ being two hyperparameters that regulate the trade-off between

learning with maximum fit and keeping the function smooth. Alternatively,

a common technique called Lasso [155] is used to obtain a more sparse

decomposition by employing the L1-norm:

Ωlasso(X||SH) =
1

2

D∑
d=1

N∑
n=1

(Xd,n−(SH)d,n)2+
λ

2

D∑
d=1

K∑
k=1

|Sd,k|+
γ

2

K∑
k=1

N∑
n=1

|Hk,n|.

7.2.2 Probabilistic Matrix Factorisation

Unconstrained MF is often applied in the RecSys domain: each cell in the

matrix of observations X ∈ RD×N contains the rating that a user d gives to

a certain item n. The task of the system is to provide predictions of ratings

for unknown user-item pairs, in order to recommend those items that best

suit each user preferences.

Let us now reformulate the MF from a probabilistic perspective within

the RecSys domain [156]. Given that the fitting measure to minimise in

Eq. 7.1 corresponds to the least-squares error, an equivalent probabilistic

formulation would entail using a linear model with Gaussian observation
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noise. Hence:

p
(
X | S,H, σ2

)
=

D∏
d=1

N∏
n=1

N
(
Xd,n | (SH)d,n, σ

2
)
, (7.3)

where

N
(
x | µ, σ2

)
=

1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
is the probability density function of the Gaussian distribution with mean

µ and variance σ2.

Estimating the values for Sd,k and Hk,n such that Eq. 7.3 is maximised is

known as maximum likelihood estimation, which is equivalent to minimising

Eq. 7.1 and is usually solved by minimising the negative logarithm of the

likelihood. That is:

− log p
(
X | S,H, σ2

)
=

1

2σ2

D∑
d=1

N∑
n=1

(Xd,n − (SH)d,n)2 +
DN

2
log σ2 + C,

where C is a constant that does not depend on the parameters.

As when using least-squares as the loss function, maximum likelihood is

also prone to overfitting. The probabilistic approach to control model com-

plexity consists in specifying a Bayesian prior for each Sd,k and Hk,n, which

are often set to be random variables from a zero-mean Gaussian distribution:

p
(
S | σ2

S

)
=

D∏
d=1

K∏
k=1

N
(
Sd,k | µS , σ2

S

)
, (7.4)

p
(
H | σ2

H

)
=

K∏
k=1

N∏
n=1

N
(
Hk,n | µH , σ2

H

)
, (7.5)

where µS = µH = 0; leading to the following objective function:

p
(
S,H | X, σ2, σ2

S , σ
2
H

)
∝ p

(
X | S,H, σ2

)
p
(
S | σ2

S

)
p
(
H | σ2

H

)
. (7.6)

By minimising the negative logarithm of Eq. 7.6, we obtain the so-called

maximum a posteriori (MAP) estimate:

− log p
(
S,H | X, σ2, σ2

S , σ
2
H

)
∝ 1

2σ2

D∑
d=1

N∑
n=1

(Xd,n − (SH)d,n)2

+
1

2σ2
S

D∑
d=1

S>d,:Sd,: +
1

2σ2
H

N∑
n=1

H>:,nH:,n

+
DN

2
log σ2 +

DK

2
log σ2

S +
KN

2
log σ2

H + C,
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which is equivalent to the Ridge Regression strategy in Eq. 7.2 with λ =

σ2/σ2
S and γ = σ2/σ2

H . The optimisation procedure can be carried out

using an Iterative Gradient Descent algorithm, where matrices S and H are

alternatively updated at each iteration while keeping the other fixed.

So far, we have seen that a probabilistic formulation that uses Gaussian

observation noise can be compared to a classical Least Squares loss function

and also that using Gaussian priors for the latent factors has the same effect

as L2-norm regulariser in Ridge Regression. Another typical setting consists

in using the Laplacian distribution to model the prior knowledge for latent

factors, which is equivalent to the L1-norm regularisation strategy in Lasso.

We might think that probabilistic NMF is just a reinterpretation of classical

NMF, but we start devising the first benefits of this new approach: prior

probabilities are not only useful for regularisation, but they also allow to

model our prior beliefs on the latent factors, pulling the estimated values

towards such priors, an interesting property when few data are available.

7.2.2.1 Hierarchical Bayes

Another useful characteristic of the probabilistic approach is the automatic

control of the hyperparameters (i.e., λ and γ) by using the so-called hi-

erarchical Bayes techniques, instead of adjusting their values by explicitly

examining a set of candidates in a cross-validation set-up, as it is often the

case in classical approaches. Basically, it consists in treating the unknown

hyperparameters the same way as the other unknown parameters in the for-

mulation: they are random variables drawn from a distribution. Now, the

objective function we aim at optimising becomes:

p
(
S,H, σ2, σ2

S , σ
2
H | X

)
∝ p

(
X | S,H, σ2

)
p
(
S | σ2

S

)
p
(
H | σ2

H

)
(7.7)

p
(
σ2
)
p
(
σ2
S

)
p
(
σ2
H

)
,

p
(
σ2
)
, p
(
σ2
S

)
and p

(
σ2
H

)
being the appropriately chosen prior distributions

for the hyperparameters. Following the same procedure as in the previous

block, the MAP point estimate for Eq. 7.7 can be obtained by minimising

− log p
(
S,H, σ2, σ2

S , σ
2
H | X

)
, using an Iterative Gradient Descent optimisa-

tion algorithm, including the hyperparameters in the updating loop.
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The last strategy we want to comment before introducing the full Bayesian

approach is known as empirical Bayes and lies somewhat between the MAP

technique with manual hyperparameters setting and the MAP with auto-

matic control of hyperparameters. Now, we also attempt to optimise Eq. 7.7,

but we use a different approach to estimate the hyperparameters: at each

iteration of the gradient descent algorithm, the prior hyperparameter distri-

butions are approximated by a δ-function at their mode, according to the

available data. That is:

p
(
σ2
)
≈ δ

(
p
(
σ2 | X,S,H

))
∝ arg max

{
p
(
X,S,H | σ2

)
p
(
σ2
)}
,

p
(
σ2
S

)
≈ δ

(
p
(
σ2
S | S

))
∝ arg max

{
p
(
S | σ2

S

)
p
(
σ2
S

)}
,

p
(
σ2
H

)
≈ δ

(
p
(
σ2
H | H

))
∝ arg max

{
p
(
H | σ2

H

)
p
(
σ2
H

)}
.

7.2.3 Bayesian Probabilistic Matrix Factorisation

Nonetheless, the real value of using a probabilistic interpretation of a learn-

ing problem consists in carrying out a full Bayesian treatment and make use

of marginalisation techniques to get rid of nuisance parameters to obtain

the final solution. Recall the Bayes’ rule from Chapter 3, where:

posterior =
likelihood× prior

evidence
; (7.8)

if we only focus on finding the function that best fits our data, we are dealing

exclusively with the likelihood part of the equation, and finding the best

parameterisation can be achieved by estimating the maximum likelihood as

shown above. Yet, we can incorporate prior information to find the best

fit, providing the benefits we just explained; in this scenario, we would be

using the likelihood× prior, whose best estimates are often obtained using

MAP. But what would really supply all the power of Bayesian inference (e.g.,

uncertainty handling) is the calculation of the whole posterior distribution,

and not just a point estimate. In this case, we would need to calculate

complex integrals in either the numerator or denominator of the equation,

which often require resorting to approximate inference.

An approach to full Bayesian MF in RecSys can be found in [157]. We use

this study as an example to introduce a few relevant concepts in the Bayesian
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inference framework: as a starting point, let us assume the likelihood of the

observed data to be given by Eq. 7.3 and the priors for the latent factors to be

normal distributed as in Eqs. 7.4 and 7.5, but now expressed as uncorrelated

multivariate Gaussian using precision instead of variance:

p (S | µS ,ΛS) =
D∏
d=1

N
(
Sd,: | µS ,Λ−1

S

)
,

p (H | µH ,ΛH) =
N∏
n=1

N
(
H:,n | µH ,Λ−1

H

)
,

where ΛS = 1/σ2
SI and ΛH = 1/σ2

HI, I being the identity matrix.

7.2.3.1 Conjugate priors

Recall the use of hierarchical Bayes introduced above, consisting in placing

a prior distribution to the unknown hyperparameters. Here, we proceed

in a similar way defining prior distributions for hyperparameters related

to matrices S: θS = {µS ,ΛS}; and H: θH = {µH ,ΛH}; but we go one

step forward to introduce the concept of conjugate priors. Now, the chosen

prior distribution does not only need to capture our prior beliefs on the

random variable, but it also has to be mathematically suitable, so that when

multiplied by the likelihood, the resulting posterior is of the same family as

the prior. In this case, the prior and the posterior are called conjugate

distributions, the former being a conjugate prior for the current likelihood.

The practical applicability of conjugate priors is that they facilitate the

computation of the posterior, which might be otherwise intractable.

In our MF example [157], hyperparameter priors were modelled using the

Gaussian-Wishart distribution, which is a conjugate prior of a multivariate

normal, and is defined as:

p (θS | θ0) = N
(
µS | µ0, (β0ΛS)−1

)
W (ΛS |W0, ν0) ,

p (θH | θ0) = N
(
µH | µ0, (β0ΛH)−1

)
W (ΛH |W0, ν0) ;

W (Λ |W0, ν0) =
1

C
|Λ|(ν0−K−1)/2 exp

(
−1

2
Tr
(
W−1

0 Λ
))
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being the Wishart distribution, with constant C and initial hyperparameters

θ0 = {µ0, ν0, β0,W0}, set, for convenience, to be µ0 = 0, ν0 = K and

W0 ∈ RK×K ≡ IK (identity matrix).

7.2.3.2 Sampling approximations

Unlike in BSS domains, in a RecSys context we are not much interested in

retrieving the posterior distribution for the factors, but in predicting new

ratings for a user to a specific item, which corresponds to filling out a cell

in our X matrix. Therefore, the predictive distribution we aim at finding is:

p
(
X∗d,n | X,θ0

)
=

∫∫
p
(
X∗d,n | Sd,:,H:,n

)
p (S,H | X,θS ,θH) (7.9)

p (θS ,θH | θ0) d {S,H} d {θS ,θH} .

Analysing Eq. 7.9, we realise that the first term of the integral corresponds

to the prediction of a new rating, given the model parameters {Sd,:,H:,n},
while the second and third terms are a factorisation of the full posterior

p(S,H,θS ,θH | X), whose purpose is to infer the best values for the pa-

rameters and hyperparameters of the model given the data. However, we

are not really interested in explicitly calculating any parameterisation, but

in predicting new ratings, instead. Therefore, all these nuisance parameters

are integrated out.

In the very rare cases where such posterior predictive distribution can be

calculated analytically, a point estimate best summarising the distribution

(i.e., usually the posterior mean) is given as the most probable value, and

the width of the distribution is used as an indicator of confidence on the

prediction (i.e., a peaked distribution implies high confidence in the pre-

dicted value, while a more uncertain outcome is accompanied by a wider

distribution).

Unfortunately, most of the time, as in the case of our explanatory RecSys

example, the predictive distribution is intractable and approximate inference

techniques are required, out of which Monte Carlo simulation variants [110]

are most frequently employed.

The basic idea behind the Monte Carlo method for approximating in-

tractable integrals is very simple [158]: let x be a vector of N random
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variables sampled from distribution p(·); then, the task is to evaluate the

expectation:

E [f(x)] =

∫
x
f(x)p(x)dx.

The Monte Carlo integration evaluates the expectation by drawing N sam-

ples from p(·) and approximating:

E [f(x)] ≈ 1

N

N∑
n=1

f
(
x(n)

)
. (7.10)

According to the law of large numbers, the approximation can be arbitrarily

accurate by increasing the sample size N , provided x(n) are independent.

The problem with the aforementioned technique arises when sampling

from p(·) is not feasible, given the complexity of the distribution. To solve

this limitation, the Markov Chain Monte Carlo (MCMC) approach proposes

to obtain a non-independent set of random variables in the same proportions

as if they were sampled independently from p(·); hence, evaluating the ex-

pectation as in Eq. 7.10. One way to construct an MCMC estimator with the

desired properties, when p(x) can be evaluated, is by using the Metropolis-

Hastings algorithm (MH, [159]).

The MH algorithm consists in approximating the target density p(·) by

generating a sequence of instances, each one of them obtained from its pre-

decessor, by following three basic steps [160]:

1. Given the last generated instance x(n), sample a candidate instance

from the proposal distribution:

x∗ ∼ q
(
x | x(n)

)
.

2. Calculate the acceptance probability, according to:

ρ
(
x(n), x∗

)
= min

{
1,

p(x∗)

p(x(n))

q
(
x(n) | x∗

)
q
(
x∗ | x(n)

)} .
3. Set x(n+1) = x∗ with probability ρ

(
x(n), x∗

)
, otherwise set x(n+1) =

x(n).
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A particular instance of the MH algorithm, which is especially suitable

for high-dimensional distributions, is the Gibbs sampling [159]. It is rec-

ommended in those cases where the methods mentioned above are difficult

to apply, but, instead, sampling from the full conditional distributions is

easy. That is, given a D-dimensional random variable x, the full conditional

distribution of xd is defined as:

p(xd | x1, . . . , xd−1, xd+1, . . . , xD) =
p(x1, . . . , xD)

p(x1, . . . , xd−1, xd+1, . . . , xD)
.

Following this Gibbs sampling technique, the joint distribution over D

dimensions p(x1, . . . , xD) (the target density p(·)) is approximated by itera-

tively sampling from the full conditionals:

x
(n)
1 ∼ p(x1 | x(n−1)

2 , . . . , x
(n−1)
D ),

x
(n)
2 ∼ p(x2 | x(n)

1 , x
(n−1)
3 , . . . , x

(n−1)
D ),

...

x
(n)
d ∼ p(xd | x

(n)
1 , . . . , x

(n)
d−1, x

(n−1)
d+1 , . . . , x

(n−1)
D ),

...

x
(n)
D ∼ p(xD | x(n)

1 , . . . , x
(n)
D−1).

