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Abstract. It is increasingly acknowledged that, in order to
sustainably manage global freshwater resources, it is criti-
cal that we better understand the nature of human–hydrology
interactions at the broader catchment system scale. Yet to
date, a generic conceptual framework for building models
of catchment systems that include adequate representation
of socioeconomic systems – and the dynamic feedbacks be-
tween human and natural systems – has remained elusive. In
an attempt to work towards such a model, this paper outlines
a generic framework for models of socio-hydrology appli-
cable to agricultural catchments, made up of six key com-
ponents that combine to form the coupled system dynamics:
namely, catchment hydrology, population, economics, envi-
ronment, socioeconomic sensitivity and collective response.
The conceptual framework posits two novel constructs: (i) a
composite socioeconomic driving variable, termed the Com-
munity Sensitivity state variable, which seeks to capture the
perceived level of threat to a community’s quality of life,
and acts as a key link tying together one of the fundamental
feedback loops of the coupled system, and (ii) a Behavioural
Response variable as the observable feedback mechanism,
which reflects land and water management decisions rele-
vant to the hydrological context. The framework makes a
further contribution through the introduction of three macro-
scale parameters that enable it to normalise for differences in
climate, socioeconomic and political gradients across study
sites. In this way, the framework provides for both macro-
scale contextual parameters, which allow for comparative
studies to be undertaken, and catchment-specific conditions,

by way of tailored “closure relationships”, in order to ensure
that site-specific and application-specific contexts of socio-
hydrologic problems can be accommodated. To demon-
strate how such a framework would be applied, two socio-
hydrological case studies, taken from the Australian experi-
ence, are presented and the parameterisation approach that
would be taken in each case is discussed. Preliminary find-
ings in the case studies lend support to the conceptual theo-
ries outlined in the framework. It is envisioned that the appli-
cation of this framework across study sites and gradients will
aid in developing our understanding of the fundamental in-
teractions and feedbacks in such complex human–hydrology
systems, and allow hydrologists to improve social–ecological
systems modelling through better representation of human
feedbacks on hydrological processes.

1 Introduction

The history of mankind can be written in terms of
human interactions and interrelations with water.
(Biswas, 1970)

The vital importance of water as a resource for human
well-being has been recognised since ancient times in civil-
isations such as Egypt, India and China. In modern times,
many are now familiar with the adage that “water will be
the oil of the 21st century” (Annin, 2006). However, as Gle-
ick (1993) highlighted, this phrase omits the critical point
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that water, unlike oil, has no viable substitutes for human-
ity. As a result of growing populations, rapid and exten-
sive industrialisation, and over-allocation and mismanage-
ment of freshwater resources, a looming global water crisis
that is said to be “unprecedented in human history” has been
predicted (Falkenmark, 1997; Biswas, 1999; Postel, 2003;
Pearce, 2007; Barlow, 2007; Biswas and Tortajada, 2011;
Fishman, 2011).

It is widely recognised in the field of hydrology that human
actions have myriad impacts on hydrological dynamics at the
catchment system scale, including via land use changes, the
alteration of flow regimes through the construction of dams
and weirs, the deterioration of water quality through the pol-
lution of waterways, as well as numerous impacts on biogeo-
chemical cycles and riverine and lake ecology (Carpenter et
al., 2011; Montanari et al., 2013). Similarly, it is acknowl-
edged in the social sciences that the well-being of human
societies is extraordinarily dependent upon what has been
termed the “planet’s life-support system”, not only in terms
of global water needs, but also with respect to its role in
food production, poverty alleviation, energy production, hu-
man health, transport, climate regulation and ecosystem ser-
vices (Falkenmark, 2001, 2003). Falkenmark (2003, p. 2038)
makes the point that “to support the growing world popu-
lation, balancing will be needed between emerging societal
needs and long-term protection of the life-support system
upon which social and economic development ultimately de-
pends”. This sentiment is echoed in numerous other studies
(Biswas, 1997; Folke, 1998; Rockström et al., 2007, 2009;
Varis, 2008). To date, major advances in the disciplines of
hydrological sciences and water resources management have
helped us understand these challenges, yet it remains critical
that we better characterise and quantify the dynamic nature
of human–hydrology interactions, in order that we can effec-
tively manage them in a sustainable manner (Montanari et
al., 2013; Thompson et al., 2013).

Notwithstanding that the dynamic interconnection of
human and natural systems has long been documented
(e.g. Marsh, 1864; Thomas Jr., 1956; Falkenmark, 1979;
Turner et al., 1990; McDonnell and Pickett, 1993; Kates and
Clark, 1999), a practical understanding of the complex co-
evolution processes and interactions therein is still limited
(Low et al., 1999; Kinzig, 2001; Liu et al., 2007a). Integrated
Water Resources Management (IWRM) has historically been
the framework within which interactions between human de-
velopment and water resources have been explored. The lim-
itation of such an approach is that the examination of single
system components in isolation, such as treating scenario-
based water management solutions as boundary conditions to
hydrological models, is insufficient to capture the more infor-
mative co-evolving coupled dynamics and interactions over
long periods (Liu et al., 2008; Sivapalan et al., 2012). As a re-
sult of this knowledge gap, interdisciplinary research efforts
have emerged, such as the Coupled Human and Nature Sys-
tems (CHANS) (Liu et al., 2007a, b) and Social-Ecological

Systems (SES) communities (Berkes and Folke, 1998). The
focus of these efforts is on furthering our understanding of
the complex interactions within the continually evolving cou-
pled system, in terms of the feedbacks, nonlinearities, thresh-
olds, transformations and time lags. As observed by Schlüter
et al. (2012, p. 221), “while the importance of the human di-
mension and social dynamics for sustainable resource man-
agement is well recognised, the uncertainty generated by
human responses to institutional or environmental change
has only received limited attention so far”. The need for a
prescriptive conceptual framework which seeks to examine
complex dynamics resulting from interactions and feedbacks
between agents, resources and institutions on multiple levels
has been highlighted (Berkes and Folke, 1998; Anderies et
al., 2006b), with the caveat that “any theory devised to un-
derstand SESs. . . would span cognitive science, psychology,
economics, ecology, biogeochemistry, mathematics, physics,
etc.” (Anderies et al., 2006b, p. 1). In spite of the seemingly
Herculean task at hand, several recent important strides have
been made to this end (Schlüter and Pahl-Wostl, 2007; Os-
trom, 2009; Epstein et al., 2013; Lade et al., 2013; Schlüter
et al., 2013). An excellent review of SES model applications
using a host of different approaches within various fields of
research, including fisheries, rangelands, wildlife, ecological
economics and resilience and complex systems theory, can
be found in Schlüter et al. (2012).

Out of these initiatives, examples relevant to water re-
source management have been presented (Schlüter and Pahl-
Wostl, 2007; Schlüter et al., 2009). However, it is be-
ing increasingly acknowledged that an integrated “socio-
hydrology” or “hydro-sociology” approach is required to en-
gage hydrologists to more proactively bridge the gap that
presently exists in the interdisciplinary divide (Falkenmark,
1997, 1999; Sivapalan et al., 2012, 2014; Montanari et al.,
2013; Carey et al., 2014). Socio-hydrology effectively tack-
les the holistic integration of the socioeconomic and environ-
mental facets of hydrology, focusing on the exploration of
fundamental scientific principles of interactions, feedbacks
and co-evolution of human behaviour with the hydrologi-
cal system. It is important to note that, despite the many
similarities, unique challenges are faced in investigations of
coupled socio-hydrological systems relative to other cou-
pled SES studies. Specific issues pertinent to catchment sys-
tems include the potential for large-scale hydrologic infras-
tructure development (dams and river regulation) and links
between water availability and water quality. Furthermore,
the resolution of the slow processes that characterise the
hydrological system, non-stationarity in climate, and long
timescales required to monitor threshold shifts are all dis-
tinct features of such investigations. Finally, the specific vul-
nerability and responsiveness that the hydrological coupled
system displays in regard to climate change (Ribeiro Neto
et al., 2014) presents an additional challenge. Despite such
challenges, recent innovative socio-hydrology studies have
proposed conceptualised models focusing on human–flood
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interactions (Di Baldassarre et al., 2013a, b), urban water
security (Srinivasan, 2013), and downstream use of glacier
runoff (Carey et al., 2014), while others have focused on tai-
lored case-specific coupled model formulations (Liu et al.,
2014; Pande et al., 2013; van Emmerik et al., 2014).

