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It has been argued that the mixed Higgs-R2 model acts as the UV extension of the Higgs inflation, 
pushing up its cut-off scale in the vacuum close up to the Planck scale. In this letter, we study the 
inflaton oscillation stage after inflation, focusing on the effective mass of the phase direction of the Higgs 
field, which can cause a violent preheating process. We find that the “spikes” in the effective mass of 
the phase direction observed in the Higgs inflation still appear in the mixed Higgs-R2 model. While 
the spikes appear above the cut-off scale in the Higgs-only case, they appear below the cut-off scale 
when the model is extended with R2 term though reheating cannot be completed in the violent particle 
production regime since the spikes get milder.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Among many possible candidates of the scalar field that drove 
inflation in the early Universe (see e.g. [1] for review), the Higgs 
field in the Standard Model (SM) H occupies a unique position as 
it is the sole (possibly) fundamental scalar field that has actually 
been detected by experiments [2,3]. Among many possibilities of 
Higgs inflation as summarized in [4], the original Higgs inflation 
model with a nonminimal coupling to gravity, ξ |H|2 R with ξ =
O(104) [5–7], is an intriguing model because it is embedded in a 
simple scale invariant extension of the SM under general relativity 
and consistent with the cosmological observations [8].

However, the quantum mechanical validity of the model had 
been questioned since the Hubble scale during inflation, H ∼
λ1/4Mpl/ξ

1/2, where λ � 0.01 and Mpl are the Higgs quartic cou-
pling at the inflationary scale and the reduced Planck scale, is 
much higher than the tree-level cut-off scale of the theory in the 
vacuum, � ∼ Mpl/ξ [9–12]. This issue was resolved as it was dis-
covered that the perturbative cut-off scale of interactions of fluc-
tuations around the inflationary background is larger than the one 
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in the vacuum [13,14]. As a result, the background evolution as 
well as cosmological perturbations generated during inflation is 
well under control in a quantum mechanical sense.1 Nevertheless, 
due to the nonrenormalizable nature of the gravitational coupling 
in General Relativity (GR), the potential of the Higgs field at the 
inflationary scale cannot be determined by low-energy observables 
without ambiguity2 [18,19], which requires some UV extension for 
the complete understanding of the model.

In fact, a sensible UV extension is called for even more seriously 
to describe the reheating process for the following reason. Previ-
ously, they had been studied in e.g. Refs. [20–22] following the 
traditional procedure for inflationary models in GR [23–26], and 
it had been recognized that the depletion of the inflaton quanta 
is dominated by the nonperturbative production of the transverse 
mode of weak gauge bosons. However, it has been recently shown 
that the effective mass, mθ , of the phase direction of the infla-
ton or the Nambu–Goldstone (NG) mode, which would constitute 
the longitudinal mode of gauge bosons, exhibits a peculiar be-
havior [27–29]. It has been shown that violent particle produc-

1 Quantum stability during inflation have been shown in [15] for Higgs G-inflation 
[16] and in [17] for generalized Higgs inflation.

2 Even if the electroweak vacuum is metastable, it turns out that inflation can 
take place with the help of these ambiguities [18].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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tion [29,30] takes place due to the spiky feature of the effective 
mass with a large amplitude msp

θc
� √

λMpl in a short time scale 
�t � (

√
λMpl)

−1. This is caused by the nonminimal coupling of 
the Higgs field to gravity in the Jordan frame or by the nontriv-
ial structure of the kinetic term in the Einstein frame, but thanks 
to the conformal duality between inflationary models in the two 
frames, the physics is identical in either frame. It has been argued 
that the mass spikes can cause violent preheating in which the NG 
modes or the longitudinal modes with the momentum k � √

λMpl
are excited, so that most of the energy density of the inflaton can 
be transferred to the NG modes just in one oscillation of the in-
flaton, which can be the main channel for the depletion of the 
inflaton quanta [29]. However, the energy scale of these excita-
tions is far beyond the cutoff scale of the theory during reheating, 
which is much smaller than the one during inflation and already 
comparable to that in the vacuum, � � Mpl/ξ , for the non-critical 
Higgs inflation with ξ � 104 and λ � 0.01. Therefore, such exci-
tations are not quantum mechanically under control and it is not 
quite clear if the production of the longitudinal modes really hap-
pens. In order to understand the issue more clearly, we need to 
investigate the behavior of the NG mode at the reheating epoch 
with an appropriate UV extension of the model.