Finally, expectation is calculated as in Eq. 7.10.

Two important questions worth mentioning before finishing this block on

MCMC are related to the convergence of the chain to the target distribution.

One is called burn-in and is defined as the number of samples that need to

be discarded at the beginning of the chain before it actually samples from

the desired stationary distribution; the second consists in establishing the

number of samples to be kept to ensure that the chain has converged to

the target distribution. For the time being, there are no formal derivations

successfully addressing these two issues and they are usually dealt with

through heuristics.

Back to our MF example, the intractable predictive distribution in Eq. 7.9

will now be calculated by a Monte Carlo approximation given by:

p(X∗d,n | X,θ0) ≈ 1

M

M∑
m=1

p(X∗d,n | S
(m)
d,: ,H

(m)
:,n ), (7.11)
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where S
(m)
d,: and H

(m)
:,n are sampled from a Markov chain with stationary dis-

tribution equivalent to the posterior over parameters and hyperparameters

of the model: p(S,H,θS ,θH | X).

The desired Markov chain is going to be constructed using the Gibbs

sampling technique introduced above, according to the following algorithm:

1. Initialise model parameters {S(1),H(1)}.

2. For m = 1, . . . ,M :

(a) Sample the hyperparameters:

θ
(m)
S ∼ p(θS | S(m),θ0)

θ
(m)
H ∼ p(θH | H(m),θ0)

(b) For d = 1, . . . , D:

S
(m+1)
d,: ∼ p(Sd,: | X,H(m),θ

(m)
S )

(c) For n = 1, . . . , N :

H(m+1)
:,n ∼ p(H:,n | X,S(m),θ

(m)
H )

3. Calculate Eq. 7.11.

Due to the use of conjugate priors, the conditional distribution to sample

hyperparameter values for the matrix of users in the Gibbs algorithm is a

Gaussian-Wishart. It turns out to be an easy-to-sample-from distribution,

whose parameters are set using closed form equations, which take parameters

from the prior and update them as data have been seen:

p(θS | S,θ0) = p (µS ,ΛS | S,µ0, ν0,W0)

= N
(
µS | µ∗0, (β∗0ΛS)−1

)
W (ΛS |W∗

0, ν
∗
0) ,

where

µ∗0 =
β0µ0 +DS̄

β0 +D
, β∗0 = β0 +D, ν∗0 = ν0 +D,

W∗
0 =

[
W−1

0 +DC̄ +
β0D

β0 +D

(
µ0 − S̄

)> (
µ0 − S̄

)]−1

,

S̄ =
1

D

D∑
d=1

Sd,:, C̄ =
1

D

D∑
d=1

(
Sd,: − S̄

)> (
Sd,: − S̄

)
.
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For sampling user feature vector values in the Gibbs algorithm, we use

a conditional Gaussian distribution defined as:

p (Sd,: | X,H,θS) = p (Sd,: | X,H,µS ,ΛS , α)

= N
(
Sd,: | µ∗d, [Λ∗d]

−1
)
,

where

Λ∗d = ΛS + α
N∑
n=1

H:,nH
>
:,n,

µ∗d = [Λ∗d]
−1

(
α

N∑
n=1

H:,nXd,n + ΛSµS

)
.

The conditional distribution over item feature vector p(Hn | X,S(m),θ
(m)
H )

and item hyperparameters p(θH | H(m),θ0) have exactly the same form.

An alternative to sampling would be the use of Variational inference [79]

to deterministically approximate the posteriors of our MF example [161].

The basic idea of Variational methods is to pick a tractable distribution

that approximates the intractable true posterior; and then to try to make

this approximation as close as possible to the true posterior: this reduces

inference to an optimisation problem [162, 163].

7.2.3.3 Model selection

An important factor in Bayes’ rule (Eq. 7.8), which has so far been over-

looked is the evidence or marginal likelihood term, corresponding to the

denominator of the equation. We have not included it in any of our earlier

computations aiming at inferring the posterior distribution of model param-

eters or obtaining the predictive distribution for a new data point, since

marginal likelihood is meant to be constant with respect to the model pa-

rameters and is therefore subsumed into the proportionality constant. Nev-

ertheless, there are some situations where explicitly calculating this model

evidence is unavoidable. This is the case when applying a Bayesian approach

to model selection.

Model selection is the task of picking the right model from a set of

models of different complexity; for instance, in an MF context, choosing the
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right number of latent factors K is considered a model selection problem.

Classical approaches use cross-validation (CV) to estimate the generalisation

error of every model in order to select the one that minimises such error.

The main pitfall of this strategy is that it requires to fit each model as many

times as folds in the CV. A more efficient procedure consists in computing

the posterior over models [79]:

p(m | X) =
p(X | m)p(m)∑
m∈M p(m,X)

. (7.12)

Bayesian model selection achieves its purpose by computing the MAP esti-

mate: m̂ = arg max p(m | X), which, in the case of no prior preference for

any model: p(m) ∝ 1, translates into choosing the model that maximises

the marginal likelihood we have been referring to:

p(X) ≡ p(X | m) =

∫
p(X | θ)p(θ | m)dθ.

Unfortunately, computing the marginal likelihood is often intractable

and approximate techniques are usually required [164].

7.2.4 Probabilistic Non-negative Matrix Factorisation

In the previous section, we have introduced Bayesian inference with the

assistance of an unconstrained MF example. Here, we present further rel-

evant work that draws somehow closer to our domain of application by

constraining all matrices in the decomposition to contain only non-negative

values. Reviewing this work will provide insights on different avenues to

adapt Bayesian techniques to convex or semi NMF.

The first study, published in [165], is an attempt to formalise classical

NMF with the Frobenius cost function (Eq. 6.1) using the Bayesian frame-

work. In particular, the likelihood is defined as the multiplication of source

and mixing matrices with zero mean Gaussian noise and the non-negative
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constraints of the factors are encoded using Gamma distributions. That is:

p (S,H | X,θ) ∝ p (X | S,H,θ) · p (S | θ) · p (H | θ) ,

p (X | S,H,θ) =
D∏
d=1

N∏
n=1

N
(
Xd,n; (SH)d,n, σ

2
n

)
, (7.13)

p (S | θ) =

D∏
d=1

K∏
k=1

G (Sd,k;αk, βk) , (7.14)

p (H | θ) =
K∏
k=1

N∏
n=1

G (Hk,n; γk, λk) , (7.15)

where θ = {σ2
n}Nn=1 ∪ {αk, βk, γk, λk}Kk=1.

A MAP approach was chosen to obtain point estimates for each element

in matrices S and H, a procedure that can be seen as a generalisation of

the widely-used Positive Matrix Factorisation algorithm [69], but now con-

taining a different regularisation parameter per source. Alternating iterative

gradient descent was employed to optimise the cost function; and empirical

hierarchical Bayes was the strategy of choice to estimate hyperparameter

values. The suitability of the proposed method was investigated using a

synthetically-generated toy example.

These same authors extended their previous work with the purpose of

providing full Bayesian inference capabilities [166] to the model. Start-

ing from the same formalisation, they derived a hybrid Gibbs-Metropolis-

Hastings MCMC procedure, where Gibbs method was used to sample from

the posterior to compute the marginal posterior mean point estimate:(
Ŝ, Ĥ

)
= Ep(S,H|X,θ) {S,H} .

For those complicated steps within Gibbs (i.e., posterior densities of sources

and mixing coefficients, as well as prior densities for shape parameters of

Gamma distributions), Metropolis-Hastings was the method of choice to

obtain the appropriate samples. Experiments on synthetic and real data,

consisting on the analysis of the spectral mixture (as measured by a near

infrared spectrometer) of a compound obtained by experimentally mixing

three chemical species, were carried out to evaluate the performance of the

proposed strategy.
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As the authors pointed out in their article, by setting the shape param-

eters of the Gaussian distributions (i.e., αk and γk) in Eqs. 7.14 and 7.15 to

1, the distribution becomes an exponential, simplifying the computation of

the posterior and avoiding the need for MH steps:

p (S | θ) =

D∏
d=1

K∏
k=1

E (Sd,k;λk) , p (H | θ) =

K∏
k=1

N∏
n=1

E (Hk,n; γk) ,

where {λk, γk}Kk=1. This is precisely the formulation in [167], where a fast and

direct Gibbs sampling procedure was derived, by sampling from a rectified

normal density (i.e., the product of a normal by an exponential distribution)

and exploiting independence to allow simultaneous computation. A specially

relevant contribution of this study is the model selection technique based on

Chib’s method to appropriately choose the best number of sources in the

factorisation as a byproduct of Gibbs draws. A point estimate is obtained

from the posterior using Iterated Conditional Modes [168]. The suitability

of the proposed methodology was evaluated on synthetically-generated data,

as well as on real data from chemical shift imaging of a human head and

images for face recognition.

In the last study we review [169], authors modelled the divergence be-

tween observations and factorised matrices as a Poisson distribution, which

corresponds to the Kullback-Leibler divergence variant of NMF (Eq. 6.2).

Hence, Eq. 7.13 was replaced by

p (X | S,H) =

D∏
d=1

N∏
n=1

PO (Xd,n; (SH)d,n) ,

keeping Eqs. 7.14 and 7.15 in their original form.

Focusing only on the likelihood, an expectation-maximisation algorithm

for maximum likelihood was described, which proved to be an equivalently

theoretically-grounded version of the update rules in Eqs. 6.3. Full Bayesian

inference was proposed by means of Variational methods, providing a MAP

point estimate using ICM and a strategy to perform model selection. MCMC-

like counterparts based on Gibbs were also derived and marginal likelihood
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estimation for model selection using Chib’s method was provided. Evalu-

ation of the different solutions were performed on both synthetic and real-

world images for face detection.

7.3 Probabilistic Semi and Convex Non-negative

Matrix Factorisation

Given a matrix of observations X ∈ RD×N± , where N is the number of

instances and D the dimensionality (number of features or variables), SNMF

aims at decomposing this matrix as a linear combination of K D-dimensional

sources of mixed sign S ∈ RD×K± and a matrix H ∈ RK×N+ of positive mixing

coefficients. As already stated, CNMF is a particular case where sources in

S are obtained as a convex combination of data instances, thus linking them

with the notion of centroids in clustering problems. In symbols,

X± = S±H+ + E± = X±W+H+ + E±

where W ∈ RN×K+ is the so-called unmixing matrix and E ∈ RD×N± is the

error matrix.

7.3.1 A probabilistic formulation for Convex Non-negative

Matrix Factorisation

The probabilistic approach for CNMF that we propose in this section uses

empirical Bayes strategies to formulate the matrix decomposition using three

components: first, a likelihood function to account for the difference between

the outcome of the model and the observations; second, a prior distribution

for values in the unmixing matrix W; and, finally, a prior distribution over

the mixing matrix H. Notice that any assumptions that we make for any

of those components must be encoded by these distributions (e.g., non-

negativity of elements in mixing and unmixing matrices).

Following the Bayes rule, the joint posterior distribution of the adaptive

matrices W and H is:

p (W,H | X,θ) ∝ p (X |W,H,θ) · p (W | θ) · p (H | θ) ,
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θ being a vector containing all the required hyperparameters associated to

the chosen distributions.

In particular, observed instances, as well as the mixing and unmixing

coefficients associated to each source, are assumed to be independent and

identically distributed (i.i.d.). Residuals conforming the likelihood are as-

sumed to be drawn from a normal distribution centred at 0 and with vari-

ances {σ2
n}Nn=1. Prior densities for latent factors W and H, as explained in

Section 7.2.4, are conveniently chosen to be exponential:

p (X |W,H,θ) =
D∏
d=1

N∏
n=1

N
(
Xd,n; (XWH)d,n, σ

2
n

)
,

p (W | θ) =
K∏
k=1

N∏
n=1

E (Wn,k;λk) ,

p (H | θ) =

K∏
k=1

N∏
n=1

E (Hk,n; γk) ,

where θ = {σ2
n}Nn=1 ∪ {λk, γk}Kk=1.

7.3.1.1 Maximum a Posteriori approach

From the formulation above, a direct way to obtain a point estimate for this

distribution is by using the MAP approach, which consists in minimising

the negative log-posterior:

F (W,H | X,θ) = − log p (W,H | X,θ) ,

which can be expanded as

F (W,H | X,θ) = FL (X |W,H,θ) + FP1 (W | θ) + FP2 (H | θ) ,

where
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FL (X |W,H,θ) =

N∑
n=1

1

2σ2
n

D∑
d=1

(Xd,n − (XWH)d,n)2

= Tr

[
1

2
(X−XWH)V(X−XWH)>

]
,

FP1 (W | θ) =
K∑
k=1

λk

N∑
n=1

Wn,k = Tr
[
λW>e>

]
,

FP2 (H | θ) =

K∑
k=1

γk

N∑
n=1

Hk,n = Tr
[
eH>γ

]
.

Here, V is an N ×N matrix of variance hyperparameters for the Gaussian

distribution with σ−2
n in its diagonal; λ = [λ1, ..., λk], γ = [γ1, ..., γk]

> are

scale hyperparameters of the exponential distributions; and e is a row unit

vector of length K; A> represents the transpose of A and Tr[A] its trace.

Hence, the cost function to optimise is expressed as:

F =
1

2
Tr
[
XVX> + XWHVH>W>X> − 2XVH>W>X>

]
(7.16)

+ Tr
[
λW>e>

]
+ Tr

[
eH>γ

]
.

A closed-form expression to obtain the minimum of the cost function cannot

be derived; therefore, an optimisation procedure based on gradient descent,

able to deal with mixtures of positively and negatively-valued matrices, is

proposed.

First, an update rule for W will be derived: we start by adding a matrix

of Lagrangian multipliers βN,K to the cost function to ensure that each

Wn,k ≥ 0:

F =
1

2
Tr
[
XVX> + XWHVH>W>X> − 2XVH>W>X>

]
+ Tr

[
λW>e>

]
+ Tr

[
eH>γ

]
− Tr

[
βW>

]
.