The development of a robust internationally applicable
theoretical framework that has the capacity to guide the for-
mulation of localised socio-hydrology models is needed for
application across diverse study sites and application con-
texts. In doing so, such a framework can draw on emerg-
ing themes in the social sciences and SES literature to aug-
ment current directions in hydrology research. The resultant
framework would enable extensive empirical examination of
co-evolving dynamics across climate, socioeconomic and po-
litical gradients, with the ultimate aim of identifying underly-
ing fundamental principles inherent in the integrated system.

Given the challenging nature of the exercise, in order to
begin to detect certain key feedbacks and drivers in a highly
complex coupled system, as a starting point this paper out-
lines a model framework within the context of catchments
that are simplified “uni-dimensional” systems in terms of
economic activity and development. In light of the fact that
agriculture now covers almost 40 % of the world’s terres-
trial surface and accounts for approximately 85 % of global
consumptive freshwater use (Foley et al., 2005; Carpenter
et al., 2011), it is especially pertinent to examine agricul-
turally focused catchments given their global footprint. As a
result of changes in land use, land cover and irrigation, agri-
culture has significantly transformed the global hydrological
and ecological cycles (Gordon et al., 2010), with some stud-
ies documenting co-evolutionary dynamics (e.g. Anderies et
al., 2006a; Kandasamy et al., 2014), thus making it an ideal
focus for the study of socio-hydrology.

This paper therefore outlines a conceptual framework to
examine the coupled dynamics of integrated agricultural
socio-hydrology catchment systems. The paper proposes a
composite socioeconomic driving variable that acts as the
missing link tying together one of the key feedback loops
of the socio-hydrology system. It goes on to specify six key
functional components of the generic framework, showing
the flexibility inherent therein to account for both the macro-
scale context, as well as unique catchment-specific aspects,
which can be captured through locally tailored “closure rela-
tionships”. The paper concludes by demonstrating how such
a framework would be applied to two site-specific Australian
case studies, with a discussion on the parameterisation ap-
proach and characterisation of closure relationships for each.

2 Conceptual basis for a model of socio-hydrology

The conceptual framework put forward in this paper is a nec-
essary simplification of an extremely complex coupled sys-
tem. The intention however, is to build an approach able to
support a grassroots understanding of how the coupled sys-

tem might function, and to stress-test certain basic assump-
tions prior to progressing to more advanced and fully pa-
rameterised models. We can thus begin to comprehend the
crucial components, flows, nonlinear interactions, feedbacks
and responses of key system attributes that are essential steps
in the development of models for interdisciplinary and com-
plex problems (Heemskerk et al., 2003; Schlüter et al., 2012).

It is well established in the resilience literature that change
(whether drastic or incremental) acts as a catalyst to response
(e.g. Forbes et al., 2004; Dale et al., 2010). The question
is, what magnitude of change in what composite of factors
is sufficient to drive a measurable reaction in the first in-
stance? Furthermore, once a response is invoked, what are
the determinants of the immediacy and degree of that re-
sponse, and what, if any, are the lagged responses? Marginal
changes in the social, economic and environmental compo-
nents of the socio-hydrological system may be driven by ex-
ogenous factors external to the catchment (e.g. climate, mar-
ket prices and demand, political changes) or endogenous fac-
tors generated by internal feedbacks within the catchment
(as stipulated in the assumptions and component equations
of the model framework). Such changes invariably feed back
to the hydrological sub-system via a behavioural response
from the human sub-system, since humans will change the
rate at which they interact with the catchment water balance.
In this way, the two sub-systems are perpetually co-evolving
through time, and this forms the basic premise of the pro-
posed framework. The fundamental question we are moti-
vated to answer through application of a socio-hydrological
model is whatdrivesthe human response within the human
sub-system. As outlined above, the impacts of land and water
management decisions on the hydrological system, in terms
of water balance, flows and quality, are presently well un-
derstood and modelled. However, thedrivers of the human
feedback component at a system scale have remained elusive.
The goal of a socio-hydrology model is therefore to identify,
conceptualise and eventually quantify these drivers, so as to
formulate generalised principles that will form the basis of a
broadly applicable coupled model.

We are effectively employing a systemic approach in our
analysis of this particular brand of social-ecological system.
Resilience theory at its essence is indeed rooted in systems
thinking as it focuses on capturing and categorising the dy-
namics of change (Gunderson and Holling, 2002). We know
from general systems theory that complex systems, such as
that described here, display highly nonlinear tendencies with
attractors to certain stable states or repellors from unstable
states, and thresholds and rapid responses between state tran-
sitions may therefore emerge (Scheffer, 2009; Lade et al.,
2013). In formulating policy, understanding these system-
scale behaviours and the emergence of such dynamics can
offer guidance as to what the sustainable limits of a catch-
ment system are (Schlüter and Herrfahrdt-Pähle, 2011), and
to what extent complex trajectories (e.g. hysteresis) may ex-
ist between catchment states. For instance, a 3-D matrix of
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Figure 1. The socio-hydrology model as two interconnecting feed-
back loops.

catchment states defined by water availability (ST), degraded
land (AD) and catchment GDP (EC) could potentially show
a catchment moving from state 1 point of “highST–low AD–
low EC” to state 2 of “lowST–highAD–highEC”. Negative
feedbacks will stabilise the system such that it will resist be-
ing pushed away from its original position. However, positive
feedbacks and unstable dynamics will induce a shift to the
second position. The three key emergent properties we seek
to understand in the interaction of the socio-hydrological
system from a systems perspective are (1) the resilience of
the system in terms of its stability and threshold behaviour
from one state to another, and in so doing to gauge the na-
ture and magnitude of negative and positive feedbacks, re-
spectively, (2) the differences in timescales and inherent lags
between system interactions and feedbacks, and (3) the de-
gree of adaptation and learning intrinsic to the human system
(Allison and Hobbs, 2004; Gunderson and Holling, 2002).
These behaviours are what we are aiming to investigate with
the socio-hydrology model in order to better understand the
workings of the coupled system. Understanding these key
system features, as well as the system variables that charac-
terise its dynamics, would enable targeted policies and man-
agement strategies that promote sustainable water resource
management, especially with respect to case studies at ear-
lier stages of the evolving cycle.

2.1 The two key feedback loops

In this section we highlight two principal feedback loops that
emerge in the dynamics of the coupled system (Fig. 1). The
first is referred to as the “Economic-Population Loop” and
the second as the “Sensitivity Loop”. With respect to the
former, the increasing trend in global water use has been
closely linked to both population growth and economic de-
velopment over the past few centuries (Vörösmarty et al.,
2005). If we take a pristine catchment (pre-human influ-
ence) we would observe certain hydrological variables as
a result of its climate and geophysical make-up. These ef-
fectively determine the initial condition for available water
quantity and quality. A certain proportion of this available
water would be employed towards economic gain (for ex-

ample, for normal household use and agriculture). This eco-
nomic gain would be distributed (often unequally) on a per
capita basis throughout the catchment community. It follows
that, as the per capita economic gain increases, the catch-
ment presents a more attractive lifestyle proposition caus-
ing a net migration of people into the catchment, such that
population size would increase, as well as its rate of growth,
similar to Myrdal’s (1957) concept of “circular and cumu-
lative causation”. A growing population would be accom-
panied by higher levels of demand for water and land, by
virtue of increased household consumption and a growing
requirement for economic development to sustain the larger
community (Molle, 2003). In addition, as a rural catch-
ment with a predominantly agricultural micro-economy in-
creases in prosperity, water demand will originate from addi-
tional sources independent of population growth, to a point,
e.g. from the manufacturing sector, thermoelectric sector and
increasingly sophisticated domestic household needs (as ob-
served by Flörke et al., 2013).