There has been several proposals to push the cutoff scale of the 
Higgs inflation model up to the Planck scale [31–33]. We focus on 
the mixed Higgs-R2 model [34–37], where the inflation is driven 
by the Higgs field and the scalaron from the R2 term [38], which 
can be also considered as a UV-extension of the Higgs inflation [35,
39]. Indeed, the mixed Higgs-R2 model is remarkable, since the 
new scalar degree of freedom, the scalaron, naturally arises in it 
as a result of the minimal purely geometric extension of GR with-
out ghosts which makes gravity classically scale invariant for large 
values of the Ricci scalar R .

In this letter, we investigate the behavior of the imaginary part 
of the Higgs field at the reheating epoch in the mixed Higgs-R2 in-
flation model. We show numerically and analytically that the spike 
gets weakened when the R2 term is included, and that the corre-
sponding energy scale becomes lower than the cut-off scale. As a 
result, the framework is now under quantum mechanical control as 
it is desired. We also find that the violent preheating is not suffi-
cient to complete the reheating in this case. However, this does not 
present any problem for the viability of Higgs-R2 model since the 
complete decay of the scalaron and subsequent thermalization can 
be well achieved in the slow perturbative (weak narrow paramet-
ric resonance) regime, as it occurs in the pure R + R2 model [38,
40–43] due to the effect of gravitational particle creation by fast 
and large oscillations of R in the dust-like post-inflationary epoch.3

Although we take a global U(1) for the Higgs field in order to 
clarify the role of the NG modes at reheating, we expect that the 
conclusion remains unchanged for the fully gauged SU(2)L× U(1)Y

case. Finally, throughout this letter, we assume that the Higgs po-
tential is completely stable and λ � 0.01 at the inflationary scales. 
For other realizations of Higgs inflation, the preheating dynamics 
can be completely different. In the critical Higgs inflation, since 
λ � 1 and ξ ∼ 105

√
λ ∼ O (1), we expect that violent spikes do 

not appear and there exists only a single cut-off scale at the Planck 
scale [44–46]. Smaller values of ξ (� 104) are also possible in the 
hilltop case [47]. In the hillclimbing Higgs inflation [48,49], strong 
spikes can emerge, though no preheating analysis has been per-
formed yet.

3 Note that the quantitative analysis of creation of matter after inflation and the 
resulting transition of the Universe to the radiation dominated stage in the R + R2

model was performed even earlier than that for inflationary models based on GR.
2. Mixed Higgs-R2 model

2.1. Action

Let us briefly review the structure and inflationary dynamics of 
the mixed Higgs-R2 model [34–37]. We start from the action in 
the Jordan frame with a complex scalar H nonminimally coupled 
to the Ricci scalar and the R2 term

S J =
∫

d4x
√−gJLJ =

∫
d4x

√−gJ

[( M2
pl

2
+ ξ |H|2

)
R J

+ M2
pl

12M2
R2

J − gμν
J ∂μH∂νH† − λ|H|4

]
, (2.1)

where M is a parameter with a mass dimension one, which will 
be identified as the scalaron mass for low R (in particular, in flat 
space–time). The subscript J represents that the variables are the 
ones in the Jordan frame, and we will use the subscript E for the 
Einstein frame. We would like to regard H as the SM Higgs, but in 
order to make the argument simple and explicit, we first take a toy 
model with a global U(1) symmetric scalar, without introducing a 
gauge field. Still, we expect that the results remain unchanged for 
the SM Higgs field charged under gauged SU(2)L× U(1)Y . Here we 
take the sign convention where the metric is taken to be gμν =
(−, +, +, +) at the flat limit and the nonminimal coupling is ξ =
−1/6 in the case of the conformally coupled scalar. In order for 
inflation driven by the H field to occur, we consider the case ξ > 0.