Then we calculate the gradient of the objective with respect to W, which

must equal 0 at convergence:

∂F

∂W
= X>XWHVH> −X>XVH> + e>λ− β = 0.
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According to the the Karush-Kuhn-Tucker (KKT) complementary slackness

condition, a fixed point equation that the solution must satisfy at conver-

gence is obtained:(
X>XWHVH> −X>XVH> + e>λ

)
n,k

Wn,k

= βn,kWn,k = βn,kW
2
n,k = 0.

Next, by decomposing A = A+ − A− = (|A|+ A) /2 − (|A| −A) /2, the

previous equation is transformed into a non-negative one:(
(X>X)+WHVH

>
+ (X>X)−VH

>
+ e>λ

)
n,k

Wn,k

=
(

(X>X)−WHVH
>

+ (X>X)+VH
>
)
n,k

Wn,k .

Solving on W, we obtain an update rule for this matrix:

Wn,k ←Wn,k

√
((X>X)−WHVH> + (X>X)+VH>)n,k

((X>X)+WHVH> + (X>X)−VH> + e>λ)n,k
,

which satisfies the above fixed point equation at convergence.

Using the same approach, an update rule for H can be derived:

Hk,n ← Hk,n

√
(W>(X>X)−WHV + W>(X>X)+V)k,n

(W>(X>X)+WHV + W>(X>X)−V + γe)k,n
.

7.3.1.2 Hyperparameter estimation

At this point, there is still a crucial decision that needs to be made, which

corresponds to the estimation of hyperparameter values for θ. In this study

we decided to use the hierarchical empirical Bayes technique to find the

best candidates, which are selected as the mode of the distribution over

hyperparameters.

First, we estimate σ2
n as:

p
(
σ2
n | X,W,H

)
∝(

1

σ2
n

)D
2

exp

{
− 1

2σ2
n

D∑
d=1

(Xd,n − (XWH)d,n)2

}
× p

(
σ2
n

)
.
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The prior for noise variance σ2
n is distributed as an inverse gamma:

σ2
n ∼ IG (αoσ, β

o
σ) =

(βoσ)α
o
σ

Γ(αoσ)
(σ2
n)−α

o
σ−1 exp

(
−β

o
σ

σ2
n

)
.

Using a conjugate prior, we obtain the posterior

p
(
σ2
n | X,W,H

)
∼ IG (αpσ, β

p
σ) ,

where

αpσ = αoσ +
D

2
, βpσ = βoσ +

1

2

D∑
d=1

(Xd,n −XWHd,n)2 .

The point estimate is obtained as the mode of the previous IG:

σ̂2
n =

βoσ + 1
2

∑D
d=1 (Xd,n −XWHd,n)2

αoσ + D
2 + 1

.

For the scale factor λk:

p (λk |W) = λk exp {−λkW} × p (λk)

we assume the prior for the parameter λk to be distributed as a gamma

density

λk ∼ G (αoλ, β
o
λ) =

(βoλ)α
o
λ

Γ(αoλ)
(λk)

αoλ−1 exp (−βoλλk) .

By means of conjugacy, we obtain

p (λk |W) ∼ G
(
αpλ, β

p
λ

)
,

where

αpλ = αoλ +N, βpλ = βoλ +

N∑
n=1

Wn,k.

The point estimate is chosen as the mode of the above G density:

λ̂k =
αoλ +N − 1

βoλ +
∑N

n=1 Wn,k

.

Analogously, we can estimate γk as

γ̂k =
αoγ +N − 1

βoγ +
∑N

n=1 Hk,n

.

A Matlab implementation of the presented algorithm can be found at

http://www.cs.upc.edu/~avilamala/resources/ProbCNMF_Toolbox.zip
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7.3.1.3 Empirical evaluation

A probabilistic formulation for CNMF has been designed to overcome some

of the limitations of their classical counterpart. In this section, we report

experiments carried out to assess the appropriateness of the MAP estimate

in our application domain that concerns the analysis of real SV-1H-MRS

data. These results are then discussed in some detail.

Experimental setup Data from the online-accessible and curated IN-

TERPRET repository (Section 2.3) are used to evaluate the current method.

In particular, the most clinically relevant 195 spectral frequencies of the SV-

1H-MRS instances are selected for each of the 78 gbm, 31 met, 20 ac2 and

15 nom spectra acquired at LTE; and for the 86 gbm, 38 met, 22 ac2 and 20

nom spectra acquired at STE. Correctly distinguishing the aforementioned

types is of great relevance in medical practise. An extra relevant discrimi-

nation problem was added to those involving specific tumour types, namely

the discrimination of aggressive tumours (agg = gbm + met) from other

types.

Experiments consisted in estimating the most appropriate tumour type

label for each of the available instances (binary classification problem) ac-

cording to the coefficients in H, while simultaneously providing reliable

sources representing each class (columns of S). The quality of the retrieved

sources was assessed through a measure of correlation (COR) between each

source and the type-specific average spectra. A tumour type label was as-

signed to every instance according to the source contributing the most to

the reconstruction of the observed signal, expressed in H. The AUC was

the metric of choice to gauge overall tumour-type imputation.

The hyperparameter controlling the number of sources was set to a value

equal to the number of tumour types in each classification problem (i.e.,

K = 2) for purely practical reasons, despite not being the optimal value for

source reconstruction. Normalisation to vector unit length was performed

to every instance before any further treatment.

Given that the joint optimisation of W and H in Eq. 7.16 is not con-

vex, the proposed method is bound to converge to a local minimum, which
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means that an adequate and careful initialisation of parameters and hyper-

parameters is required. Following [132], K-means initialisation was used,

setting K as the number of sources we want to extract. Matrices H and W

were initialised as H0
k,n = lk + 0.2, where lk ∈ {0, 1}, with the latter indi-

cating membership to k-th cluster; and W0
n,k = (lk + 0.2)/ck; ck being the

number of instances belonging to cluster k. Convergence of the algorithm

was assumed when a minimum variation in the cost function between two

consecutive iterations was observed: ε < 10−4. The hyperpriors for noise

variance were set to be uninformative: αoσ = βoσ = 0.001; and the priors for

Hk,n and Wn,k parameters were chosen to match the data amplitude; that

is, p (Hn,k < 1.5) = p (Wk,n < 1.5) = 0.95, αoλ = βoλ = αoγ = βoγ = 2.

Results Tables 7.1 and 7.2 show the results obtained by Probabilistic

CNMF as compared to standard CNMF and K-means algorithm. Our pro-

posed method presents analogous and sometimes better source extraction

properties (COR), when compared to CNMF and similar ones in the task of

discriminating tumour types (AUC). Both algorithms consistently provide

higher classification ability than K-means, as measured by AUC.

Table 7.1: AUC / COR results for LTE data

K-means CNMF Probabilistic CNMF

gbm vs. met 0.58 / 0.91 0.63 / 0.79 0.63 / 0.81

gbm vs. ac2 0.72 / 0.86 0.93 / 0.80 0.93 / 0.91

met vs. ac2 0.90 / 0.99 0.95 / 0.93 0.95 / 0.91

ac2 vs. nom 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00

met vs. nom 0.92 / 0.98 0.97 / 0.96 0.97 / 0.94

gbm vs. nom 0.72 / 0.78 0.92 / 0.71 0.93 / 0.82

agg vs. nom 0.73 / 0.77 0.93 / 0.72 0.93 / 0.79

agg vs. ac2 0.73 / 0.87 0.95 / 0.83 0.94 / 0.90

The separate analysis of the results according to data acquisition time

modality (LTE or STE), reveals that in the experiments involving LTE spec-
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tra, CNMF-like algorithms coherently exhibit better class alignment than

the K-means algorithm, as can be seen in the gap of more than 20% AUC in

the gbm vs. ac2, gbm vs. nom, agg vs. nom and agg vs. ac2 classification

tasks. By using the current probabilistic approach, a gain of up to 11% in

the correlation between extracted sources and class centroids (i.e., gbm vs.

ac2 and gbm vs. nom) is obtained when compared to its non-probabilistic

counterpart. In certain cases, Probabilistic CNMF is able to outperform the

K-means in source extraction (up to 5% in gbm vs. ac2 and 4% in gbm vs.

nom).

The source extraction capabilities of our method are exemplified in Fig-

ure 7.1, which displays the tumour type representatives obtained by each

algorithm in contrast to the class average for the discrimination between gbm

from ac2 in LTE. Although all candidate methods perform reasonably well

in retrieving the ac2 source despite small irregularities around 1.3ppm, big

differences exist in the gbm tumour type candidate: all of them overempha-

size the lipids peak at 1.3ppm, the Probabilistic CNMF being the one with

less deviation from the average; major differences between algorithms can

be appreciated in the characteristic Choline (3.3ppm), Creatine (3.0ppm)

and N-Acetyl Aspartate (2.0ppm) peaks, which are very well approximated

by Probabilistic CNMF, according to the class-average source.

Table 7.2: AUC / COR results for STE data

K-means CNMF Probabilistic CNMF

gbm vs. met 0.59 / 0.93 0.64 / 0.70 0.65 / 0.72

gbm vs. ac2 0.92 / 0.99 0.98 / 0.98 0.98 / 0.97

met vs. ac2 0.97 / 1.00 1.00 / 0.99 1.00 / 0.99

ac2 vs. nom 0.93 / 1.00 0.99 / 0.99 1.00 / 0.99

met vs. nom 0.97 / 1.00 1.00 / 1.00 1.00 / 0.99

gbm vs. nom 0.92 / 0.98 0.99 / 0.98 0.99 / 0.98

agg vs. nom 0.93 / 0.98 0.99 / 0.99 0.99 / 0.98

agg vs. ac2 0.93 / 0.98 0.98 / 0.99 0.98 / 0.98
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Figure 7.1: Sources retrieved by the different algorithms in the gbm

vs. ac2 problem using data acquired at LTE - The black solid line

represents the average spectrum of gbm (a: left figure) and ac2 (b: right figure),

the lines with asterisk symbols are the sources retrieved by K-means; with circle

symbols by CNMF; and with square symbols by Probabilistic CNMF. Y-axes

represent unit-free metabolite concentrations and X-axes represent frequency

as measured in parts per million (ppm).

Shifting our attention now towards STE data, the considerably good

results obtained by all algorithms in almost all discriminative tasks but

the known-to-be difficult gbm vs. met discrimination, leave little room to

appreciate the differences in performance amongst the different strategies,

even though the same general trend of higher AUC for CNMF versions with

respect to K-means can be observed. In the special case already mentioned,

K-means performs best in tumour-type specific source retrieval (COR), but

at the price of lower class discrimination (AUC) than CNMF variants

7.3.2 Full Bayesian Semi Non-negative Matrix Factorisation

In this last contribution of the thesis, we make the probabilistic formulation

of SNMF to be pure Bayesian. This means that, unlike in empirical Bayes,

we are not using the observations to estimate any a priori information. The

side effect of this decision is that CNMF formulation is not valid any longer,

due to the fact that sources S are a linear combination of the observations.

However, the chosen formulation also aims at obtaining highly interpretable

results. In this respect (recall Eq. 7.3), elements of source matrix S ∈ RD×K±
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are encoded as samples from a Gaussian distribution; while the values of the

mixing matrix H ∈ RK×N+ are conveniently obtained from an exponential

density. Residuals in E ∈ RD×N± are assumed to be i.i.d. zero mean.

Now, according to the Bayes’ rule, the joint posterior is defined as:

p
(
S,H, σ2 | X

)
=
p
(
X | S,H, σ2

)
· p (S | θS) · p (H | θH) · p

(
σ2 | θσ

)
p (X)

. (7.17)

Notice that calculating the marginal likelihood p (X) involves the compu-

tation of an intractable integral:

p (X) =

∫
S

∫
H

∫
σ2

p
(
X | S,H, σ2

)
· p (S | θS) · p (H | θH) · p

(
σ2 | θσ

)
d
{
S,H, σ2

}
.

However, given that the marginal likelihood is constant with respect to the

model parameters, we subsume it into the proportionality constant. Hence,

p
(
S,H, σ2 | X

)
∝ p

(
X | S,H, σ2

)
· p (S | θS) · p (H | θH) · p

(
σ2 | θσ

)
,

where

p
(
X | S,H, σ2

)
=

D∏
d=1

N∏
n=1

N
(
Xd,n; (SH)d,n, σ

2
)

is the likelihood function, denoted as

N
(
x;µ, σ2

)
=

1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
; (7.18)

p (S | θS) =

D∏
d=1

K∏
k=1

N
(
Sd,k;µo, σ

2
o

)
,

where θS = {µo, σ2
o} are the priors for the source signals, as expressed in

Eq. 7.18; and

p (H | θH) =
K∏
k=1

N∏
n=1

E (Hk,n;λo) ,

with θH = {λo}, corresponds to the prior distribution for the values in

the mixing matrix; where E (x;λ) = λ exp {−λx} is the exponential density.

Finally, the prior for the noise variance is appropriately chosen to be an

inverse gamma of the form:

p
(
σ2 | θσ

)
= IG

(
σ2;αo, βo

)
=

βαoo
Γ(αo)

(σ2)−αo−1 exp

(
−βo
σ2

)
;
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θσ = {αo, βo} being its hyperparameters.

From this joint posterior, we would be interested in estimating the

marginal density of each S and H factor, but this procedure involves the

computation of an intractable integral. In the next section, this shortcoming

is overcome by deriving an MCMC sampling method.

7.3.2.1 Gibbs sampling approach

In this section, we derive a Gibbs sampling method for our model; Gibbs be-

ing a particular instance of the MCMC sampling strategy (see Section 7.2.3.2).

It is of special interest when the calculation of any of the following becomes

intractable:

• the joint posterior distribution,

• the marginal distribution of any subset of factors,

• the expected value of any of the factors.

Assuming that sampling from the full conditional posterior distribution is

feasible, drawing a set of instances from this density converges to a sample

from the joint posterior. If samples from the marginal distribution of a

subset of factors are required, only the samples for that subset are kept;

finally, the expected value of any factor can be computed by averaging over

all its samples.