This heightened demand is likely to be one of the key
drivers feeding into water management decisions, such as
extraction rates, land clearance rates and the construction of
storage facilities. Management decisions would be reflected
in the community’s economic prosperity in the short term,
and filter through to water quantity and quality variables over
a longer timescale. From this point, the water variables can
be viewed more as limiting variables or lower boundary con-
ditions, whereby economic growth will continue to be pos-
sible until such time that the quantity or quality of natural
resources impede further growth. Water use efficiency mea-
sures would feed into the cycle to extend the life or eco-
nomic productivity of these limiting variables. However, to
the extent that water flows reduce, water quality deteriorates
or land degrades, economic growth will naturally be con-
strained. In the case of common pool resources, the resource
that underpins development, in this case the freshwater re-
source, is often prone to over-exploitation, which can ulti-
mately lead to a deterioration in local social and economic
conditions (Hardin, 1968). This will in turn encourage migra-
tion out of the catchment as people go in search of other work
and income opportunities, which will in turn reduce the de-
mand for water and land. Management decisions might then
reasonably respond by reducing extraction rates and environ-
mental restoration. This is the first feedback loop that merits
investigation.

The second loop is modelled on a three-pronged exposure–
sensitivity–response paradigm, and introduces a Community
Sensitivity state variable. There is support for such a fusion
of vulnerability and resilience approaches when examining
complex coupled human–environment systems in sustain-
ability science (Turner, 2010). Turner et al. (2003) propose
a generalised framework for assessing the sustainability of
coupled systems that employs aspects of exposure, sensitiv-
ity and resilience. Their framework is broadly consistent with
the conceptual framework proposed in this paper, in that the
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exposureto change (whether drastic or gradual) in the socio-
hydrological system is captured by the primary sub-system
functions originating from a change in the land and water
variables; thesensitivityto that exposure is what we seek to
capture in our sensitivity variable; while the demonstrated
resilienceof the system is effectively reflected within a be-
havioural response function that drives actual change within
the catchment (further discussed in Sect. 3.6).

The underlying premise of the Sensitivity Loop is that be-
haviour and water management decisions are directly driven
by a community’s social and environmental values, local ac-
tion, lobbies and the like, all of which reflect community sen-
sitivity to direct and indirect impacts of a marginal change in
one or more of the water variables. The behavioural response,
as before, will impact future available water quantity and
quality. The proposition in this paper is that as the Sensitivity
state variable displays an upward or downward shift, there
will be a corresponding observable shift in a Behavioural
Response function. It is hypothesised that as Sensitivity in-
creases, behaviour and management decisions will tend to-
wards reducing the community’s impact on the basin’s hy-
drological signature (i.e. a move towards a more natural en-
vironment). Conversely, lower sensitivity rates will be asso-
ciated with more aggressive behavioural responses that tend
towards manipulating available water resources to the com-
munity’s needs (i.e. a more observable anthropogenic foot-
print).

The assumption of rational behaviour in this context per-
tains to the likelihood that overarching community behaviour
will tend towards the longer-term collective good, rather than
the short-term individual good. One of the challenges asso-
ciated with the management of water resources is that it is a
common pool, open access resource, and as a consequence it
is potentially prone to overharvesting as individuals seek to
optimise use, otherwise known as the “tragedy of the com-
mons” (Hardin, 1968). In recent decades however, the pre-
diction of collective over-exploitation of the resource under
the rational-agents paradigm has been called into question
(Ostrom et al., 2002). It has become increasingly apparent
that such individual optimisation is not always the case, and
that in fact the degree of collective co-operation in commons
dilemmas is influenced by both micro-situational variables
(e.g. heterogeneity among agents, group size, communica-
tion, reputation, time horizons) and the broader context (An-
deries and Janssen, 2011; Tavoni et al., 2012; Anderies et al.,
2013). This is in line with Giddens’ (1984) early work on
structuration theory, which posits that social phenomena are
the result of both agency and social structure. Indeed, Kinzig
et al. (2013) note that as adopters of a particular behaviour
reach a critical quorum, which may be as few as 10 % of
the population, a tipping point may be reached that causes
the new norms to be more widely adopted by the commu-
nity, such that a collective move towards more environmen-
tally sustainable practices occurs. Thus, a composite variable
based on collective community sensitivity as a driver to co-
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operative action is achievable with the use of agent-based
models (Tavoni et al., 2012) that would account for the di-
versity of actions by individual actors within the catchment
community.

Figure 2a, b illustrate hypothetically how the Sensitiv-
ity state variable is expected to vary over time in an ide-
alised case. In the first phase (Expansion) there is a strong
drive for anthropocentric behaviour, with active modifica-
tion of the water balance via land clearing, water extractions
and the construction of storage infrastructure. A sharp de-
cline in community sensitivity levels would be observable
in this phase driven by increasing economic prosperity and
an aggressive rate of environmental modification to suit de-
velopment needs. The second phase (Contraction) is charac-
terised by a cessation in environmental modification. Eco-
nomic prosperity could still be increasing during this phase
(e.g. driven by increased efficiency and mechanisation) how-
ever it is generally offset by the appearance of negative envi-
ronmental consequences. The first two phases can be thought
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of as the positive feedback loop indicative of the Economic-
Population Loop described in Fig.1. The third phase (Reces-
sion) is comprised of a sharp cumulative decline in the con-
dition of environmental resources, accompanied by a down-
turn in economic prosperity linked to the resource degrada-
tion. The negative feedbacks inherent in the Sensitivity Loop
take effect during this phase. The fourth phase (Recovery and
New Equilibrium) is characterised by a shift in behaviour
patterns towards enviro-centric management and policy fo-
cused on alleviating the negative consequences of a legacy of
expansion. The system shifts to a new equilibrium state (B2),
that may then be subject to a relatively small magnitude of
oscillation beyond this point. There are numerous examples
in the literature where this pattern of a positive feedback loop
followed by a negative feedback loop (i.e. aggressive devel-
opment followed by remedial management efforts) has been
observed in local and regional-scale socio-hydrological sys-
tems: the Saskatchewan River basin in Canada (Gober and
Wheater, 2014), the Tarim River basin in China (Liu et al.,
2014), the Murrumbidgee River basin in eastern Australia
(Kandasamy et al., 2014), the West Australian “Wheatbelt”
(Allison and Hobbs, 2004), the California Delta in the US
(Norgaard et al., 2009) and several other basins around the
world (Molden et al., 2001; Molle, 2003; Vörösmarty et al.,
2005; Kinzig et al., 2006; Savenije et al., 2014). Indeed, these
dynamics have also been observed at a larger global system
scale (Cosgrove and Rijsberman, 2000). We acknowledge
that Fig. 2 is hypothetical and real-world cases will exhibit
departures from the idealised trajectory depicted.

2.2 Identifying the missing link: community sensitivity
as a state variable

A clear starting point in the development of a systems model
spanning water resources and human activity requires the
definition of a set of state variables and the core “curren-
cies” of the model. In general terms, these relate to: (a) water
availability and environmental quality, (b) economic value of
the catchment system, and (c) social and population dynam-
ics and structure. However, the challenge in modelling both
socioeconomic and hydrological systems is that it is difficult
to define what connects this collection of catchment system
variables.

In the framework, we propose a composite driving state
variable that can be thought of as the community’s sensitiv-
ity to a change in hydrological variables, as it begins to man-
ifest in associated economic and environmental variables.
In the simplest sense, the greater the collective sensitivity,
the greater will be the stimulus to take enviro-centric action
(Falkenmark, 1997; Folke et al., 2010) and this creates a neg-
ative feedback that will promote stability. Likewise, the lower
the sensitivity, the less likelihood that a change in hydrolog-
ical variables will lead to meaningful enviro-centric action,
and the population will continue to drive the system towards
a different state-space location that may be more or less

sustainable. The drivers of collective human values, emo-
tions, perceptions and behaviour, already forms a body of
research within the psychology and natural resource manage-
ment fields, with myriad theories and ongoing debate (Ajzen,
1985; Broderick, 2007; Stein et al., 1999; Vanclay, 1999,
2004; Vaske and Donnelly, 1999; Armitage and Christian,
2003; Seymour et al., 2010; Mankad, 2012). This paper does
not aim to contribute to these debates. Rather, from a purely
socio-hydrological context, we are seeking to simplify these
drivers into observable proxies that enable an understanding
of how the coupled system interacts. We define these prox-
ies as socio-hydrological “closure relationships”, which refer
to the formalisation of certain contextually-specific relation-
ships with mathematical functions in order to fully resolve
interdependencies required to make equations determinate.