Defining the scalaron field ϕ as [50,51]√
2

3

ϕ

Mpl
≡ ln

(
2

M2
pl

∣∣∣∣∂LJ

∂ R J

∣∣∣∣
)

, (2.2)

and performing a conformal transformation

gEμν(x) = e

√
2
3

ϕ(x)
Mpl gJμν(x) ≡ eαϕ(x)gJμν(x), (2.3)

we can transform the original action (2.1) into the one in the Ein-
stein frame with two scalar fields, ϕ and H and express the new 
action in terms of the new scalar fields as

SE =
∫

d4x
√−gE

[ M2
pl

2
RE − 1

2
gμν

E ∂μϕ∂νϕ

− e−αϕ gμν
E ∂μH∂νH† − U (ϕ,H)

]
, (2.4)

U (ϕ,H) = λe−2αϕ |H|4 + 3

4
M2

plM
2
[

1 −
(

1 + 2ξ

M2
pl

|H|2
)

e−αϕ

]2

.

(2.5)

Hereafter we study the system in the Einstein frame, but the 
physical results are the same when we study it in the Jordan 
frame (though actual values of space–time curvature and particle 
energies are different). The potential terms contain higher dimen-
sional operators as well as induced quartic couplings which pre-
vents us from performing quantum analysis up to arbitrary high 
energy scales. The perturbativity of the system around the origin 
ϕ � H � 0 with respect to the Higgs field is determined by the 
effective coupling for |H|4, which yields an upper bound for the 
scalaron mass as [35,39]

M �
√

4π

3

Mpl

ξ
. (2.6)

Once this condition is satisfied, the perturbative cut-off scales of 
other higher order interactions becomes larger than the reduced 
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Planck mass, so that the cut-off scale of the system is identified as 
� � Mpl. Note that the condition (2.6) produces no significant new 
bound in the small coupling case ξ � 1 including ξ = 0.

2.2. Inflationary dynamics

The classical dynamics of the system is determined by the 
scalaron ϕ and the radial direction of the ‘Higgs’ field, h, defined 
by H = heiθ /

√
2 where θ represents the Nambu–Goldstone mode 

which constitutes a longitudinal mode of the gauge fields in a 
more realistic theory. For each value of ϕ > 0, the potential along 
h direction is minimized at [35]

h2 = eαϕ − 1
ξ

M2
pl

+ λ

3ξ M2

(2.7)

that corresponds to h2 = ξ R J/λ in the Jordan frame. Because of the 
non-flat metric in the field space as observed in the kinetic terms 
in (2.4), the location of the valley of the potential is slightly shifted 
from those given by (2.7) [34]. Furthermore, the actual dynamics 
does not trace either the local minimum of the potential along 
h direction nor the valley as shown in the most comprehensive 
analysis presented in [36].

Fortunately, however, as far as observable quantities such as the 
amplitude and the spectral index of the curvature perturbation are 
concerned, we may use the approximate relation (2.7) to study the 
dynamics during inflation in terms of ϕ [36] as long as λ is not 
too small [34,37]. Inserting (2.7) in (2.4) we find that both the 
kinetic term and the potential take an equivalent form as the pure 
Higgs inflation model in the Einstein frame with modified effective 
coupling constants

λ̃ ≡ λ

(
1 + λM2

pl

3ξ2M2

)
, ξ̃ ≡ ξ

(
1 + λM2

pl

3ξ2M2

)
, (2.8)

with the potential energy density in the plateau region given by

U inf = λ̃M4
pl

4ξ̃2
= λM4

pl

4ξ2(1 + λM2
pl

3ξ2M2
)

. (2.9)

On the other hand, we can also obtain an effective R2 theory 
starting from the action in the Jordan frame (2.1) by neglecting the 
Higgs kinetic term which is a good approximation when ξ is much 
larger than unity [36]. In this case the field equation of the Higgs 
yields a constraint h2 = ξ R J/λ so that the action reduces to