For our problem, we are interested in the second output; hence, we

formulate the conditional density of S, which is proportional to a nor-

mal distribution multiplied by a normal prior. That is: N
(
x;µp, σ

2
p

)
∝

N
(
x;µ, σ2

)
N
(
x;µo, σ

2
o

)
.

Let A\(i,j) represent all elements of A except Ai,j ; the full conditional

density of Sd,k is:

p(Sd,k | X,S\(d,k),H, σ2) = N
(
Sd,k;µp, σ

2
p

)
, (7.19)
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where

µp = σ2
p

µo
σ2
o

+

∑N
n=1

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
Hk,n

σ2

 ,

σ2
p =

σ2 · σ2
o

σ2 + σ2
o

∑N
n=1 H2

k,n

.

Focusing on the mixing matrix, the full conditional density of H is propor-

tional to a normal multiplied by an exponential, which turns out to be a

rectified normal density of the form R
(
x;µp, σ

2
p, λp

)
∝ N

(
x;µ, σ2

)
E (x;λo).

That is:

p(Hk,n | X,S,H\(k,n), σ
2) = R

(
Hk,n;µp, σ

2
p, λp

)
, (7.20)

where

µp =

∑D
d=1

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
Sd,k∑D

d=1 S2
d,k

,

σ2
p =

σ2∑D
d=1 S2

d,k

, λp = λo.

Finally, the full conditional density of σ2 is proportional to a normal multi-

plied by an inverse-gamma, denoted as IG (x;αp, βp) ∝ N
(
x;µ, σ2

)
IG (x;αo, βo).

Specifically:

p
(
σ2 | X,S,H

)
= IG

(
σ2;αp, βp

)
, (7.21)

where

αp =
DN

2
+ αo, βp =

∑D
d=1

∑N
n=1 [Xd,n − (SH)d,n]2

2
+ βo;

A detailed explanation on the derivations conducted to obtain the full

conditional densities and their parameterisation can be found in Appendix C.

The resulting Gibbs sampler procedure for the Bayesian SNMF formu-

lation is depicted in Algorithm 2.

7.3.2.2 Marginal likelihood for model selection

We have talked in Section 7.2.3.3 about the benefits of Bayesian model selec-

tion, which in our domain would translate into a strategy to appropriately
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Algorithm 2 Bayesian SNMF Gibbs sampler

1) Normalise data X (L2-norm)

2) Randomly initialise S, H and σ2

3) For each sample m ∈ {1, . . . ,M}
a) For each d ∈ {1, . . . , D} and k ∈ {1, . . . ,K}:

i) Sample Sd,k according to Eq. 7.19

b) For each k ∈ {1, . . . ,K} and n ∈ {1, . . . , N}:
i) Sample Hk,n according to Eq. 7.20

c) Sample σ2 according to Eq. 7.21

d) Store S(m) = S; H(m) = H;σ2(m)
= σ2

4) Return {S(m),H(m), σ2(m)}Mm=1

assess the number of tissues sources over which the matrix factorisation

should be performed. However, we have also mentioned the difficulty to cal-

culate the marginal likelihood due to an intractable integral. In this section,

we use the Chib’s method [170] to estimate the marginal likelihood by using

only posterior draws provided by the Gibbs sampler.

Recall the SNMF joint posterior expressed in Eq. 7.17, from which the

marginal likelihood can be isolated:

p (X) =
p
(
X | S,H, σ2

)
· p (S | θS) · p (H | θH) · p

(
σ2 | θσ

)
p (S,H, σ2 | X)

. (7.22)

Computing the above equation for any value Φ will result to a specific

evaluation of the marginal likelihood at the point Φ (selected to be a high

density point for the most accurate estimation). Comparison among models

(e.g., each using different number of sources) will be performed by comparing

their marginal likelihood estimates at Φ: p (X | Φ).

Obtaining the density at Φ for any of the factors in the numerator is

straight forward. The problem arises when calculating it in the denominator.

The Chib’s method solves it by segmenting the parameters in the denomi-

nator into B blocks, and applying the chain rule to write the denominator

as the product of B terms. That is:

p (Φ | X) = p (Φ1 | X)× p (Φ2 | Φ1,X)× . . .× p (ΦB | Φ1, . . . ,ΦB−1,X) . (7.23)

The blocks of parameters are appropriately chosen to be amenable to Gibbs

sampling, such that each term is approximated by averaging over the con-
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ditional density:

p (Φb | Φ1, . . . ,Φb−1,X) ≈ 1

M

M∑
m=1

p
(
Φb | Φ1, . . . ,Φb−1,Φ

(m)
b+1, . . . ,Φ

(m)
B ,X

)
,

where
{

Φ
(m)
b+1, . . . ,Φ

(m)
B

}
are Gibbs samples from

p (Φb+1, . . . ,ΦB | Φ1, . . . ,Φb−1,X) ,

and M the number of samples.

In our setting, each column of S, each row of H and σ2 are selected to

be the blocks in Eq. 7.23. Therefore, given that A∗ represents a matrix of

high density points, A:,i corresponds to all the values in the i-th column and

Aj,: all the values in the j-th row:

p
(
S∗,H∗, σ2∗ | X

)
= p

(
S∗:,1 | X

)
× p

(
S∗:,2 | S∗:,1,X

)
× . . .× (7.24)

× p
(
S∗:,K | S∗:,1, . . . ,S∗:,K−1,X

)
×

× p
(
H∗1,: | S∗:,1, . . . ,S∗:,K ,X

)
× . . .×

× p
(
σ2∗ | S∗:,1, . . . ,S∗:,K ,H∗1,:, . . . ,H∗K,:,X

)
.

Notice that all the above rationale still holds and computations are simplified

if we apply the calculations in the logarithmic scale. Hence, Eq. 7.22 becomes

log {p (X)} = log
{
p
(
X | S,H, σ2

)}
+ log {p (S | θS)}+ log {p (H | θH)}

+ log
{
p
(
σ2 | θσ

)}
− log

{
p
(
S,H, σ2 | X

)}
.

Similarly, Eq. 7.24 is now

log
{
p
(
S∗,H∗, σ2∗ | X

)}
= log

{
p
(
S∗:,1 | X

)}
+ log

{
p
(
S∗:,2 | S∗:,1,X

)}
+ . . .+

+ log
{
p
(
S∗:,K | S∗:,1, . . . ,S∗:,K−1,X

)}
+

+ log
{
p
(
H∗1,: | S∗:,1, . . . ,S∗:,K ,X

)}
+ . . .+

+ log
{
p
(
σ2 | S∗:,1, . . . ,S∗:,K ,H∗1,:, . . . ,H∗K,:,X

)}
.

In order to compute the Bayes Factor between two models, namely Mi

and Mj , each one of them set to obtain a different number of sources K,

we proceed to evaluate the marginal likelihood at
{
S∗,H∗, σ2∗} for both

models, and compare them as follows:

B̂ij = exp{log p̂ (X |Mi)− log p̂ (X |Mj)}.
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This Bayes Factor allows us to select the most adequate model out of

a pool of models, the difference among them being the number of sources

employed to build it.

Matlab code of the proposed algorithms can be downloaded from http:

//www.cs.upc.edu/~avilamala/resources/BayesianSNMF_Toolbox.zip

7.3.2.3 Empirical evaluation

The suitability of the proposed method will be validated in the current sec-

tion by a qualitative study on real SV-1H-MRS data. In particular, we will

use Chib’s method to estimate the most appropriate number of underlying

sources, the composition of which generates each of the observed instances

within a tumour type, in a principled way. Secondly, each of these sources

will be individually retrieved and analysed. A confidence measure on the

proposed signals will also be supplied by providing a 90% interval around

the signal.

Experimental setup For this study we again use data from the online-

accessible and curated INTERPRET repository (Section 2.3). In particular,

the 195 most clinically relevant spectral frequencies of the SV-1H-MRS in-

stances are selected for each of the 15 nom, 78 gbm, 31 met and 20 ac2

spectra acquired at LTE. Data acquired at STE have not been reported

for this evaluation, given that their results did no provide much qualitative

difference with respect to LTE data.

Given that all data points were normalised (L2-norm) prior to any treat-

ment, the parameters for the prior distributions were chosen to match the

amplitude of the data. These include µo = 0.01 and σ2
o = 0.2 to limit the

values of the sources Sd,k between −1 and 1 with p > 0.95; setting the

λo = 3 to bound the values of the mixing matrix Hk,n to the [0, 1] interval

(p > 0.95); and αo = 1;βo = 0.001 as flat priors for the noise variance σ2.

Moreover, the number of samples M generated at each Gibbs sampler run

was set to 100,000; the first 50,000 were discarded to allow burn-in.
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Table 7.3: Logarithm of the marginal likelihood (×103) according to the

number of sources for each tumour type at LTE

1 2 3 4 5

nom 4.55 3.82 2.94 2.70 1.95

gbm 24.31 26.56 25.89 26.32 26.40

met 9.71 8.68 8.67 8.62 8.58

ac2 6.49 6.60 6.15 5.73 5.44

Results As can be seen in Table 7.3, the values of the marginal likelihood

for different number of sources obtained by the Chib’s method clearly favour

the models presenting low complexity; that is, those ones employing either

one or two sources. This is a clear example of the Ockham’s razor at work

(Section 3.5). Notice that this estimate of the best number of sources to

represent the observed instance from a source extraction point of view, might

not necessarily be the most adequate for interpretability purposes. This

will become clear in the following lines. Note also that the choice of best

number of sources does not preclude other choices, given that the marginal

likelihood provides a real-valued measure, not a binary one; in other words,

it is a relative measure of relevance.

Let’s focus our attention to Figure 7.2: the first column shows the av-

erage spectrum of each tumour type in our dataset; clearly showing the

existent high intra-class variability, which is represented in the figure as a

shadow zone. The number of sources chosen to decompose each tumour

type follows the advise provided by the marginal likelihood. In this respect,

the first row, corresponding to the normal tissue, can be represented by a

single pure source (Figure 7.2b), where the characteristic peaks of N-Acetyl

Aspartate (2.0ppm), Choline (3.2ppm) and Creatine (3.0ppm) are appropri-

ately captured; the Glutamine and Glutamate are also retrieved at 2.05 -

2.46ppm.

The second row shows the decomposition of gbm into two signals: Fig-

ure 7.2d clearly identifies a reduction in the N-Acetyl Aspartate peak, as

compared to the normal tissue; this is a clear sign of tumour proliferative
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tissue. Similarly, the Creatine and Choline metabolites are also identified,

the concentration of the latter being highly increased, showing the malig-

nancy of the tumour type being analysed. Interestingly, there is an inverted

peak at 1.3ppm, corresponding to Lactate, a compound frequently seen in

high-grade malignant tumours. The second retrieved source (Figure 7.2e)

nicely complements the first one by capturing the mobile lipids at 1.3 and

0.9ppm, a compound often indicating necrosis and hypoxia.

The third row deals with the analysis of met, presenting a single source

to represent the tumour type (Figure 7.2g). Such a simple model, despite

being a good candidate for data reconstruction, it is a very poor model in

terms of interpretability: it basically reflects the shape of the average met

spectrum, clearly capturing Choline, Creatine and mobile lipid metabolites,

emphasizing their uncertainty about their amplitude.

The ac2 tumour type is represented in the last row of the figure by means

of two sources: the first one (Figure 7.2i) identifies Choline and Creatine

peaks, the ratio among them being lower than in the case of high-grade

tumours; while the second (Figure 7.2j) captures the Lactate inverse peak

as well as the not-well-known signal at the left-end of the spectrum.

As we have stressed throughout the thesis, the interpretability of the

obtained results is at least as important as the quantitative suitability of the

results themselves. In this respect, it is clear that marginal likelihood should

be just part of the heuristic to determine the number of sources to extract if

priority is given to interpretability. In a second experiment, we thus decided

to extract three sources for each of the tumour types being analysed: gbm,

met and ac2, disregarding the marginal likelihood recommendation. The

obtained sources can be seen in Figure 7.3, and they are to be compared

with Figure 7.2.

In the case of gbm tumour types, there is no major improvement regard-

ing interpretability on the process of moving from two to three sources: the

signal in Figure 7.2e is perfectly conserved in Figure 7.3a; while the source in

Figure 7.2d is respected in Figure 7.3b. The new signal in Figure 7.3c can be

considered as a mostly negative noise, which is extracted out of the two real

generating signals; however, it is of little help in terms of interpretability.
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A more interesting result can be found in the met case: in this experi-

ment, passing from one to three sources implies a decomposition of a signal

barely capturing the average tumour type (Figure 7.2g) into three mean-

ingful sources: Figure 7.3d representing the mobile lipids contribution, Fig-

ure 7.3e retrieving the Lactate compound as a negative peak and Figure 7.3f

with the Choline and Creatine peaks clearly overlooking the signal. This is

a clear example of the divergence between the results aiming at reconstruct-

ing the instances out of a set of sources and interpreting such sources. It is

also an example of an extracted negative source that could only have been

captured by a method that allows negative-valued sources.

Finally, ac2 tumour type slightly benefits from adding a third source to

the decomposition in terms of interpretability: the first source in Figure 7.2i

remains in Figure 7.3g, while the signal in Figure 7.2j is mostly replicated

in Figure 7.3i with the exception of the magnified Lactate inverse peak and,

to some extent, part of the Choline and Creatine contributions, which are

expressed in Figure 7.3h.

The obtained results exemplify how the proposed method currently dis-

cussed is a powerful tool for extracting the different types of tissue conform-

ing each tumour type, being especially relevant for knowledge discovery

tasks.