This paper puts forward the suggestion that a community’s
sensitivity stems from its perceived level of threat to its qual-
ity of life, which could also be thought of in terms of a dis-
ruption to its established norms and behaviours (Kinzig et al.,
2013). The more a community perceives its quality of life to
be under threat, the more likely it is to display heightened
sensitivity to a marginal change in factors that could sub-
sequently negatively impact its quality of life. Conversely,
the less a community perceives its quality of life to be under
threat, the less likely it is to be sensitive (and hence react)
to marginal changes in such variables. In this way, the sensi-
tivity is related to how any marginal change in hydrological
variables manifests itself in the economic, social and envi-
ronmental dimensions that more directly pertain to a com-
munity’s overall quality of life. Indeed, there is evidence to
support the notion that the behaviour of a watershed commu-
nity, with respect to water management, is dependent upon
its heldperceptionsof the severity and magnitude of prob-
lems it faces (Molle, 1991, 2003; Turral, 1998; Zilberman
et al., 2011). Although most of this literature addresses re-
sponse management to severe water shortages or disasters,
these are still extreme manifestations of the inherent causal
link between perceptions of threat and action.

There is support in the psychology literature for the use
of a “perceived threat” variable as a precursor to action. Ac-
cording to protection motivation theory (Rogers, 1975) the
notion of a threat can be broken down into three compo-
nents: (i) threat vulnerability, or the likelihood that the threat
will affect the individual directly, (ii) threat severity, or the
degree of personal impact that would result to the individual,
and (iii) response efficacy, or the belief as to one’s ability to
cope with the threat (which could also be couched in terms of
perceived resilience). In so far as this theory has been applied
to the environmental sciences, Mankad and Tapsuwan (2011)
found that perceptions of threat vulnerability and severity in
relation to future water shortages were significantly related
to adaptation and mitigation behaviour. Similarly, Baldassare
and Katz (1992) found that personal threat perception was a
more robust predictor of pro-environmental behaviours rel-
ative to demographic variables. Furthermore, there is ample
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evidence in the literature to support the view that people’s
perceptions and propensity to act are directly related to their
degree of physical proximity and personal experience with
the issues faced. Put another way, people tend to be most
sensitive to those things that impactdirectlyupon their qual-
ity of life (Kollmuss and Agyeman, 2002; Rolfe et al., 2005;
Broderick, 2007; Gooch and Rigano, 2010).

Resilience, in its traditional sense, hinges upon the notion
of positive, adaptive responses that may be preventative or
responsive in nature, in order to avoid or moderate negative
consequences (Masten et al., 1990; Luthar et al., 2000). Al-
though the concept of resilience originated in the ecological
sciences (Holling, 1973) it has been found to be particularly
useful in the examination of coupled human–nature system
studies (Berkes and Folke, 1998; Berkes and Jolly, 2002;
Berkes et al., 2003; Falkenmark, 2003; Folke, 2003; Anderies
et al., 2004; Folke, 2006; Forbes et al., 2009; Amundsen,
2012). Whether used in the field of psychology, ecology or
social science, the concept is based upon the premise of a
system’s response tochange. Negative consequences in our
model are analysed with respect to the catchment commu-
nity’s quality of life. Given that sensitivity, as applied in this
paper, is essentially a subjective variable, it could prove ulti-
mately impossible to quantify in absolute terms in any widely
applicable way. This paper therefore posits the use of arel-
ative scale. In this way, the scale would reflect a marginal
change, as opposed to reporting an absolute value, thus shift-
ing the focus to the direction and relative magnitude of any
movement.

From a model standpoint, the overall objective is to de-
velop a lifestyle sensitivity variable that is capable of ade-
quately capturing a community’s shifting perception of its
own vulnerability, such that it is a reasonable precursor to
observable action. Community perceptions have generally
been canvassed using qualitative means (i.e. interviews, sur-
veys) as it is an inherently subjective trait (Broderick, 2007;
Guimarães et al., 2012; Tolun et al., 2012). Given that it is
only possible to canvass perceptions in this manner at a given
point in time, we are precluded from doing this in the present
context as we are attempting to capture phenomena and feed-
backs over historical periods of a century or more. At present,
there is no prescriptive method for quantifying or modelling
human perceptions to changes in their environment (environ-
mental, social, economic or otherwise) (Jones et al., 2011;
Lynam and Brown, 2012) and we therefore resort to proxies
(discussed in more detail in Sect. 3.5). However, it is conceiv-
able that at some point in the future, advancements in mental
models research will enable the substitution of a more so-
phisticated parameterisation of our sensitivity variable.

3 The six key components of a generic framework

The conceptual foundations outlined above are used to un-
derpin the construction of a prescriptive socio-hydrology

Rainfall/ QET

Water Balance Model:

Wetland 
& Ri

Water 

α: Climate Regime Scalar
β: Socioeconomic Regime Scalar
φ: Political Regime Scalar

θ: Soil Moisture
hWT: Water Table Height
ω: Fraction of Non‐Conformists

State variables : blue
Derived variables: green
Boundary conditions: red 
Parameters: purple

Ground 
water 
Storage

Vadose
Zone 
Storage

Reservoir 
Storage

& River 
Storage

Quality

Environmental 
Water Quality Environmental Land 

Change in 
Water 
Availability

θhWT

Land Use Model:

Catchment 
Area

Land 
Allocated to 
Agriculture Degraded 

Land

Commodity Price

Water 
Quantity

Productivity

Price of Water

Availability 
over time Native 

Vegetation

Land Use

Catchment 
Economic 

GDP

Ecosystem 
“Lifestyle” 
Services

Population 
(P )

Change in 
Ecosystem 
Services

Change in 
Economic 

Land Use 
Dynamics

Efficiency 

Subsidies

Community 
Sensitivity (V)

Demand for 
Land & Water

(Pn)

α
β

φ

Services 
over time

Productivity 
over time

Improvements

ω

Social 
Cohesion

Impetus for 
Action (Δχ)

Economic 
Development 
Quotient

Demand 
for 

Expansion

Change in 
Community 
Sensitivity 
over time

Economic 
Diversity 
Quotient

Economic 
Growth

Annual Rate of 
Extractions 

(RE)

Annual Change 
in Storage 

Capacity (Smax)

Annual Rate of 
Land Clearing/ 

Revegetation (AC)

Figure 3. A generic socio-hydrology conceptual framework for ap-
plication to agricultural catchments.

framework for application to agricultural catchments. The
framework in a generic form consists of six components
that together combine to form a coupled system capturing
the feedbacks previously highlighted (Fig. 3). The follow-
ing section describes each of the main framework compo-
nents with discussion of associated functional relationships
that are required to be parameterised (the reader is referred
to Appendix A for a complete list of variables and associated
measurement units). The first four components can be mod-
elled in numerous ways, with the level of complexity inherent
in the chosen method up to individual practitioners to deter-
mine, depending on the relative importance of each aspect to
the investigation at hand. However, to demonstrate how the
framework would be applied, we have sketched some generic
basic concepts that could be applied to realise each compo-
nent.