S J =
∫

d4x
√−gJ

[ M2
pl

2
R J +

( M2
pl

12M2
+ ξ2

4λ

)
R2

J

]

=
∫

d4x
√−gJ

[ M2
pl

2
R J + M2

pl

12M̃2
R2

J

]
, (2.10)

where

M̃2 ≡ M2

1 + 3ξ2M2

λM2
pl

(2.11)

is the effective mass squared of the scalaron. If we transform the 
effective action (2.10) to the Einstein frame we obtain the well-
known form of the scalaron potential with the potential height 
U inf = 3M2

plM̃
2/4 in the plateau region, which is to be identified 

with (2.9).
The quantities λ̃, ̃ξ , and M̃ are determined by the amplitude of 
the curvature perturbation PR � 2.1 × 10−9 [8] at the pivot scale 
which left the Hubble horizon N e-folds before the end of inflation. 
We find [52,53]

ξ̃2

λ̃
= M2

pl

3M̃2
= ξ2

λ
+ M2

pl

3M2 = N2

72π2PR
. (2.12)

Defining ξc and Mc as

ξc ≡
√

λN2

72π2PR
� 4.4 × 103

(
λ

0.01

)1/2( N

54

)
, (2.13)

Mc ≡
√

24π2PR
N2

Mpl � 1.3 × 10−5
(

N

54

)−1

Mpl, (2.14)

we see that M̃ is constrained to be M̃ = Mc . In the following we 
fix N � 54 for definiteness. We also see that observationally viable 
mixed Higgs-R2 inflation satisfies

ξ2

ξ2
c

+ M2
c

M2
= 1. (2.15)

From this parametrization, we see the following two limits:

• Pure-R2 inflation limit: ξ � ξc and M → Mc ,
• Pure-Higgs inflation limit: ξ → ξc and M → ∞.

Note that the pure-Higgs inflation limit does not respect the per-
turbativity condition (2.6). Also, in the whole parameter region, we 
define the Higgs-like and R2-like regimes as follows:

• R2-like regime:

ξ2

λ
<

M2
pl

3M2
, (2.16)

• Higgs-like regime:

ξ2

λ
>

M2
pl

3M2
. (2.17)

Fig. 1 shows the parameter space in the ξ -1/M plane with λ =
0.01 for the R2-like regime, Higgs-like regime, and strongly cou-
pled regime (2.6), which covers only part of the Higgs-like regime 
for λ < 1. Indeed, with the condition (2.15), the Higgs-like region 
without the strong coupling issue is given by 3.1 × 103√λ/0.01 �
ξ � 4.4 × 103√λ/0.01 (or 2 × 103√λ/0.01 � Mpl/M � 5.4 × 104). 
Therefore, there exists a parameter space within the Higgs-like re-
gion where the system is quantum mechanically under control up 
to the Planck scale [35,39].4

3. Inflaton dynamics and preheating after inflation

Let us now analyze the inflaton dynamics and its effect on the 
light direction (i.e. the phase direction) after inflation.

4 Note for comparison that in the minimally coupled case ξ = 0, the double in-
flationary h4-R2 model was first considered in [54] without identifying h with the 
Higgs field, and its scalar perturbation spectrum was derived in [55]. To obtain the 
correct value for the slope of the scalar power spectrum ns − 1 and to satisfy the 
upper limit on the tensor-to-scalar ratio r, viability of such a model requires its last 
∼ 60 e-folds to be in the R2-like regime that occurs for M <

√
λMpl , or if h2 is al-

ways less than M2
pl (and then the field h does not contribute to inflation at all). The 

same conclusion remains valid for 0 < ξ � 1, ξh2/M2
pl � 1, too.
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Fig. 1. Parameter space for different regimes in the mixed Higgs-R2 model with 
λ = 0.01. The red region is the strongly-coupled regime where perturbative analy-
sis is questionable (2.6). The blue and green regions are the Higgs-like and R2-like 
regimes, respectively. The blue line satisfies the condition for the observed curva-
ture power spectrum (2.15). The parameter points A, B, and C along the blue line 
represent our benchmark points: see Sec. 3.1. The black and gray points are the 
benchmark points for Figs. 2–3.