7.3.3 Discussion

The two methods derived in this chapter, namely Probabilistic CNMF via

MAP and full Bayesian SNMF using Gibbs sampling, stem from two prob-

abilistic frameworks that allow unsupervised decomposition of real-valued

observations into a matrix of real-valued sources and a non-negative mix-

ing matrix. The first matrix contains basic self-explanatory signals and the

second one corresponds to the additive contribution of each source to con-

form every observation. Both techniques benefit from some of the properties

provided by the probabilistic paradigm, such as automatic control of regu-

larisation to avoid overfitting and the incorporation of prior information to

compensate for some limitations due to small sample sizes.
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Nonetheless, given the different formulation and resolution strategies

they present, the applicability of each one of them is pretty different: fast

Probabilistic CNMF is very useful in binary discriminative settings, where

encountered sources correspond to tumour-type representatives and the mix-

ing matrix unavoidably expresses the degree of tumour type mixture in each

of the measured voxels. This phenomenon is a direct consequence of the

convex formulation in the objective function.

Conversely, the more time-consuming full Bayesian SNMF is especially

suited to retrieve the existent tissue-type sources that are part of each of the

tumour types. Its applicability could be of high value for nosologic images

[87], where a colour map of the brain based on tissue delimitation is con-

structed. Full Bayesian SNMF comes with extra features, such as a strategy

to determine the most suitable number of sources to represent the observed

data, as well as an explicit quantification of estimation uncertainty in the

form of a credible interval bounding the retrieved signals, which is highly

relevant for domains where only a small number of samples is available.

7.4 Conclusions

The derived Probabilistic CNMF via MAP and the full Bayesian SNMF us-

ing Gibbs sampling are two different unsupervised approaches to decompose

a set of observations into a matrix of generated signals and a matrix rep-

resenting the composition of each signal to conform the observed instances.

A comparison and contrast of the two techniques have been carried out in

the previous section. Their applicability to the analysis in neuro-oncology

by means of SV-1H-MRS data, where varying generating sources contribute

to the signal retrieved by the scanner, has proven successful. Now, we re-

visit the explicit technical requirements that motivated the development of

such techniques, as expressed in Section 7.1, together with the preconditions

shared by all source separation strategies in our domain (i.e., enumerated in

Section 6.1):

1. It must be able to identify the underlying sources present in the re-

trieved signal : each column in matrix S contains an estimated source.
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2. It needs to assess the contribution of each source to the signal : matrix

H contains the positive coefficients representing the source contribu-

tion to every instance.

3. Both the sources and their contributions must be easily interpretable:

source matrix S is provided in the vector unit length, while the instance

coefficients in H are enforced to be in the range (0, 1), so that outcomes

become easily interpretable.

4. The solution must naturally deal with both negative and positive values:

this is addressed by imposing sources to be a convex combination of

instances or understanding their values as random variables sampled

from a normal distribution.

5. Ratios between values of metabolites at certain frequencies must be pre-

served : this is the rationale behind specifically dealing with negative

values instead of shifting the whole spectrum.

6. Distances between values of metabolites at specific frequencies must be

kept : the same reasoning as in previous statement applies here.

7. The possibility to incorporate prior knowledge on sources and their

contributions: this knowledge is captured by the prior distributions.

8. Automatic control of regularisation hyperparameters: overfitting avoid-

ance is ensured through the regularisation provided by the prior dis-

tributions.

9. Appropriately handle uncertainty and provide an interpretable measure

of confidence for the retrieved sources: in the full Bayesian approach,

each derived source comes with a credible interval as a byproduct of

Gibbs sampling.

10. Suitable selection of the most appropriate number of underlying sources:

Chib’s method to easily estimate the marginal likelihood from Gibbs

draws has been derived for the proposed model. Marginal likelihood

can be directly used to either select the model employing the most
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adequate number of reconstructing sources, or rank models according

to such criterion.
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Figure 7.2: Sources identified by Bayesian SNMF after model se-

lection using data acquired at LTE - Each row corresponds to a single

tumour type: the first column being the average spectrum, and the other ones

the retrieved sources from our method. The black solid line represents the

mean, while the shadowed region conforms the 90% credible interval. Y-axes

represent unit-free metabolite concentrations and X-axes represent frequency

as measured in parts per million (ppm).
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Figure 7.3: Three-source decomposition of LTE SV-1H-MRS accord-

ing to Bayesian SNMF - Each row corresponds to a single tumour type;

each column presents one out of the three retrieved sources from our method.

The black solid line represents the mean, while the shadowed region conforms

the 90% credible interval. Y-axes represent unit-free metabolite concentrations

and X-axes represent frequency as measured in parts per million (ppm).
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Chapter 8

Conclusions and future work

8.1 Summary

Brain cancer is an extremely disturbing condition due to the damage it can

cause to the affected organ as well as the poor prognosis that certain types of

this pathology present. An early and accurate diagnosis is crucial to improve

the quality of life of the patients and increase survival rates. Current state

of the art techniques for obtaining a rigorous diagnostic outcome involve the

utilisation of invasive techniques, biopsy being the gold standard.

The risk associated to resorting to this kind of procedures has increased

the awareness of the need to find alternative strategies that are able to pro-

vide indirect measurements for diagnostic purposes, causing little or even

no damage to the patient. In this respect, NMR has become the leading

non-invasive measurement technique in clinical practise. MRI is a suitable

tool for general tumour location, but it lacks definition and does not help to

distinguish between metastatic tumours and those which have their origin

in the own brain tissue. Its spectroscopy-based counterpart, MRS, though,

can help to disambiguate uncertain cases due to its metabolic profiling ca-

pabilities. Together, they are able to provide fine-resolution measurements

of biochemical compositions within a delimited area.

Nonetheless, the often complex and difficult to interpret output that

MRS systems generate hinders their practical implementation in daily med-

ical practise: a major shortcoming that has of late being tackled with the
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aid of statistical and artificial intelligence-based solutions.

In spite of the many milestones recently achieved in the field, there is still

room for improvement, for instance in discrimination among the most ag-

gressive tumours, or in the determination and influence that distinct tissues

have in the vicinity of most common tumoural areas.

The hypothesis that specific biomarkers match particular frequencies in

the MR spectrum motivates the use of advanced feature selection techniques

to tackle the aforementioned problems, which can be coupled with ensemble

methods for the sake of obtaining models achieving the high degree of spe-

cialisation required to capture the patterns of relevance shown by different

tumour types. Moreover, the mixture of signals retrieved in an MR measure-

ment encourages the use of source separation approaches both supervised

and unsupervised to not only determine, but also quantify the number of

distinguishable tissues contributing to the measurement.

Breadth Ensemble Learning has been designed in Chapter 4 to improve

the discrimination of aggressive tumours; in turn, Recursive Logistic In-

stance Weighting has been developed in Chapter 5 to increase the stability

of feature selection algorithms when faced with this same problem. In Chap-

ter 6, the Discriminant Convex Non-negative Matrix Factorisation proce-

dure has been derived to determine tissue-type representatives and estimate

their proportion in the most common tumoural areas. Finally, Chapter 7

contributes to the field by providing probabilistic versions of Convex and

Semi Non-negative Matrix Factorisation strategies to better estimate the

correct number of tissues present in the analysed sample and handle uncer-

tainty in a principled manner.

8.2 Conclusions

In the following, we present the main conclusions of this thesis:

• The difficult problem consisting in properly classifying heterogeneous

SV-1H-MRS data as belonging to either the glioblastoma ormetastasis

families of tumours can successfully be addressed using an ensemble

learning technique that is built in breadth, aiming at improving the
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overall ensemble discriminative capability: see Table 4.2 for compara-

tive results.

• A key element for its success entails a wise subdivision of the input

space that feeds each base learner, by projecting the data to a lower

dimensionality feature space that greedily best increases the ensemble

performance (wrapper-like), given that random feature selection has

been shown to be suboptimal: Table 4.2 supports this conclusion by

comparing our strategy against Bagging, Boosting (random selection

of instances) and Random Forests (random selection of instances and

features).

• A second important point to consider concerns the use of strong base

learners (i.e., LDA), since weak learners (the usual choice in ensemble

settings) perform unacceptably in this domain: this statement is sup-

ported by Table 4.1, where best results were obtained by strong LDA

and LS-SVM as compared to weak NB and CART.

• Reliability in the eyes of domain experts can be increased by consis-

tently providing a similar set of relevant biomarkers over different runs

of the algorithm through the use of stabilising FSS strategies. A mod-

ule prior to FSS able to rate instances according to their typicality,

coupled to a modification of traditional FSS techniques to deal with

these instance-rates can accomplish our goal: Figure 5.7 supports this,

as it reveals that our pre-processing method outperforms traditional

RelievedF-RFE in terms of stability in almost all iterations.

• Moreover, unstable FSS algorithms (e.g., those of the Relief family)

are the ones most benefiting from stability improvement strategies as

the one presented in the thesis: in that sense, we agree with [75], who

analysed the stability of SVM-RFE.

• The final remark on this topic is that stability might come at the

price of accuracy loss, and in most situations we are facing a trade-off
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between stability and accuracy: this can be appreciated when con-

trasting Figure 5.6 and Table 5.2, especially for Breast and Parkinson

datasets, where this phenomenon is evident.

• Accurately identifying the interpretable latent sources representing bi-

ological tissues, of which the measured NMR signal is composed can

be faithfully performed using either SNMF or CNMF, which are BSS

techniques able to deal with a variety of constraints imposed by our

domain data. The former technique is able to retrieve tissue spe-

cific sources (e.g., Figure 7.3), while the latter is more suitable to

extract tumour-type specific signals, that best resemble the class av-

erages (e.g., Figure 7.1).

• Retrieving tumour-type signals can be aided by including class-specific

information to CNMF. This novel technique has proven to be highly

valuable in analysing difficult problems, such as, for instance, the dis-

crimination between high-grade glioblastomas and metastases: such

statement is backed up by the results reported in Table 6.3, where all

those problems whose extracted sources correlate less than 0.8 to the

class mean spectrum are shown to be improved through the use of our

method.

• The proposed method has the ability to reconstruct the data in the

original data space, where each reconstructed data point contains more

discriminative power than its original (observed) counterpart: this

effect of data cleaning is shown in Figure 6.3.

• Formulating NMF variants from a probabilistic perspective adds a set

of ingredients that improve the obtained results. Including prior in-

formation is of great help in our domain, where few data are available.

Priors also play a role to avoid overfitting, by automatically controlling

the regularisation parameter. These are incorporated in the Probabilis-

tic CNMF technique that is able to balance between obtaining reliable

tumour-type sources with acceptable accuracy capabilities, as can be

appreciated in Table 7.1.
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• Unfortunately, CNMF can not be formulated for a full Bayesian treat-

ment, but only the constraint-relaxed SNMF can benefit from this

formulation. Nonetheless, in the Bayesian SNMF technique, the ob-

tained sources are coherent with tissue-specific signals and are some-

times very different from tumour-type averages (e.g., Figure 7.2). Fur-

thermore, a credible interval is also provided to aid in the radiologists’

decision making.

• Another advantage of Bayesian SNMF is the possibility to analyti-

cally determine the best minimum number of sources required to re-

construct the observed data (Table 7.3). However, we realised that the

best number of sources to reconstruct the data might not necessarily

agree with the number of sources to best interpret the tissues present

in a voxel. This statement can be clearly appreciated by comparing

Figures 7.2 and 7.3.

8.3 Open problems and potential extensions of this

research

Throughout this thesis, we have answered many of the questions that were

identified in Chapter 1. Nonetheless, research on the different topics has

raised a set of new questions and future research lines that have not been

addressed, due to either time or scope constraints. Here, we list some of

them:

• The computational time burden of the proposed ensemble solution

might become a limitation for its real usage. Therefore, an in-depth

study on up-to-date strategies to effectively parallelise its computation,

both when evaluating new feature candidates and during base learners

training, should be carried out. A possible approach would entail

the implementation of the algorithm under the Map-Reduce paradigm

[171].

• Most of the literature on ensemble learning advises the use of unsta-

ble classifiers as base learners, since the achieved diversity contributes
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to reducing variance, hence improving overall ensemble performance.

However, we have empirically shown that our ensemble solution on the

studied neuro-oncology domain performs best when stable classifiers

are employed. We hypothesise that this phenomenon is observed be-

cause our solution reduces bias, which turns out to be very high due

to the heterogeneity of data. A new line of research could include the

derivation of a theoretical analysis on the bias-variance decomposition

of the proposed ensemble solution to formally validate such hypothesis.

• Analysing the success of the proposed stability method for RelievedF-

RFE, we hypothesise that FSS techniques based on hypothesis-margin

(e.g., the Relief family of algorithms) are the most suitable when in-

stances are highly heterogeneous (e.g., in glioblastoma vs. metastasis

discrimination), given that they naturally cluster in different locations

of the input space, creating neighbourhoods that can be better dealt

with this type of margin. A study to validate this hypothesis might

become a nice contribution to the field.

• We have developed a rating function for instances to stabilise feature

selection strategies assuming that those instances have been generated

from a multivariate Gaussian distribution, but this might be far from

optimal. Future research should include the assessment of various

distributions where the notion of typicality might be very different

from the one employed here.

• So far we have used the rated instances to stabilise feature selection

algorithms, but nothing prevents our technique to be used as a pre-

processing step to stabilise learning algorithms for classification or

regression purposes. One simple approach consists in using the al-

ready modified version of SVM to deal with instance weighting for

classification; or modifying the cost function of other existing learning

algorithms in a similar way.

• Regarding the derived supervised version of CNMF, a plausible step

forward includes the automated estimation of the most adequate num-
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ber of sources, which does not need to be coupled with the number of

classes being discriminated. In this sense, training a classifier on the

lower-dimensional mapping of instances (i.e., stored in H) should be

evaluated.

• Class-specific information in DCNMF has been captured by incorpo-

rating Fisher Linear Discriminants (a classification algorithm widely

used in the domain) to the CNMF cost function, aiming at providing

not only reliable underlying sources, but also the extent of contribution

that each source applies in generating the measured data. Although

identification of sources has largely been improved by means of dis-

criminative knowledge, contribution of each source did not follow as

expected. We could tackle this issue by proposing the modification

of the cost function, where the scatter matrices are not calculated on

the projected instances (i.e., on H), but in the projection itself (i.e.,

S−1X), in order to influence the bases that span the mapping in the

subspace. This idea was first proposed in [136].