3.1 Catchment hydrology

A suitable water balance model is required to conduct the
coupled simulations and this may take the form of a simple
conceptual water balance model (e.g. Farmer et al., 2003),
or a more complex hydrological model. At a minimum, the
model must accommodate an array of input variables based
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Figure 4. A simple catchment water balance model that includes
the minimum necessary components for application of the concep-
tual framework. Groundwater (SGW), vadose zone (SUS), wetland
(SW) and reservoir (SQ) water stores are included. Cumulative man-
made storage capacity (Smax) must also be included. Net flows
(QOUT) are modelled using surface flow (QS), subsurface flows
(QSS), managed diverted (QRin) and released (QRout) flows, and
environmental flows (QES). Managed extractions made from the
system from each of groundwater (RGW), surface (RSW) and reser-
voir (RQ) sources must be accounted for. Land use decisions must
also be reflected, such that area of land cleared (AC), area of remain-
ing land comprised of natural vegetation (AN) and area of degraded
land (AD) must form a dynamic part of the model.

on the basic geophysical properties of the catchment, climate
forcing, and also allow for anthropogenic influences on the
hydrological signature of the basin. For most cases a model
setup where the catchment is divided into sub-catchments
(i.e. semi-distributed) with each accounting for dynamics
of soil moisture, groundwater stores, evapotranspiration and
surface water runoff and routing or storage (as relevant)
would be suitable. Where the underlying socio-hydrologic
case study requires resolution of changes to water quality,
then this model must be extended to simulate water quality
dynamics.

For the purposes of this paper, the specification of the wa-
ter balance model is only covered in general terms, as de-
picted in Fig. 4, and individual case study applications of
the framework would require contextually relevant imple-
mentations. The key attributes the model must have however,
to support simulation of the coupled dynamics, is to allow
for a link to water-related management decisions relevant at
the catchment system scale. These include ability to accom-
modate within the catchment water balance: (i) changes in
land cover (AC; e.g. due to clearing of native vegetation),
(ii) changes in the rate of extractions of either surface water
or groundwater for economic activity (RE), and (iii) changes
in the capacity for water storage (Smax; e.g. development
or removal of reservoirs or other forms of river regulation).
Based on behavioural responses outlined below, these three

mechanisms form the core links that allow the water balance
to be modified by the catchment population.

3.2 Population dynamics

The Demographic Transition Model has been used exten-
sively to model the relationship between development and
population in human geography (Jones, 2012), and may be
employed to calculate the catchment population. This ap-
proach bases population dynamics on changes in the birth
rate and death rate as a country moves through five different
stages of development. Extensions and variations of the core
model have been developed for various countries, which al-
low the potential for more tailored versions of the model to
be applied. In addition to the birth rate and mortality rate, the
net permanent migration rate can be calculated by accommo-
dating various “push” and “pull” factors that focus on local
economic, environmental and political conditions (Fouberg
et al., 2010). In general terms, the population state variable,
Pn, would evolve according to

dPn

dt
= (b − m + µ)Pn, (1)

whereb is the annual birth rate,m is the annual mortality
rate, andµ is the annual net migration rate. Migration is
driven by a wide range of local and external factors and is
beyond the scope of this paper to cover in detail, however
depending on the application context, it could be driven by
internally derived variables related to the catchment system,
for example, economic benefit of crop production or ecosys-
tem services and conditions that support a high quality of life.
Additional factors such as natural (e.g. earthquakes, drought)
and man-made (e.g. war) hazards could act as “push” factors.

Various applications of this socio-hydrology framework
may elect to parameterise this variable differently – for ex-
ample, by employing a locally developed population model,
or indeed by holding population as an externally provided
boundary condition if the rate of change of population is not
a core part of the relevant investigation, as the case may be.

3.3 Economic function

Within the model framework the economics of the catch-
ment, captured in its simplest form, can be made up of a
benefit component (i.e. land productivity) and a cost compo-
nent (i.e. broken down into agricultural cost and water supply
cost). The first component relates to the economic benefits
resulting from agricultural activities and can be calculated
using an income per m2 metric based on global commodity
prices, considering the dominant local agricultural enterprise
undertaken (e.g. rice, wheat, beef, dairy, etc.). Where rele-
vant, this can be tempered by a land degradation scaling fac-
tor, which reflects the extent of salinisation or other form of
landscape dysfunction, thus reducing the effective area avail-
able for economic expansion. This component will be par-
tially driven by land-use management decisions (AC). With
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respect to the second component, this can be represented by
a cost per m2 metric intended to capture direct farming costs
(i.e. labour, machinery, fertilisers, etc.) and a cost per m3

metric intended to capture the cost of water to sustain the
catchment population (i.e. for irrigation and other household
and industrial use). The latter water supply component is
thus driven by management decisions regarding the amount
of water that is available for supply and allocation (Smax and
RE), and would take into account any subsidies offered on the
price of water, as well as supply-driven changes in the price
of water to the extent that water resources become scarce. It
should be noted that water usage in this instance should al-
ready reflect any potentially negative impacts of deteriorating
water quality below drinking/irrigation grade, and may have
a graded-scale of cost to account for local complexities.

These components together provide the direct net basic
economic benefit. However, it is widely accepted within the
environmental economics literature that agriculture multi-
plier effects exist, as basic earnings are disseminated further
into non-agricultural sectors of the local and national econ-
omy (Johnston and Mellor, 1961; Byerlee et al., 2005; Beze-
mer and Headey, 2008). This may be captured by a multi-
plier, τA , that can be incorporated for a more realistic indica-
tion of the community’s prosperity derived from agricultural
productivity growth. Although a complex calculation ofτA
is beyond the scope and intent of this paper, a simplistic cal-
culation tied to the annual national household savings rate
could be used, or alternatively,τA could be set to 1 in the
simplest case. Thus an economic function of the form

Ec =
[
pcAC (1− AD)Bc

]
τA − [(cAAC (1− AD))

+
(
pwcUc + pwpUp

)]
± Eext (2a)

Epc = Ec/Pn (2b)

can be adopted, whereEc is the total economic gain within
the catchment economy,pc is the global commodity price
of the predominant agricultural crop or activity,AC is the
cleared land allocated to agriculture,AD is the fraction of
degraded cleared land within the catchment unsuitable for
agricultural production,Bc represents the crop or pasture
biomass,τA is the economic multiplier of agriculture,cA is
the non-water related cost of undertaking the relevant agri-
cultural crop or enterprise,pwc is the price of irrigation wa-
ter, pwp is the price of water supplied for household use,
andUc andUp are the total quantity of water supplied for
irrigation and household and other use, respectively, within
the catchment. In a dryland farming context, the available
biomass from withinAC will depend upon the recent cli-
matic conditions and will respond to periodic shifts in av-
erage soil moisture,θ , for example. The land productivity
component is thus directly driven by the outputs of the hy-
drology model (e.g. crop or pasture productivity will increase
during suitable soil moisture conditions and irrigation water
supply and will be limited by expansion of degraded land

area), and management decisions from the Behavioural Re-
sponse model, described below, will alter the rate at which
AC increases or decreases. To the extent agricultural subsi-
dies are in place, given the diverse forms such subsidies may
take, we leave it to individual practitioners to determine the
most appropriate catchment-specific approach (e.g. via a re-
duction in the agricultural cost component) depending on the
nature of the subsidy in question.

It is important to note that such metrics are felt to suf-
ficiently capture the economics of a predominantly agricul-
tural catchment.Eext is included as an optional variable to
account for income generated within the catchment from in-
dustry sources independent of agriculture, and could be set
to zero in the simplest case. To the extent that the catchment
in question has additional industries, such as a strong fish-
ing industry, manufacturing industry or hydropower plants,
the income generated from such industries could be captured
in one of two ways. The first is through a dynamic model
or equation similar to Eq. (2a) tailored to the industry in
question. Alternatively, such income could more simply be
treated as a boundary condition and incorporated viaEext
(i.e. dollar per annum metric derived from the relevant in-
dustry). We leave it to individual practitioners to determine
which approach is more appropriate depending on the nature
of the investigation being undertaken, and we highlight the
opportunity this presents for the model framework to couple
with more complex economic models. To the extent that a
more detailed catchment-specific economic model is avail-
able, there is scope to integrate such a model with the more
generalised function outlined above.

3.4 Ecosystem services function

In addition to the economic growth driving activity within the
catchment, the benefit derived from lifestyle-related ecosys-
tem services (LES) must be considered. Given that the accu-
rate valuation of ecosystem services continues to be an ex-
tremely complex undertaking (Bengston, 2008), the frame-
work proposes to account forLES via an incremental scale
that demonstrates the relative magnitude and direction of an
improvement or degeneration. This circumvents the need to
directly measure ecosystem services, by providing a lumped
indicator that could be customised for specific applications.
For the sake of argument, a number of general proxies could
be used, such as changes in measured water quality param-
eters, and surveys measuring the abundance and number of
species of fish, vegetation and birds. It could also incorpo-
rate the percentage of natural vegetation (denoted asAN).
Changes in each of these factors may be measured on an ab-
solute basis, equating to a net positive or negative percentage
change in overallLES that is then used to effectively reduce
or increase the Sensitivity variable described next.