3.1. Background evolution

After inflation, both h and ϕ roll down rapidly to the origin and 
start to oscillate around it with the equations of motion

ϕ̈ + 3Hϕ̇ + α

2
e−αϕ ḣ2 + ∂U

∂ϕ
= 0, (3.1)

ḧ + 3Hḣ − αϕ̇ḣ + eαϕ ∂U

∂h
= 0, (3.2)

with 3M2
pl H

2 = 1

2
ϕ̇2 + 1

2
e−αϕ ḣ2 + U (ϕ,h). (3.3)

When the scalaron mass satisfies M <
√

λMpl, the effective single-
field description does not apply in the field oscillation regime, and 
the trajectory of the scalar fields as given by (3.1) and (3.2) be-
comes highly complicated. Figs. 2 show typical evolution of h (top 
panels) and ϕ (bottom panels) for three benchmark points chosen 
as follows:

(A) ξ/ξc � 0.9996, Mc/M � 0.0282 ↔ ξ � 4439, Mpl/M �
2.17 × 103,

(B) ξ/ξc � 0.9975, Mc/M � 0.0709 ↔ ξ = 4430, Mpl/M �
5.45 × 103,

(C) ξ/ξc � 0.9208, Mc/M � 0.39 ↔ ξ � 4089, Mpl/M =
3 × 104,

which satisfy the observational constraint (2.15). Note that param-
eter point A lies on the boundary to the strongly-coupled regime. 
Here we take the initial condition just before the end of inflation 
as ϕ = 1.2Mpl, ϕ̇ = 0, while h satisfies ∂U/∂h = 0 and ḣ = 0 at 
t = 0, but we have confirmed that our results remain unchanged if 
we take larger number of e-folds before the end of inflation. We 
see that the scalar fields are once trapped in the narrow valley 
for ϕ < 0 with the time scale �t ∼ M−1 and the h field oscillates 
rapidly with the effective mass squared ∼ ξ M2 (for |ϕ| � Mpl) 
around the stream line at the bottom of the valley.
3.2. Effective mass for the phase direction

In order to study quantum creation of the NG mode due to the 
spiky behavior of its mass term, it is convenient to define a canon-
ically normalized scalar field θc from the phase of the H field, 
H(x) = h(t)eiθ(x)/

√
2. Since the potential U is independent of θ , 

the relevant part of the Lagrangian reads

√−gELE ⊃ −1

2

√−gEe−αϕh2 gμν
E ∂μθ∂νθ

= 1

2
θ̇2

c − 1

2a2
(∇θc)

2 + 1

2

F̈

F
θ2

c + · · · , (3.4)

where θc(x) and F (t) are defined as

θc(x) ≡ a3/2(t)e−αϕ(t)/2h(t)θ(x) ≡ F (t)θ(x), (3.5)

in the Friedmann background, ds2 = −dt2 + a2(t)dx2, and a dot 
denotes differentiation with respect to t . Then we read off the ef-
fective mass of the NG mode as

m2
θc

= − F̈ (t)

F (t)
= −α

2

∂U

∂ϕ
+ eαϕ

h

∂U

∂h
− 3

4

U

M2
pl

+ 5

24

1

M2
pl

(
ϕ̇2 + e−αϕ ḣ2) , (3.6)

where we have used the background equations (3.1), (3.2), and 
(3.3). While the last two terms are always of the order of the Hub-
ble parameter, the first two terms can be much larger when the 
scalar field trajectory deviates from the valley (2.7). Figs. 3 show 
the time evolution of m2

θc
for our benchmark parameters (A), (B), 

and (C). The effective mass gets larger when ϕ gets negative and 
more or less the spikes still appear even in the case where the R2

term is present. We can also see that the height of the spikes gets 
lower and their width gets wider for smaller M , when the system 
is more R2-inflation like. In Figs. 4, we show the heights and the 
widths of the spikes as a function of M under the observational 
constraint (2.15). Here we define the width of the spikes as the 
full width at half maximum.