• Sticking to the same technology (CNMF), we could evolve the defini-

tion of the cost function by replacing the Fisher Linear Discriminant

term by the maximum sample margin as formalised in the linear SVM,

in a similar fashion as [137] did for NMF.

• The qualitative study using Bayesian SNMF opens a promising path

towards a new set of interpretable techniques for the analysis of brain

tumours using 1H-MRS data. Next steps in this domain will include a

quantitative study of the technique in a diagnostic setting where the

role of mixing matrix H will be actively evaluated.

• Another very important contribution to the Bayesian SNMF domain

should consider the incorporation of class-specific knowledge to the

formulation as prior information, similar to the DCNMF but from a

probabilistic perspective.

• Finally, it is worth to mention that, in spite of the fact that all de-

veloped techniques had the brain tumour diagnosis from SV-1H-MRS

171



8. CONCLUSIONS AND FUTURE WORK

data in mind, nothing prevents them to be used in other domains.

Therefore, a nice extension of this thesis would be the adoption of

the proposed algorithms to other fields where data match the features

necessary to benefit from them.
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and C. Arús. The INTERPRET decision-support system version 3.0 for

evaluation of magnetic resonance spectroscopy data from human brain tu-

mours and other abnormal brain masses. BMC Bioinformatics, 11(1):581,

2010. 6

[27] D. Louis, H. Ohgaki, O. Wiestler, W. Cavenee, P. Burger, A.

Jouvet, B. Scheithauer, and P. Kleihues. The 2007 WHO classification

of tumours of the central nervous system. Acta Neuropathologica, 114(2):97–

109, 2007. 16, 18

[28] National Cancer Institute. What you need to know about brain tumors.

http://www.cancer.gov/cancertopics/wyntk/brain. [Online; Accessed: June

2014]. 17, 18

[29] Q. T. Ostrom, H. Gittleman, P. Farah, A. Ondracek, Y. Chen, Y.

Wolinsky, N. E. Stroup, C. Kruchko, and J. S. Barnholtz-Sloan.

CBTRUS statistical report: Primary brain and central nervous system tu-

mors diagnosed in the United States in 2006-2010. Neuro-Oncology, 15(suppl

2):ii1–ii56, 2013. 18, 19, 20

[30] M. C. Preul, Z. Caramanos, R. Leblanc, J. G. Villemure, and D. L.

Arnold. Using pattern analysis of in vivo proton MRSI data to improve the

diagnosis and surgical management of patients with brain tumors. NMR in

Biomedicine, 11(4-5):192–200, 1998. 21

[31] A. Boss, S. Bisdas, A. Kolb, M. Hofmann, U. Ernemann, C. D.

Claussen, C. Pfannenberg, B. J. Pichler, M. Reimold, and L.

Stegger. Hybrid PET/MRI of intracranial masses: Initial experiences and

175



REFERENCES

comparison to PET/CT. Journal of Nuclear Medicine, 51(8):1198–1205,

2010. 22

[32] V. Govindaraju, K. Young, and A. A. Maudsley. Proton NMR chemi-

cal shifts and coupling constants for brain metabolites. NMR in Biomedicine,

13(3):129–153, 2000. 25, 66, 91

[33] N. P. Davies, M. Wilson, K. Natarajan, Y. Sun, L. MacPherson,

M.-A. Brundler, T. N. Arvanitis, R. G. Grundy, and A. C. Peet.

Non-invasive detection of glycine as a biomarker of malignancy in childhood

brain tumours using in-vivo1H-MRS at 1.5 tesla confirmed by ex-vivo high-

resolution magic-angle spinning NMR. NMR in Biomedicine, 23(1):80–87,

2010. 27

[34] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D.

Mack, and A. J. Levine. Broad patterns of gene expression revealed by

clustering analysis of tumor and normal colon tissues probed by oligonu-

cleotide arrays. Proceedings of the National Academy of Sciences of the United

States of America, 96(12):6745–6750, 1999. 30

[35] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasen-

beek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A.

Caligiuri, and C. D. Bloomfield. Molecular classification of cancer:

class discovery and class prediction by gene expression monitoring. Science,

286:531–537, 1999. 30

[36] D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C.

Ladd, P. Tamayo, A. A. Renshaw, A. V. D’Amico, and J. P. Richie.

Gene expression correlates of clinical prostate cancer behavior. Cancer Cell,

1(2):203–209, 2002. 30

[37] G. J. Gordon, R. V. Jensen, L. li Hsiao, S. R. Gullans, J. E. Blu-

menstock, S. Ramaswamy, W. G. Richards, D. J. Sugarbaker, and

R. Bueno. Translation of microarray data into clinically relevant cancer di-

agnostic tests using gene expression ratios in lung cancer and mesothelioma.

Cancer Research, 62:4963–4967, 2002. 30

[38] L. J. van ’t Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M.

Hart, M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton,

A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts,

P. S. Linsley, R. Bernards, and S. H. Friend. Gene expression profiling

predicts clinical outcome of breast cancer. Nature, 415(6871):530–536, 2002.

30

[39] D. Talantov, A. Mazumder, J. X. Yu, T. Briggs, Y. Jiang, J.

Backus, D. Atkins, and Y. Wang. Novel genes associated with malig-

176



REFERENCES

nant melanoma but not benign melanocytic lesions. Clinical Cancer Research,

11(20):7234–7242, 2005. 30

[40] C. R. Scherzer, A. C. Eklund, L. J. Morse, Z. Liao, J. J. Locas-

cio, D. Fefer, M. A. Schwarzschild, M. G. Schlossmacher, M. A.

Hauser, J. M. Vance, L. R. Sudarsky, D. G. Standaert, J. H. Grow-

don, R. V. Jensen, and S. R. Gullans. Molecular markers of early

Parkinson’s disease based on gene expression in blood. Proceedings of the

National Academy of Sciences of the United States of America, 104(3):955–

960, 2007. 30

[41] Y. Lai, B. Wu, L. Chen, and H. Zhao. A statistical method for identifying

differential gene-gene co-expression patterns. Bioinformatics, 20(17):3146–

3155, 2004. 30

[42] Y. Han and L. Yu. A Variance Reduction Framework for Stable Feature

Selection. Statistical Analysis and Data Mining, 5:428–445, 2012. 31, 49, 89,

90, 92, 93

[43] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edi-

tion, 2010. 34, 35, 69

[44] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition

Letters, 31(8):651–666, 2010. 35

[45] T. Kohonen. Self-Organizing Maps. Springer, 3 edition, 2000. 35

[46] J. Hanley and B. McNeil. The meaning and use of the area under a

receiver operating characteristic (ROC) curve. Radiology, 143(1):29–36, 1982.

37
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P. J. G. Lisboa. Automatic relevance source determination in human brain

tumors using Bayesian NMF. In 2014 IEEE Symposium on Computational

Intelligence and Data Mining (CIDM), pages 99–104, 2014. 108

[150] T. Laudadio, A. Sava, Y. Li, N. Sauwen, D. Sima, and S. Van Huf-

fel. NMF in MR spectroscopy. In G. R. Naik, editor, Non-negative Ma-

trix Factorization Techniques, Signals and Communication Technology, pages

161–177. Springer Berlin Heidelberg, 2016. 108

[151] K. Devarajan. Nonnegative matrix factorization: An analytical and in-

terpretive tool in computational biology. PLoS Computational Biology,

4(7):e1000029, 2008. 108

[152] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society. Series B (Methodological), 39(1):1–38, 1977. 114

[153] S. Wild, J. Curry, and A. Dougherty. Improving non-negative ma-

trix factorizations through structured initialization. Pattern Recognition,

37(11):2217–2232, 2004. 117

[154] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques

for recommender systems. Computer, (8):30–37, 2009. 127

186



REFERENCES

[155] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society, Series B, 58:267–288, 1994. 128

[156] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In

Advances in Neural Information Processing Systems, pages 1257–1264, 2007.

128

[157] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factoriza-

tion using Markov chain Monte Carlo. In Proceedings of the 25th International

Conference on Machine Learning, ICML ’08, pages 880–887, New York, NY,

USA, 2008. ACM. 131, 132

[158] W. R. Gilks. Markov Chain Monte Carlo In Practice. Chapman and

Hall/CRC, 1999. 133

[159] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2004. 134, 135

[160] J. Niemi. Metropolis-Hastings algorithm.

http://www.jarad.me/stat544/2013/03/metropolis-hastings-algorithm/.

[Online; Accessed: March 2015]. 134

[161] Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating

prediction. In Proceedings of KDD Cup and Workshop, 2007. 137

[162] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An

introduction to variational methods for graphical models. Machine Learning,

37(2):183–233, 1999. 137

[163] M. J. Wainwright and M. I. Jordan. Graphical models, exponential fam-

ilies, and variational inference. Foundations and Trends in Machine Learning,

1(1-2):1–305, 2008. 137

[164] A. Gelman and X.-L. Meng. Simulating normalizing constants: from

importance sampling to bridge sampling to path sampling. Statistical Science,

13:163–185, 1998. 138

[165] S. Moussaoui, D. Brie, O. Caspary, and A. Mohammad-Djafari.

A Bayesian method for positive source separation. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2004. Proceedings.

(ICASSP ’04), 5, pages V–485–8, 2004. 138

[166] S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret.

Separation of non-negative mixture of non-negative sources using a Bayesian

approach and MCMC sampling. IEEE Transactions on Signal Processing,

54(11):4133–4145, 2006. 139

187



REFERENCES

[167] M. N. Schmidt, O. Winther, and L. K. Hansen. Bayesian non-negative

matrix factorization. In T. Adali, C. Jutten, J. Romano, and A. Bar-

ros, editors, Independent Component Analysis and Signal Separation, 5441

of Lecture Notes in Computer Science, pages 540–547. Springer Berlin Hei-

delberg, 2009. 140

[168] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal

Statistical Society, 48(3):259–302, 1986. 140

[169] A. T. Cemgil. Bayesian inference for nonnegative matrix factorisation mod-

els. Computational Intelligence and Neuroscience, (4):1–17, 2009. 140

[170] S. Chib. Marginal likelihood from the gibbs output. Journal of the American

Statistical Association, 90(432):1313–1321, 1995. 153

[171] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008. 169

[172] K. P. Murphy. Conjugate Bayesian analysis of the Gaussian distribution.

Technical report, University of British Columbia, 2007. 204

[173] M. I. Jordan. The Conjugate Prior for the Normal Distribution. Technical

report, University of California, Berkeley, 2010. 207

188



Appendix A

Mathematical derivations of

the Discriminant Convex

Non-negative Matrix

Factorisation optimisation

function

The first of the appendices corresponds to the mathematical derivations that

lead to the update rules for matrices H, W and q.

A.1 Update rule for mixing matrix H

For solving the objective function described in Eq. 6.8, an update rule for

the mixing matrix H is derived.

First step (following the CNMF definition) is to ensure that the mix-

ing matrix H is always non-negative (i.e., each value Hik must always be

greater than or equal to 0). This constraint is enforced by adding Lagrangian

multipliers βik to the objective function. That is:

Ω′ = Tr

[
W>X>XWHH> + (2α− 2)W>X>XH>
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− 2αW>X>XWHM̃H> +
α

N
W>X>XWHJNH> − βH>

]
.

Then, the gradient of the objective function with respect to H is calcu-

lated in order to obtain the update rule for H. This gradient must equal 0

at convergence:

∂Ω′

∂H
= 2W>X>XWH + (2α− 2)W>X>X− 4αW>X>XWHM̃

+
2α

N
W>X>XWHJN − β = 0.

From the Karush-Kuhn-Tucker (KKT) complementary slackness condi-

tion, we obtain the following fixed point equation that the solution must

satisfy at convergence:

(
2W>X>XWH + (2α− 2)W>X>X− 4αW>X>XWHM̃

+
2α

N
W>X>XWHJN

)
ik

Hik = βikHik = 0.

This equation holds when either the first or the second factor equals

zero. Similarly, the following equation holds if and only if the previous one

does. Such transformation does not affect the current derivation, but it will

help to ensure convergence, as will be seen in next section.

(
2W>X>XWH + (2α− 2)W>X>X− 4αW>X>XWHM̃

+
2α

N
W>X>XWHJN

)
ik

H2
ik = 0.

If a matrix A contains negative values, it can be transformed into a

subtraction of two non-negative matrices A+ and A−:

A = A+ −A− =

(
|A|+ A

2

)
−
(
|A| −A

2

)
,

where |A| is the matrix containing the absolute value of each element in A.

Following this identity, under the constraint that the only matrix eligible

to be negative in our equation is X, we decompose (X>X) into (X>X)+ −
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A.2 Update rule for unmixing matrix W

(X>X)−. After applying this transformation and factorising the equation

to obtain positive summands at both sides of the equality, we obtain:

[
W>(X>X)+WH + (1− α)W>(X>X)− + 2αW>(X>X)−WHM̃

+
α

N
W>(X>X)+WHJN

]
ik

H2
ik

= [
W>(X>X)−WH + (1− α)W>(X>X)+ + 2αW>(X>X)+WHM̃

+
α

N
W>(X>X)−WHJN

]
ik

H2
ik.

Finally, the update rule for the mixing matrix H (expressed in Eq. 6.9)

is obtained by solving the last equation by H, which satisfies the fixed point

equation at convergence, H∞ = Ht+1 = Ht.

A.2 Update rule for unmixing matrix W

Following the same reasoning as with the mixing matrix H, an update rule

for the unmixing matrix W is derived, which corresponds to the second

necessary piece to solve the objective function described in Eq. 6.8.

First, the constraints that enforce non-negativity of matrix W are set

by Lagrangian multipliers γik included in the previously defined objective

function:

Ω′ = Tr

[
X>XWHH>W> + (2α− 2)X>XH>W>

− 2αX>XWHM̃H>W> +
α

N
X>XWHJNH>W> − γW>

]
.