If we consider an example of an agricultural catchment
impacted by water diversions and experiencing problems
associated with water shortage, wetland degradation and
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eutrophication, then a simpleLES function may be envi-
sioned that is able to link predictable functional relationships
amongst certain core primary hydrology and land use vari-
ables to the extent of consequential damage to ecosystem
services, for example

LES = f
(
WQ

)
+ f (QES) + f (SW) + f (AN), (3)

whereWQ is a measure of the relevant water quality vari-
ables (total suspended solids, total nutrients, cyanobacteria,
pathogens etc.),QES relates to environmental or residual
flow in riverine environments,SW represents river and wet-
land water storage to the extent that important wetlands exist
within the catchment, andAN is the fraction of the landscape
covered by natural deep-rooted vegetation. As it stands, the
above equation assumes equal weightings for each of these
variables, however inclusion of different weightings may be
more suitable if the weighting factors may be appropriately
derived (e.g. similar to Imberger et al. (2007) where stake-
holder survey techniques were employed, bearing in mind
however that such a technique would only provide present-
day user-defined weightings). We acknowledge that this is
highly simplified but use this example to demonstrate how
empirically observable trends in the condition of the catch-
ment’s land and water resources can be used to develop a
proxy indicator that reflects the community’s view of envi-
ronmental benefits that the catchment is providing.

3.5 Sensitivity state variable

The Sensitivity function proposed here is comprised of six
elements, three of which are national or regional in scale
(macro-scale contextual parameters) and three of which per-
tain more specifically to local catchment dynamics. This ap-
proach of using local dynamic variables supplemented by the
regional and national context in the examination of coupled
human–nature systems, is supported in the literature (Liu et
al., 2007a). The three macro-scale parameters to be applied
comprise the regional climate regime in which the catchment
is located (α), the national socioeconomic development con-
text (β), and the national political regime (ϕ), whilst the three
catchment-scale elements pertain to water abundance, and
the economic and environmental well-being experienced by
the catchment community.

The first macro-scale contextual parameter we introduce,
α, reflects the underlying regional climate regime within
which the catchment is located, with drier catchments ex-
pected to display a greater reaction in sensitivity levels, com-
pared with catchments that have abundant water resources,
as the same magnitude of change in water quantity will elicit
different consequences (Cumming et al., 2005; Simane et al.,
2012). Thus a “dryness” scale is adopted, with 0 correspond-
ing to a very arid catchment, and 1 corresponding with an ex-
tremely wet catchment. Whilst several metrics may be used
for this purpose, widely used indices include the Dryness In-
dex (Ep/P ) or the UNEP (1997) Aridity Index (P /QET).

The second macro-scale contextual parameter,β, reflects
the influence of the national socioeconomic regime on per-
ceived catchment community sensitivity levels. As nations
move along the scale from rural to transitional to industri-
alised, it is expected that perceived resilience levels increase.
Some studies have explained evidence of this connection
by virtue of the increase in income diversification as coun-
tries move along the development scale from a rural econ-
omy dependent upon a narrow resource base, to an industri-
alised economy dependent upon a more diversified resource
base (Adger, 2000; Biswas and Tortajada, 2001; Molle, 2003;
Briguglio et al., 2009; Smith et al., 2012). Others have fo-
cused on the increased social and economic capacity to re-
spond to change that goes hand in hand with more devel-
oped and technologically advanced economies (Allan, 1996;
Folke, 2003; Sherrieb et al., 2010). In this way, we seek to
capture the way in whichβ interacts with the Sensitivity
variable,V , where wealthier more developed economies are
more able to proactively respond to water stress by modify-
ing the catchment water balance, thus making such societies
less sensitive to these pressures. This does not in itself imply
that the society will in fact implement such changes (with
rigidity and “lock-in” traps being noted examples of such
failures; Scheffer and Westley, 2007), but rather that it has
the ability to do so, and thus its perceived level of threat is
lower. The Human Development Index (HDI) has been em-
ployed by the UNDP since 1990 to compare economic devel-
opment across nations (UNDP, 1990), and it is proposed that
the HDI scale be incorporated into our analysis, such that 0
represents a subsistence level rural economy, and 1 is a fully
industrialised economy. For example, the inequality-adjusted
HDI (Human Development Report, 2013) for a developed
nation such as Australia is 0.864 (labelled “very high human
development”), whilst transitional economies such as China
and Vietnam score 0.543 and 0.531 respectively (medium
human development), and a developing economy such as
Ethiopia scores 0.269 (low human development). It is note-
worthy that there is a marked observable difference between
the climate regimes of developed versus developing coun-
tries, which may amplify certain effects. In 1961, a United
Nations report observed that developed nations are generally
located in temperate climate zones while developing nations
are predominantly located in tropical and semi-tropical re-
gions where seasonal rainfall patterns are more pronounced
(Biswas, 2004).

The third macro-scale contextual parameter to be captured
is the national political regime,ϕ, in which the catchment
operates. This is used as a moderating variable to reflect how
responsive the government is to community sentiment. For
instance, in a democratic society where government elections
are regularly held such that community sentiment must be
taken into account, it is expected that the behavioural re-
sponse, at the government level in particular, is relatively
more responsive to community sentiment. In contrast, in an
authoritarian regime, it is expected that the signal would be
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diminished due to corruption or self-interest within govern-
ment. Molle (2003) concedes that the degree of decentrali-
sation and democratisation of government can influence how
negative impacts are perceived and addressed. However, the
evidence is not definitive as to which model is best able
or likely to affect change. For our purposes, the proposed
political scalar is more concerned with whether the politi-
cal regime in place is animpedimentto the wishes of the
community. To this end, the more democratic a regime, the
less likely that there will be an active impediment between
community sensitivity and response. It is also worth noting
that Forbes et al. (2004) found a link between the stabil-
ity of a political regime and community vulnerability – the
greater the stability and stronger the regulatory framework,
the lower the vulnerability of the community. Therefore, it
is proposed that a scale such as the Corruption Perception
Index (CPI) by Transparency International (2012), would
be appropriate, though others may also emerge depending
on specific contexts. By way of example, the CPI for Aus-
tralia is 85 (i.e. considered “very clean”), whilst China scores
39 (considered “somewhat corrupt”), and Russia scores 28
(i.e. deemed “very corrupt”). Therefore, for lack of additional
data the proxies to be used for the three macro-scale parame-
ters, namely climate, socioeconomic and political regimes,
are a dryness/aridity index, the HDI and the CPI, respec-
tively. Together these can be set to define the catchment con-
text and will constitute controls that serve to either amplify
or dampen the feedback loops highlighted in Sect. 2.

The remaining three factors that make up the Sensitivity
state variable are inherently part of the dynamic workings
of the catchment community. The water quantity and quality
variables influence sensitivity in two ways. Firstly, there is a
direct relationship between the “available” amount of water
in the catchment for consumption,Sx = f

(
SQ,SGW,SUS

)
,

and the perceived level of threat. It follows that asSx de-
creases, the community’s perceived threat to their quality of
life will increase. Conversely, an increase inSx would be ex-
pected to be associated with a decrease in sensitivity levels
as water is becoming more bountiful. It is worth highlight-
ing that, depending on the local context, this function could
simply be the sum of all water sources, or a weighted sum
with the most socially relevant sources given greater weight-
ing (e.g.SQ for an irrigated catchment orSUS for a rainfed
catchment where soil moisture is pertinent to productivity),
as the case may be. Note thatSx is determined by anthro-
pogenic drivers (i.e. population size and water management
decisions) as well as changes in climate parameters.