The behavior of the spikes can be understood analytically as 
follows. Just before the end of inflation, the energy density of the 
Universe is dominated by the potential term (2.9). Since the po-
tential energy would also dominate the kinetic energy when the 
ϕ field climbs up the alley ϕ < 0, the potential energy at h = 0 at 
the first oscillation can be written as

U (ϕ,h = 0) = C2
mU inf, (3.7)

which yields with Eq. (2.9)

e−αϕ = 1 + Cm
M̃

M
= 1 + Cm

√√√√ λM2
pl

3ξ2M2 + λM2
pl

at h = 0. (3.8)

Here Cm � 1 represents the dissipation of the potential energy 
from the plateau region during inflation to ϕ reaching the largest 
negative value after a half oscillation. Then the effective mass of 
the phase of H field at h = 0, which corresponds to the height of 
the spike, can be estimated as

(
msp

θc

)2 � M2
[

Cm

2
(6ξ + 1)

M̃

M
− C2

m

16

(
M̃

M

)2]
. (3.9)

For larger M(>
√

λMpl/ξ), we have (msp
θc

)2 � Cm
√

3λMMpl. Note 
that in this expression for sufficiently large M � √

λMpl and ξ 
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Fig. 2. Time evolution of the Higgs field h (top) and scalaron ϕ (bottom) for the parameter points (A) (left), (B) (middle), and (C) (right). We fixed λ = 0.01. See Fig. 1 for the 
three parameter points.

Fig. 3. Time evolution of the effective mass squared for the phase direction m2
θc

for the parameter points (A) (left), (B) (middle), and (C) (right). We fixed λ = 0.01. The top 
panels show the evolution over the full time range shown in Fig. 2, while the bottom panels are magnifications of the top panels around the first peak.
15 for which the single-field approximation gets better, we recover 
the formula in the pure-Higgs inflation (msp

θc
)2 � √

3CmλM2
pl [29]. 

Taking the observational constraint (2.15) into account, we obtain(
msp

θc

)2 ≈ Cm

√
3λ

(
M2 − M2

c
)
Mpl, (3.10)

for ξ 
 1. As discussed above, the duration of the first spike is 
determined by the period when the scalaron stays in the ϕ < 0
region, which is determined by the scalaron mass M . Therefore, 
the width of the spikes can also be estimated as

�tsp = CtM−1. (3.11)

Again, the formula for the pure-Higgs inflation �tsp � (
√

λMpl)
−1

is recovered at M � √
λMpl when the single field description gets 

5 These parameters do not respect the perturbativity condition Eq. (2.6).
better. Note that we cannot use Eqs. (3.9) and (3.11) any more 
when M significantly exceeds the spike timescale inverse in the 
pure-Higgs case M 
 √

λMpl. Fig. 4 shows the measured peak 
amplitude and timescale of the spikes, as well as our analytic es-
timates (3.10) and (3.11) with Cm � 0.25 and Ct � 0.2.6 The green 
triangles and the red disks are the values of the amplitude and 
the timescale estimated from the numerical time evolution, respec-
tively, while the brown dashed line and the blue solid line are the 
predictions of our analytic estimates (3.10) and (3.11), respectively. 
We see that the numerical results coincide with the analytic esti-
mates well.

6 A rough estimate of Cm goes as follows. For the pure Higgs or R2 inflation, the 
potential shape becomes ∝ (1 − e−αϕ)2. The slow roll condition max(|ε|, |η|) < 1
breaks down at e−αϕ = 2

√
3 − 3, when the inflaton potential energy is � 0.287

times its value at the plateau.
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Fig. 4. Peak amplitude and timescale of the spike in the effective mass squared 
of the imaginary field. The green triangles and the red disks are the numerically 
obtained peak amplitude and timescale of the mass spike, respectively, while the 
brown dashed line and the blue solid line are our analytic estimates (3.10) and 
(3.11) with Cm � 0.25 and Ct � 0.2.