Afterwards, we calculate the gradient of the objective function with re-

spect to W, which must equal 0 at convergence:

∂Ω′

∂W
= 2X>XWHH> + (2α− 2)X>XH> − 4αX>XWHM̃H>

+
2α

N
X>XWHJNH> − γ = 0.
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From the KKT complementary slackness condition, the following fixed

point equation that the solution must satisfy at convergence is obtained:

(
2X>XWHH> + (2α− 2)X>XH> − 4αX>XWHM̃H>

+
2α

N
X>XWHJNH>

)
ik

Wik = γikWik = 0.

The equation holds when either the first or the second factor equals zero.

Again, the following equation will hold if and only if the previous one does,

ensuring convergence:

(
2X>XWHH> + (2α− 2)X>XH> − 4αX>XWHM̃H>

+
2α

N
X>XWHJNH>

)
ik

W2
ik = 0.

Decomposing (X>X) into (X>X)+− (X>X)− and factorising to obtain

positive summands at both sides of the equation we get:

[
(X>X)+WHH> + (1− α)(X>X)−H> + 2α(X>X)−WHM̃H>

+
α

N
(X>X)+WHJNH>

]
ik

W2
ik

= [
(X>X)−WHH> + (1− α)(X>X)+H> + 2α(X>X)+WHM̃H>

+
α

N
(X>X)−WHJNH>

]
ik

W2
ik.

Last, the resulting update rule for the unmixing matrix W (described

in Eq. 6.10) can be obtained, satisfying the fixed point equation. That is,

at convergence, W∞ = Wt+1 = Wt.
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A.3 Update rule for vector q in the prediction phase

A.3 Update rule for vector q in the prediction

phase

Last block in this section presents the derivation of an update rule for each

of the rows q in the mixing matrix Q for prediction, following the same

procedure as for H and W matrices, necessary to solve the objective function

described in Eq. 6.11.

Once more, the constraints that enforce non-negativity of matrix q are

set by Lagrangian multipliers ηik, applied to the previous function:

Ω̄′ = Tr

[
− (2− 2α)S>ZV>q> + S>SHB̄q>

+ S>SqC̄q> − S>SHĒq> − S>SqF̄q> − ηq>
]
.

Then, the gradient of the objective function with respect to q, which

must equal 0 at convergence, is calculated:

∂Ω̄′

∂q
= (2α−2)S>ZV>+S>SHB̄+2S>SqC̄−S>SHĒ−2S>SqF̄−η = 0.

From the KKT complementary slackness condition, the following fixed

point equation that the solution must satisfy at convergence is obtained:

(
(2α− 2)S>ZV> + S>SHB̄ + 2S>SqC̄− S>SHĒ− 2S>SqF̄

)
ik

qik = ηikqik = 0.

Such equality holds whenever either the first or the second factor equals

zero. Similarly, the following equation will hold if and only if the previous

one does:

(
(2α− 2)S>ZV> + S>SHB̄ + 2S>SqC̄− S>SHĒ− 2S>SqF̄

)
ik

q2
ik = 0.

By decomposing (S>Z) into (S>Z)+ − (S>Z)−, (S>S) into (S>S)+ −
(S>S)− and factorising the equation to obtain positive summands at both

sides of the equality:
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[
2(1− α)(S>Z)−V> + (S>S)+HB̄ + 2(S>S)+qC̄

+(S>S)−HĒ + 2(S>S)−qF̄

]
ik

q2
ik

= [
2(1− α)(S>Z)+V> + (S>S)−HB̄ + 2(S>S)−qC̄

+(S>S)+HĒ + 2(S>S)+qF̄

]
ik

q2
ik,

which leads to the update rule for the vector q described in Eq. 6.12 in the

main text, satisfying q∞ = qt+1 = qt at convergence.
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Appendix B

Discriminant Convex

Non-negative Matrix

Factorisation: proof of

convergence

The objective function presented in Eq. 6.8 is not convex for matrices H and

W simultaneously, meaning that it unavoidably converges to local minimum.

However, this function is convex with respect to each matrix separately.

We prove the convergence of the alternating update algorithm by defining

an appropriate convex auxiliary function and finding its global minimum.

Convergence of the predictive update rule (Eq. 6.12) will also be proved.

A function Z(L, L̃) is an auxiliary function of Ω(L) if it satisfies

Z(L, L̃) ≥ Ω(L), Z(L,L) = Ω(L)

for any L, L̃. Let us define

L(t+1) = arg min
L
Z(L,L(t)).

By construction, we have

Ω(L(t)) = Z(L(t),L(t)) ≥ Z(L(t+1),L(t)) ≥ Ω(L(t+1)).
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In the subsequent blocks, appropriate convex auxiliary functions Z(L, L̃)

for the mixing (H and q) and unmixing (W) matrices will be defined. They

will help to prove convergence.

B.1 Proof of convergence for the H update rule

From Eq. 6.8, where X̃ = XWH, we substitute A ← W>X>XW, B ←
W>X>X, L ← H, σ ← (1 − α); separating positive and negative values

according to A = A+ −A− and B = B+ −B−, we then obtain:

Ω(L) = Tr[A+LL> −A−LL> − 2σB+L> + 2σB−L> − 2αA+LM̃L>

+ 2αA−LM̃L> +
α

N
A+LJNL> − α

N
A−LJNL>],

out of which upper and lower bounds for positive and negative summands,

respectively, can be found.

Using the inequality a ≤ (a2+b2)
2b , which holds for any a, b > 0, and setting

a← B−L>, b← B−L̃>, we obtain an upper bound for the fourth term:

Tr(2σB−L>) = 2σ
∑
ik

B−ikLik ≤ σ
∑
ik

B−ik
L2
ik + L̃2

ik

L̃ik
.

For the remaining three positive summands, the following inequality

[132] will be used:

Tr(S>ASB) ≤
n∑
i=1

k∑
p=1

(AS̃B)ipS
2
ip

S̃ip
.

An upper bound for the first term will be found by setting A← A+, B← I

and S← L:

Tr(A+LL>) ≤
∑
ik

(A+L̃)ikL
2
ik

L̃ik
.

Similarly, by setting A← A−, B← M̃ and S← L, we get an upper bound

for the sixth term:

Tr(2αA−LM̃L>) ≤ 2α
∑
ik

(A−L̃M̃)ikL
2
ik

L̃ik
.
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Finally, an upper bound for the seventh term can be obtained by setting

A← A+, B← JN and S← L:

Tr
( α
N

A+LJNL>
)
≤ α

N

∑
ik

(A+L̃JN )ikL
2
ik

L̃ik
.

We now turn our attention to obtain lower bounds for the negative

summands in the equation. For that, we use the inequality that states

z ≥ 1 + log z for any z > 0. By setting z ← Lik
L̃ik

, the following equation is

obtained:
Lik

L̃ik
≥ 1 + log

Lik

L̃ik
.

Then, if each side of this inequality is multiplied by the third term of our

equation, and after simplification, we get:

Tr(2σB+L>) = 2σ
∑
ik

B+
ikLik ≥ 2σ

∑
ik

B+
ikL̃ik

(
1 + log

Lik

L̃ik

)
.

Likewise, setting z ← LikLjk
L̃ikL̃jk

leads to lower bounds for the second, fifth and

last summands:

Tr(A−LL>) ≥
∑
ikj

A−ijL̃ikL̃jk

(
1 + log

LikLjk

L̃ikL̃jk

)
,

T r(2αA+LM̃L>) ≥ 2α
∑
ikjl

A+
ijM̃klL̃ikL̃jk

(
1 + log

LikLjk

L̃ikL̃jk

)
,

and

Tr
( α
N

A−LJNL>
)
≥ α

N

∑
ikjl

A−ijJNklL̃ikL̃jk

(
1 + log

LikLjk

L̃ikL̃jk

)
.

Therefore, an auxiliary function that bounds our objective is obtained

by locating all bounds together:

Z(L, L̃) =
∑
ik

(A+L̃)ikL
2
ik

L̃ik
−
∑
ikj

A−ijL̃ikL̃jk

(
1 + log

LikLjk

L̃ikL̃jk

)

− 2σ
∑
ik

B+
ikL̃ik

(
1 + log

Lik

L̃ik

)
+ σ

∑
ik

B−ik
L2
ik + L̃2

ik

L̃ik

− 2α
∑
ikjl

A+
ijM̃klL̃ikL̃jk

(
1 + log

LikLjk

L̃ikL̃jk

)
+ 2α

∑
ik

(A−L̃M̃)ikL
2
ik

L̃ik

+
α

N

∑
ik

(A+L̃JN )ikL
2
ik

L̃ik
− α

N

∑
ikjl

A−ijJNklL̃ikL̃jk

(
1 + log

LikLjk

L̃ikL̃jk

)
.
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In order to find the minimum of Z(L, L̃), the gradient is calculated:

∂Z(L, L̃)

∂Lik
= 2

(A+L̃)ikLik

L̃ik
− 2

(A−L̃)ikL̃ik
Lik

− 2σ
B+
ikL̃ik
Lik

+ 2σ
B−ikLik

L̃ik

− 4α
(A+L̃M̃)ikL̃ik

Lik
+ 4α

(A−L̃M̃)ikLik

L̃ik

+
2α

N

(A+L̃JN )ikLik

L̃ik
− 2α

N

(A−L̃JN )ikL̃ik
Lik

.

The Hessian matrix containing the second derivatives is defined as

∂2Z(L, L̃)

∂Lik∂Ljl
= δijδklYik,

being a diagonal matrix with positive entries, where

Yik = 2
(A+L̃)ik

L̃ik
+ 2

(A−L̃)ikL̃ik
L2
ik

+ 2σ
B+
ikL̃ik

L2
ik

+ 2σ
B−ik
L̃ik

+ 4α
(A+L̃M̃)ikL̃ik

L2
ik

+ 4α
(A−L̃M̃)ik

L̃ik

+
2α

N

(A+L̃JN )ik

L̃ik
+

2α

N

(A−L̃JN )ikL̃ik
L2
ik

.

Hence, Z(L, L̃) is a convex function of L. Then, the global minimum is

obtained by setting ∂Z(L,L̃)
∂Lik

= 0 and solving for L. Rearranging terms, we

obtain

Lik = arg min
L
Z(L, L̃) = L̃ik

√
B̆Lik

V̆Lik

B̆Lik = (A−L̃)ik + σB+
ik + 2α(A+L̃M̃)ik +

α

N
(A−L̃JN )ik

V̆Lik = (A+L̃)ik + σB−ik + 2α(A−L̃M̃)ik +
α

N
(A+L̃JN )ik.

Changing back to (W>X>XW) ← A, (W>X>X) ← B, H ← L,

(1− α)← σ, we retrieve the update rule for H (Eq. 6.9).

B.2 Proof of convergence for the W update rule

Now, we follow the same approach as the one used in H with the purpose

of proving the convergence of the update rule for W. More precisely, from

Eq. 6.8, bearing in mind that X̃ = XWH, we substitute A ← X>X,

198



B.2 Proof of convergence for the W update rule

B← HH>, C← HM̃H>, D← HJNH>, L←W, σ ← (1−α); separating

positive and negative values according to A = A+ −A−, we obtain:

Ω(L) = Tr[A+LBL> −A−LBL> − 2σA+LH + 2σA−LH− 2αA+LCL>

+ 2αA−LCL> +
α

N
A+LDL> − α

N
A−LDL>].

We then find an auxiliary function for Ω(L), using the same inequalities

as in the previous section to obtain each upper and lower bound. The

auxiliary function now becomes

Z(L, L̃) =
∑
ik

(A+L̃B)ikL
2
ik

L̃ik
−
∑
ijkl

A−ijBklL̃ikL̃jl

(
1 + log

LikLjl

L̃ikL̃jl

)

− 2σ
∑
ik

(A+H>)ikL̃ik

(
1 + log

Lik

L̃ik

)
+ σ

∑
ik

(A−H>)ik
L2
ik + L̃2

ik

L̃ik

− 2α
∑
ijkl

A+
ijCklL̃ikL̃jl

(
1 + log

LikLjl

L̃ikL̃jl

)
+ 2α

∑
ik

(A−L̃C)ikL
2
ik

L̃ik

+
α

N

∑
ik

(A+L̃D)ikL
2
ik

L̃ik
− α

N

∑
ijkl

A−ijDklL̃ikL̃jl

(
1 + log

LikLjl

L̃ikL̃jl

)
.

We calculate the gradient in order to find the minimum of Z(L, L̃):

∂Z(L, L̃)

∂Lik
= 2

(A+L̃B)ikLik

L̃ik
− 2

(A−L̃B)ikL̃ik
Lik

− 2σ
(A+H>)ikL̃ik

Lik
+ 2σ

(A−H>)ikLik

L̃ik

− 4α
(A+L̃C)ikL̃ik

Lik
+ 4α

(A−L̃C)ikLik

L̃ik

+
2α

N

(A+L̃D)ikLik

L̃ik
− 2α

N

(A−L̃D)ikL̃ik
Lik

.

The Hessian matrix containing second derivatives,

∂2Z(L, L̃)

∂Lik∂Ljl
= δijδklYik,
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is a diagonal matrix with positive entries, where

Yik = 2
(A+L̃B)ik

L̃ik
+ 2

(A−L̃B)ikL̃ik
L2
ik

+ 2σ
(A+H>)ikL̃ik

L2
ik

+ 2σ
(A−H>)ik

L̃ik

+ 4α
(A+L̃C)ikL̃ik

L2
ik

+ 4α
(A−L̃C)ik

L̃ik

+
2α

N

(A+L̃D)ik

L̃ik
+

2α

N

(A−L̃D)ikL̃ik
L2
ik

.

Hence, Z(L, L̃) is a convex function of L. Then, the global minimum can

be found by setting ∂Z(L,L̃)
∂Lik

= 0 and solving for L. Rearranging terms, we

obtain:

Lik = arg min
L
Z(L, L̃) = L̃ik

√
B̆Lik

V̆Lik

B̆Lik = (A−L̃B)ik + σ(A+H>)ik + 2α(A+L̃C)ik +
α

N
(A−L̃D)ik

V̆Lik = (A+L̃B)ik + σ(A−H>)ik + 2α(A−L̃C)ik +
α

N
(A+L̃D)ik.