The second way in which the catchment water balance
impacts a community’s sensitivity is through the effect on
lifestyle-related ecosystem services,LES, provided by the
catchment as outlined above. There is substantial evidence
that flow alterations and/or a decline in water quality nega-
tively impact ecosystems services (Walker and Thoms, 1993;
Cullen and Lake, 1995; Bunn and Arthington, 2002; Arthing-
ton and Pusey, 2003; Vörösmarty et al., 2005; Tolun et al.,

2012). As ecosystem services deteriorate (whether due to
decreased flora and fauna, algal blooms, worsening water
quality, a decline in aesthetic or recreational value, increased
water-borne diseases etc.) a community’s sensitivity level is
expected to rise (Odum, 1989; Daily, 1997; Vörösmarty et
al., 2005; Bunch et al., 2011; Steffen et al., 2011). This is a
reflection of a growing threat that has a direct and observable
impact on the community’s quality of life.

Finally, the catchment community’s GDP per capita,Epc,
will influence its perceived vulnerability and resilience. It is
important to note that this metric can change in spite of the
overall socioeconomic regime remaining the same. For in-
stance, a catchment may be located in Australia, which is
considered a developed and industrialised first-world coun-
try. However, even though national movement along the
socioeconomic development scale takes place on a multi-
decadal basis, communityEpc can rise and fall multiple times
during several economic cycles in the process. The more
prosperous a community, the higher its perceived resilience
level and lower its perceived sensitivity level (Folke, 2003;
Briguglio et al., 2009; Sherrieb et al., 2010). In an appraisal
of land use case studies from around the world, Lambin et
al. (2001) concluded that economic circumstances were the
chief determinant of community and societal response. Thus
it is hypothesised that a direct inverse relationship exists be-
tweenEpc and sensitivity, whereby an increase (decrease)
in Epc will be associated with a corresponding decrease (in-
crease) in a community’s sensitivity level. This is in response
to a change in the net wealth of the community, and hence its
ability to enjoy an enhanced (diminished) quality of life.

Accordingly, the change in the Sensitivity state variable,
V , over a period hypothetically illustrated in Fig. 2, may be
estimated as

dV

dt
=



 −S̃xγs︸ ︷︷ ︸
water

availability

−L̃ESγes︸ ︷︷ ︸
ecosystem
services

−Ẽpcγe(1+ δ)︸ ︷︷ ︸
economic

return



f (1− α)︸ ︷︷ ︸
climate
context

· f (1− β)︸ ︷︷ ︸
development

context

·f (1− ϕ)︸ ︷︷ ︸
political
context

V, (4)

whereα is the climate regime scalar(0 < α < 1), β is the
socioeconomic regime scalar(0 < β < 1), ϕ is the politi-
cal regime scalar(0 < ϕ < 1), L̃ES = 1LES/LES is the rel-
ative change in ecosystem services of the catchment,Ẽpc =
1Epc/Epc is the relative change in economic gain per head
of capita for the catchment population,̃Sx = 1Sx/Sx is the
relative change in water availability within the catchment,
and δ is a GDP concentration metric that captures agricul-
tural production as a percentage of GDP (i.e. an economic

www.hydrol-earth-syst-sci.net/18/2141/2014/ Hydrol. Earth Syst. Sci., 18, 2141–2166, 2014



2152 Y. Elshafei et al.: Prototype framework for models of socio-hydrology

location quotient analysis around agricultural productivity).
Each ofS̃x , L̃ES andẼpc are normalised by a mean or refer-
ence value to calculate the relative change over the interval
t −n:t , wheren is the number of time steps used to calculate
the relative change and can be used to define a lag time be-
tween change and response. The change in any one of these
local sensitivity drivers may disproportionally contribute to
the resultant community sensitivity and therefore the threeγ

factors are introduced as calibratable parameters. It is worth
highlighting that the proposed approach could be extended,
for example, by adding an additional employment concentra-
tion factor (i.e. the percentage of the catchment population
employed in the agriculture industry) as a supplementary ap-
proach to account for the degree of reliance on agriculture in
terms of local livelihoods.

Figure 2 provides a visual demonstration of the idealised
trajectory of the Sensitivity variable over time (as discussed
in Sect. 2.1). Figure 2c in particular depicts the effect of the
macro-scale contextual parameters, should all other factors
be equal. In this example, the regional climate regime is used
for illustrative purposes, whereby three idealised catchments
distinguished only by the level of water abundance (α) are
examined. As can be seen, it is expected that the more arid
the catchment (i.e. the lower theα) the greater will be the
amplitude of oscillation away from the baseline state, as the
relative change inV is amplified asα decreases. Thus the
magnitude of any of the macro-scale parameters (in this case,
α) will serve to amplify or subdue the degree of oscillation,
thereby reflecting the extent to which different regional/ na-
tional regimes translate change in water balance drivers from
a feedback point of view.

The Sensitivity state variable, as defined, represents the av-
erage community sensitivity. However, as noted earlier, there
are numerous conditions under which collective norm adop-
tion and action occur (Kinzig et al., 2013). The use of a “so-
cial ostracism” agent-based model has been demonstrated by
Tavoni et al. (2012) and Lade et al. (2013), which allows for
a departure from collective co-operation at a socially opti-
mal level, by a subset of “defectors” that seek to maximise
self-interest. Tavoni et al. (2012) show that the level of os-
tracism displayed towards defectors can play an important
role in shaping the nonlinear dynamics. Thus, the defector
fraction,ω = Pd/Pn, may be incorporated as a state variable
within a model that acts to modify the degree of collective
sensitivity within the catchment community.

3.6 Behavioural response (χ) function

Within the model framework the two key drivers of theχ
function are the Sensitivity (V ) and Demand (DE) variables
(see Fig. 1). The drivers effectively determine the degree and
direction of overall impetus for action. This impetus then po-
tentially translates into behavioural change in each of three
components, namely the rate of water extraction (RE), the
area of land cleared for the purposes of economic develop-

ment (AC), and the amount of storage due to engineering
structures such as dams and weirs (Smax). These variables are
all supported by the literature as signifying human induced
change on watersheds (Falkenmark, 1979; Vörösmarty et al.,
2005; Gregory, 2006) and would feed directly into the hy-
drology model as appropriate.

The χ response function that determines the overall im-
petus for action is designed to have a positive value to indi-
cate a stimulus towards more enviro-centric measures, and a
negative value to denote a drive towards more anthropocen-
tric measures. In the simplest sense this can be composed as
(Fig. 5)

χ = f
(
V ∗

)
− f (DE) , (5)

whereV ∗ is a normalised sensitivity metric developed below.
As a general premise, decreasing sensitivity levels would be
expected to be associated with higher annual rates of water
extraction, land clearing and dam building, to a point, while
the converse is expected to hold true for increases in sen-
sitivity levels. The sensitivity–response link has been made
in the literature previously (Leichenko and O’Brien, 2002)
and is broadly consistent with what has been observed in the
development trajectories of river basins outlined earlier. Al-
though this deals with the direction of an expected shift in the
χ function, a number of further hypotheses are put forward
in terms of the timing and magnitude of such shifts. Firstly,
it is believed that upward (i.e. positive) movements will be
observably more “sticky” and demonstrate a greater time lag
in response when compared with downward (i.e. negative)
movements inχ , as the former seeks to “reverse” behaviour.
Secondly, it is expected that a catchment’s baseline sensitiv-
ity levels will affect the magnitude and timing of manage-
ment action. For instance, catchments operating at generally
higher levels of the sensitivity scale (e.g. arid rural catch-
ments) that experience an increase in sensitivity level over
a period might be expected to show a more immediate and
severe management response, relative to catchments operat-
ing at the lower end of the sensitivity scale experiencing the
same absolute increase in sensitivity level. Finally, it is ex-
pected that there will be points at both ends of the sensitivity
scale beyond which there will be no observable change in
management action.