3.3. Estimate on particle production

Let us roughly estimate the energy density of the particles pro-
duced in the first spike. We neglect particle production from the 
other oscillations because we are mainly interested in the effect 
of the strongest spike which appears in the pure-Higgs inflation. 
A more detailed analysis, including the consequences of other os-
cillations, will be presented elsewhere [56].

For the estimate of particle production from strong spikes, we 
can for example refer to the Appendix C of Ref. [57]. If we describe 
the strong spike with the following cosh-type spike function

m2
θc

(t) = m

2�t

1

cosh2(t/�t)
, (3.12)

and the produced field is in the vacuum for t → −∞, its number 
density after the spike is given by

nθc =
∫

d3k

(2π)3
fθc , fθc = cos2

(
π

2

√
1 + 2m�t

)
/ sinh2(πk�t),

(3.13)

with k being the wavenumber. Since we have used the full width 
at half maximum to estimate �tsp, we may identify it as �tsp =
�t × 2 ln(

√
2 + 1). With (msp

θc
)2 � m/2�t , we can estimate the en-

ergy density of the produced phase direction as

ρθc �
∫

d3k

(2π)3
kfθc ∼ 4.5 × 10−3�t−4

sp � 2.8

(
Ct

0.2

)−4

M4.

(3.14)

Here we estimated the cosine-squared in the numerator of
Eq. (3.13) to be 0.5.7 The estimate (3.14) is in agreement with the 
general result for particle creation in cosmology obtained in [58]
and with more detailed expression for the rate of particle creation 
in [59]. In particular, at the boundary to the strongly-coupled con-
dition M � √

4π/λM̃ , we have

ρθc � 4.5 × 106
(

λ

0.01

)−2( Ct

0.2

)−4

M̃4

� 7.6 × 10−4
(

λ

0.01

)−2( Ct

0.2

)−4

M̃2M2
pl, (3.15)

which is much smaller than the energy density carried by the in-
flaton just after the end of inflation is ρinf � U inf � M̃2M2

pl. For 

7 In fact, for M 
 M̃ , the parameter dependence m�t ∼ (msp
θc

)2(�tsp)2 ∝ Mpl/M
makes the argument of the cosine much larger than unity.
smaller M , the energy density of the phase direction becomes even 
smaller. Note that this discussion does not rely on the observa-
tional condition (2.12). Therefore we conclude that, even when we 
add R2 term so that the cut-off scale of the theory becomes the 
Planck scale, the spike still appears and is a real physical phe-
nomenon, but the reheating of the Universe does not complete 
with the violent production of the NG bosons from a single spike.

4. Discussion and conclusions

We have studied the effective mass of the NG mode for mixed 
Higgs-R2 model [34–37] and found that the effective mass has 
spikes over the preheating process as in the pure-Higgs infla-
tion [29]. The set-up is more reliable as the cut-off scale of the 
model is extended up to Mpl thanks to the scalaron originated 
from the R2 term. We found that the properties of the spikes are 
well described by the analytic formula Eqs. (3.10) and (3.11). The 
amplitude of the spikes becomes smaller when the model is more 
R2-inflation like. Remarkably, the energy scale of the spike is well 
below the cut-off scale of the model, contrary to the case of the 
pure Higgs inflation, so we conclude that the spiky behavior of the 
NG mode is a real physical phenomenon.

According to the estimation in Eq. (3.13), even in the extreme 
case with the parameters being on the boundary to the strongly-
coupled regime, the produced energy density of NG boson is much 
smaller than the total energy density of the Universe. Thus, the re-
heating cannot be completed within only one spike (see Eq. (3.15)). 
This conclusion is sharply distinctive from the one in the pure-
Higgs inflation. Although we have worked with the global U(1) 
scalar H, we expect that our conclusion remains unchanged for 
the realistic SU(2)L× U(1)Y case. Therefore, the parametric res-
onance of the transverse mode of the gauge bosons [20–22] or 
the perturbative decay of the scalaron would be the main chan-
nel of the depletion of the inflaton quanta. Similar analysis can 
be done in other UV-extension models of the Higgs inflation. The 
detailed study on the (p)reheating process will be presented else-
where [56].
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