Changing back to (X>X)← A, (HH>)← B, (HM̃H>)← C, (HJNH>)←

D,W ← L, (1 − α) ← σ, the update rule for W described by Eq. 6.10 in

the main text can be retrieved.

B.3 Proof of convergence for the q update rule

Last proof of convergence for Eq. 6.12 is done using the same procedure as

in H and W. That is, from Eq. 6.11, we substitute A ← S>S, B ← S>Z,

L ← q, σ ← (1 − α); separating positive and negative values according to

A = A+ −A−. We obtain:

Ω′(L) = Tr[−2σB+V>L> + 2σB−V>L> + A+HB̄L> −A−HB̄L> + A+LC̄L>

− A−LC̄L> −A+HĒL> + A−HĒL> −A+LF̄L> + A−LF̄L>].

Using the same inequalities as in previous sections to obtain upper and
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lower bounds, an auxiliary function for Ω′(L) is defined:

Z(L, L̃) = −2σ
∑
ik

(B+V>)ikL̃ik

(
1 + log

Lik

L̃ik

)
+ σ

∑
ik

(B−V>)ik
L2
ik + L̃2

ik

L̃ik

+
∑
ik

(A+HB̄)ik
L2
ik + L̃2

ik

2L̃ik
−
∑
ik

(A−HB̄)ikL̃ik

(
1 + log

Lik

L̃ik

)

+
∑
ik

(A+L̃C̄)ikL
2
ik

L̃ik
−
∑
ijkl

A−ijC̄klL̃ikL̃jl

(
1 + log

LikLjl

L̃ikL̃jl

)

−
∑
ik

(A+HĒ)ikL̃ik

(
1 + log

Lik

L̃ik

)
+
∑
ik

(A−HĒ)ik
L2
ik + L̃2

ik

L̃ik

−
∑
ijkl

A+
ijF̄klL̃ikL̃jl

(
1 + log

LikLjl

L̃ikL̃jl

)
+
∑
ik

(A−L̃F̄)ikL
2
ik

L̃ik
.

With the purpose to find the minimum of Z(L, L̃), we calculate the gradient:

∂Z(L, L̃)

∂Lik
= −2σ

(B+V>)ikL̃ik
Lik

+ 2σ
(B−V>)ikLik

L̃ik
+

(A+HB̄)ikLik

L̃ik

− (A−HB̄)ikL̃ik
Lik

+ 2
(A+L̃C̄)ikLik

L̃ik
− 2

(A−L̃C̄)ikL̃ik
Lik

− (A+HĒ)ikL̃ik
Lik

+
(A−HĒ)ikLik

L̃ik

− 2
(A+L̃F̄)ikL̃ik

Lik
+ 2

(A−L̃F̄)ikLik

L̃ik
.

The Hessian matrix containing second derivatives is

∂2Z(L, L̃)

∂Lik∂Ljl
= δijδklYik,

being a diagonal matrix with positive entries, such that

Yik = 2σ
(B+V>)ikL̃ik

L2
ik

+ 2σ
(B−V>)ik

L̃ik
+

(A+HB̄)ik

L̃ik
+

(A−HB̄)ikL̃ik
L2
ik

+ 2
(A+L̃C̄)ik

L̃ik
+ 2

(A−L̃C̄)ikL̃ik
L2
ik

+
(A+HĒ)ikL̃ik

L2
ik

+
(A−HĒ)ik

L̃ik

+ 2
(A+L̃F̄)ikL̃ik

L2
ik

+ 2
(A−L̃F̄)ik

L̃ik
,

which means that Z(L, L̃) is a convex function of L. The global minimum

can then be obtained by setting ∂Z(L,L̃)
∂Lik

= 0 and solving for L. Rearranging
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terms, we obtain:

Lik = arg min
L
Z(L, L̃) = L̃ik

√
B̆Lik

V̆Lik

B̆Lik
= 2σ(B+V>)ik + (A−HB̄)ik + 2(A−L̃C̄)ik + (A+HĒ)ik + 2(A+L̃F̄)ik

V̆Lik
= 2σ(B−V>)ik + (A+HB̄)ik + 2(A+L̃C̄)ik + (A−HĒ)ik + 2(A−L̃F̄)ik.

Finally, changing back to (S>S)← A, (S>Z)← B, q← L, (1−α)← σ,

the update rule for q described in Eq. 6.12 is retrieved.
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Appendix C

Mathematical derivations for

the Bayesian Semi

Non-negative Matrix

Factorisation Gibbs sampler

This section corresponds to the detailed mathematical derivations of the

equations required to build the Gibbs sampler as expressed in Section 7.3.2.1.

We start by reminding the posterior density we aim at approximating:

p
(
S,H, σ2 | X

)
∝ p

(
X | S,H, σ2

)
·p (S | θS)·p (H | θH)·p

(
σ2 | θσ

)
, (C.1)

where

p
(
X | S,H, σ2

)
=

D∏
d=1

N∏
n=1

p
(
Xd,n | (SH)d,n, σ

2
)

=
(
2πσ2

)−DN
2 exp

{
− 1

2σ2

D∑
d=1

N∑
n=1

(Xd,n − (SH)d,n)
2

}
(C.2)

is the Gaussian likelihood function; and the priors are expressed as normally

distributed for S:

p (S | θS) =

D∏
d=1

K∏
k=1

p
(
Sd,k | µo, σ2

o

)
=

(
2πσ2

o

)−DK/2
exp

{
− 1

2σ2
o

D∑
d=1

K∑
k=1

(Sd,k − µo)2

}
; (C.3)
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exponentially distributed for H:

p (H | θH) =
K∏
k=1

N∏
n=1

p (Hk,n | λo) = λKNo exp

{
−λo

K∑
k=1

N∑
n=1

Hk,n

}
; (C.4)

and as sampled from an inverse Gamma for σ2:

p
(
σ2 | θσ

)
= p

(
σ2 | αo, βo

)
=

βαoo
Γ(αo)

(
σ2
)−αo−1

exp

{
−βo
σ2

}
. (C.5)

Notice that all prior distributions have been appropriately chosen to

encode prior knowledge and to be conjugate priors of the likelihood.

Given that drawing a sequence of samples from the conditional posterior

densities of the model parameters converges to the joint posterior, in the

following sections, we derive each of the conditional posteriors in turn.

C.1 Conditional posterior density of S

In order to derive the conditional posterior density of S, following the same

procedure as in [172], we retrieve Eq. C.1 and get rid of those parameters

that are independent from S, hence reducing to the multiplication of Eqs. C.2

and C.3. Let p(Sd,k | θA)
def
= p(Sd,k | X,S\(d,k),H, σ2), then:

p(Sd,k | θA) ∝ exp

− 1

2σ2

N∑
n=1

(
Xd,n −

K∑
k=1

Sd,kHk,n

)2

− 1

2σ2
o

(Sd,k − µo)2


∝ exp

{
− 1

2σ2

N∑
n=1

Xd,n −
∑
k′ 6=k

Sd,k′Hk′,n

− Sd,kHk,n

2

− 1

2σ2
o

[Sd,k − µo]2
}

∝ exp

{
− 1

2σ2

N∑
n=1

[(
Xd,n −

∑
k′ 6=k

Sd,k′Hk′,n

)2

+ S2
d,kH

2
k,n

−2Sd,kHk,n

(
Xd,n −

∑
k′ 6=k

Sd,k′Hk′,n

)]

− 1

2σ2
o

[
S2
d,k + µ2

o − 2Sd,kµo
]2}
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Factorising, we obtain:

p(Sd,k | θA) ∝ exp

{
−

S2
d,k

2

[∑N
n=1 H2

k,n

σ2
+

1

σ2
o

]

+Sd,k

∑N
n=1 Hk,n

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
σ2

+
µo
σ2
o


−1

2


∑N

n=1

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)2

σ2
+
µ2
o

σ2
o

}

The resulting distribution of multiplying two Gaussians is another Gaussian.

Therefore, our posterior should match the following form:

p(Sd,k | θA) ∝ exp

{
− 1

2σ2
p

(Sd,k − µp)2
}

= exp

{
− 1

2σ2
p

(
S2
d,k − 2Sd,kµp + µ2

p

)}
∝ exp

{
−

S2
d,k

2

[
1

σ2
p

]
+ Sd,k

[
µp
σ2
p

]
−

µ2
p

2σ2
p

}

We proceed by completing the square; matching the first term results in:

−
S2
d,k

2

[
1

σ2
p

]
= −

S2
d,k

2

[∑N
n=1 H2

k,n

σ2
+

1

σ2
o

]
1

σ2
p

=

∑N
n=1 H2

k,n

σ2
+

1

σ2
o

=
σ2
o

∑N
n=1 H2

k,n

σ2
oσ

2
+

σ2

σ2σ2
o

1

σ2
p

=
σ2
o

∑N
n=1 H2

k,n + σ2

σ2
oσ

2

σ2
p =

σ2
oσ

2

σ2
o

∑N
n=1 H2

k,n + σ2
. (C.6)

Now, matching the second term leads to:

Sd,k

[
µp
σ2
p

]
= Sd,k

∑N
n=1 Hk,n

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
σ2

+
µo
σ2
o


µp
σ2
p

=

∑N
n=1 Hk,n

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
σ2

+
µo
σ2
o

µp
σ2
p

=
σ2
o

∑N
n=1 Hk,n

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
+ µoσ

2

σ2
oσ

2
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Replacing σ2
p according to Eq. C.6:

µp =
σ2
o

∑N
n=1 Hk,n

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
+ µoσ

2

σ2
oσ

2
× σ2

oσ
2

σ2
o

∑N
n=1 H2

k,n + σ2

µp =
σ2
o

∑N
n=1 Hk,n

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
+ µoσ

2

σ2
o

∑N
n=1 H2

k,n + σ2

µp = σ2
p

∑N
n=1 Hk,n

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
σ2

+
µo
σ2
o

 .

C.2 Conditional posterior density of H

The conditional posterior density of H will be derived following the same

approach as in previous section: from Eq. C.1 we only keep the parameters

directly related to H, hence reducing to the multiplication of Eqs. C.2 and

C.4. Let p(Hk,n | θB)
def
= p(Hk,n | X,S,H\(k,n), σ

2), then:

p(Hk,n | θB) ∝ exp

− 1

2σ2

D∑
d=1

(
Xd,n −

K∑
k=1

Sd,kHk,n

)2

− λoHk,n


∝ exp

{
− 1

2σ2

D∑
d=1

Xd,n −
∑
k′ 6=k

Sd,k′Hk′,n

− Sd,kHk,n

2

−λoHk,n

}

∝ exp

{
− 1

2σ2

D∑
d=1

[Xd,n −
∑
k′ 6=k

Sd,k′Hk′,n

2

+ S2
d,kH

2
k,n

−2Sd,kHk,n

Xd,n −
∑
k′ 6=k

Sd,k′Hk′,n

]− λoHk,n

}

Factorising, we get:

p(Hk,n | θB) ∝ exp

{
−

H2
k,n

2

[∑D
d=1 S2

d,k

σ2

]
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+Hk,n

∑D
d=1 Sd,k

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
σ2

− λo


−1

2


∑D

d=1

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)2

σ2

}

The resulting distribution of multiplying a Gaussian by an exponential dis-

tribution is a rectified normal distribution of the form:

p(Hk,n | θB) ∝ exp

{
− 1

2σ2
p

[Hk,n − µp]2 − λpHk,n

}
∝ exp

{
− 1

2σ2
p

[
H2
k,n − 2Hk,nµp + µ2

p

]
− λpHk,n

}
∝ exp

{
−

H2
k,n

2

(
1

σ2
p

)
+ Hk,n

(
µp
σ2
p

− λp
)
− 1

2

(
µ2
p

σ2
p

)}
We complete the square by matching the first term:

−
H2
k,n

2

(
1

σ2
p

)
= −

H2
k,n

2

(∑D
d=1 S2

d,k

σ2

)

σ2
p =

σ2∑D
d=1 S2

d,k

(C.7)

Matching the second term:

Hk,n

(
µp
σ2
p

− λp
)

= Hk,n

∑D
d=1 Sd,k

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
σ2

− λo


Assuming λp = λo and replacing σ2

p according to Eq. C.7:

µp =

∑D
d=1 Sd,k

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
σ2

× σ2∑D
d=1 S2

d,k

µp =

∑D
d=1 Sd,k

(
Xd,n −

∑
k′ 6=k Sd,k′Hk′,n

)
∑D

d=1 S2
d,k

C.3 Conditional posterior density of σ2

Finally, the conditional posterior density of σ2 will be derived according to

[173]: starting from Eq. C.1, we keep the parameters directly related to σ2;
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which reduces the aforementioned equation to the product of Eqs. C.2 and

C.5. Let p(σ2 | θC)
def
= p(σ2 | X,S,H), then:

p(σ2 | θC) ∝
(
2πσ2

)−DN/2 × βαoo
Γ(αo)

(
σ2
)−αo−1

exp

{
− 1

2σ2

D∑
d=1

N∑
n=1

[Xd,n − (SH)d,n]2 − βo
σ2

}

∝ βαoo
2πΓ(αo)

× (σ2)−αo−1

σDN

exp

{
−
∑D

d=1

∑N
n=1 [Xd,n − (SH)d,n]2

2σ2
− βo
σ2

}
∝

(
σ2
)−(αo+DN

2 )−1

exp

{
−
βo + 1

2

∑D
d=1

∑N
n=1 [Xd,n − (SH)d,n]2

σ2

}
(C.8)

The resulting distribution of multiplying a Gaussian by an inverse Gamma

distribution results to another inverse Gamma, of the form:

p(σ2 | θC) ∝
(
σ2
)−αp−1

exp

{
−βp
σ2

}
Matching the parameters with those in Eq. C.8, we obtain:

αp = αo +
DN

2
;

βp = βo +
1

2

D∑
d=1

N∑
n=1

[Xd,n − (SH)d,n]2 .
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