A number of studies have also found evidence of a link be-
tween social networks (i.e. memberships of churches, sports
clubs, volunteer organisations, political groups) and response
(Buikstra et al., 2010; Sherrieb et al., 2010; Smith et al.,
2012). Thus this function must consider the degree of social
interaction and co-operativity within the community. Fur-
thermore, it is important to note that whether and to what
extent a community responds, is generally influenced by two
variables: the magnitude of influence (derived fromV ) and
the capacityof the community to respond (Chaskin, 2008),
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Figure 5. A hypothetical illustration of how the Behavioural Response functions vary according to:(a) the change in catchment demand for
expansion,DE, and;(b) the change in collective community sensitivity,V ∗. The functions can be customised according to factors such as
community cooperation or technological capability for enacting modifications to the catchment as indicated by the different lines.

modelled here as

f
(
V ∗

)
=


0 for V ∗

≤ V ∗
crit

χmaxV

(
(V ∗)σ(

kσ
V+(V ∗)σ

))
f (ε) for V ∗ > V ∗

crit,
(6a)

whereχ is proposed to follow a sigmoidal response function
based onV ∗, calculated at timet as

V ∗
=

1V

Vmax− Vt

, (6b)

where Vmax is an arbitrary constant reflecting the maxi-
mum sensitivity of the particular community, and the term
Vmax− Vt scales the incremental change in sensitivity to in-
creaseχ as the baseline sensitivity approaches the maximum.
In Eq. (6a), σ is a co-operativity function used to modify the
rate at whichχ will change (Schwarz and Ernst, 2009). It
is intended to be related to the degree to which the commu-
nity will collectively respond to a change in sensitivity levels,
and can be calculated based on the defector fraction within
the community,ω, or other relevant proxy, such as the per-
centage of the catchment population holding memberships in
social organisations. The termf (ε) captures the propensity
for action based upon the national capacity to act in terms of
financial and technological resources (based on the country’s
level of development, wherebyε =

EcN
EcS

such that it reflects
the national rate of development beyond a baseline subsis-
tence economy).

The second driver of theχ function can be thought of as
the degree of inducement for agricultural expansion (DE). It
is composed of two primary driving components (population
growth and the relative importance and growth of agriculture
in the economy) which may act independently or in tandem,
limiting variables relating to the available land and water re-
sources, and a moderating variable reflecting efficiency im-
provements in resource utilisation. Such an approach is sim-
ilar to that found by Barbier (2004) to adequately reflect the
rate of land-use change in favour of agriculture in developing
economies. The population will thus be motivated to change
their interaction with the catchment land surface and water

balance in response to the demand for agricultural develop-
ment as follows:

f (DE) = χmaxD

(
DE

(kD + DE)

)
, (7a)

where the Monod equation above is proposed to reflect the
response function based onDE. This is calculated at timet
as

DE =

[
1Pn

P t
n

+ f (ZC)

](
1−

AC

AT

)(
1−

RE

ST

)
f (ζ ) , (7b)

where 1Pn

P t
n

is the population growth rate (similar to Bar-
bier’s (2004) rural population growth rate) andf (ZC) is a
function of structural driving variables that could comprise
agricultural export share, growth in agricultural value added,
and/or agricultural crop yield (Barbier, 2004). The extent of
development is mitigated by the extent of “capacity usage”
of underlying natural resources within the catchment, namely
land (AC/AT) and water (RE/ST) resources. The capacity us-
age factor is included as management decisions are progres-
sively less likely to acquiesce to expansion pressures as usage
levels approach the capacity (i.e. land limited,AC/AT → 1;
or water limited,RE/ST → 1). The variableζ is a composite
efficiency metric that captures the improvement in existing
land and water utilisation as a result of implementing effi-
ciency measures (e.g. rainwater harvesting or agricultural in-
tensification through the application of more efficient farm-
ing technologies). It therefore acts to mediate demand for the
underlying resources by enabling a degree of expansion that
is not reliant on further resource exploitation. This term is
thus driving humans to more actively modify the catchment
water balance in favour of development, and will slow down
as opportunities for further development reduce.

The overall behavioural response (in terms of magnitude
and direction) is then able to drive each of the components of
management action that make up the response model:1RE
determines the change in annual rate of extractions,1AC re-
flects the change in annual land clearing, and1Smax is the
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annual change in storage capacity. Each of the management
response equations would then take the form, for example, of

dRE

dt
= ηREfRE(χ) (8a)

dAC

dt
= ηACfAC (χ) (8b)

dSmax

dt
= ηSmaxfSmax(χ), (8c)

which then each feed into the hydrology model. In the above
equations,η is the translation factor that captures the extent
to whichχ manifests in this particular water management ac-
tion. The closure relationships used in Eq. (8) will be highly
specific to any given context, thus each of these must be de-
fined upon local catchment conditions, and are therefore left
for practitioners to determine on a case-by-case basis. By
way of example,fAC (χ) in Eq. (8b) might be parameterised
asfAC (χ) = χa for case study site A, whereas it may take
the formfAC (χ) = 2χ1/b for case study site B, due to the
distinctness of circumstances and response patterns between
the sites.

4 The conceptual framework in practice

To demonstrate how the generic conceptual framework can
be applied to analysing the evolution of different catchments,
two agricultural catchments located in Australia have been
selected for further illustration: the Murrumbidgee catch-
ment in New South Wales and the Toolibin catchment in
Western Australia. The case studies have been chosen for
illustration purposes based on differences in size and wa-
ter balance drivers in each agricultural catchment. The Mur-
rumbidgee catchment is examined as a large-scale irrigated
river basin catchment, whilst the Lake Toolibin catchment
provides a contrasting small-scale rainfed lake catchment. In
light of these differences, case-study-specific manifestations
of the generic conceptual framework are made possible, and
tailored application of the model to unique catchment his-
tories can be explored. Prior to full implementation of the
model for these case studies, this paper outlines the approach
to parameterisation of the above framework, and in particular
the necessary closure relationships described above in gen-
eral terms. Table 1 summarises how the differences between
these two catchments are to be captured through application
of the conceptual framework and how parameterisation of the
closure relationships could be pursued. A stylised model that
incorporates several of the above components of the frame-
work is run for a 110-year timescale (1900–2010) for each
catchment using various simplifying assumptions and some
generic parameterisations to demonstrate the approach to ap-
plication of the model.

4.1 Murrumbidgee catchment

The trajectory of the Murrumbidgee catchment, an area
of 8.4 million hectares located within the greater Murray–
Darling River basin in southern New South Wales, has been
described in detail by Kandasamy et al. (2014). The nation’s
capital city, Canberra, is located within the catchment, along
with numerous other regional towns and inland cities. The
Murrumbidgee River, at 1600 km long, supports a diverse
range of fish and bird species, along with numerous seasonal
wetlands, nature reserves and riparian vegetation. The catch-
ment is predominantly used for grazing and irrigated crop
farming. The advent of increasingly extensive environmental
problems in recent decades, including the adverse impacts of
nutrient runoff and salinisation, has prompted concerted re-
medial efforts at local, regional and state levels. It therefore
presents a compelling case study for the implementation of
the socio-hydrology framework on a large-scale area.

In addition to the extensive clearing of native vegetation to
make way for agricultural expansion, humans vastly altered
natural flow regimes throughout the catchment as a conse-
quence of the large-scale development of dams and weirs for
irrigation farming, which occurred up to 1970 (Kandasamy
et al., 2014). A number of environmental problems began
to appear in the latter half of the 20th century, and became
progressively more serious. The considerable reallocation of
water to irrigation led to the first major environmental crisis
facing the sustained health of riverine and wetland ecosys-
tems, with the diversion of up to 90 % of the Murrumbidgee
river’s natural flow to irrigation causing a sharp decline in
residual flows to the environment (Kandasamy et al., 2014).
Marked reductions were recorded in water bird and native
fish populations in the Murrumbidgee basin as a result.

The second major issue to arise pertained to the exces-
sive discharge of nutrients from sewage treatment plants and
farming practices into the Murray River, causing a sharp de-
cline in water quality and threatening riverine ecosystems. In
fact, one of the worst blue-green algal blooms anywhere on
record occurred along more than 1000 km of the Murray–
Darling rivers in the summer of 1991–1992. Furthermore,
the widespread replacement of deep-rooted native vegeta-
tion with shallow-rooted agricultural crops caused a rise in
groundwater tables throughout the catchment, thereby dis-
solving salts stored in the soil profile and transporting them
to the surface. This led to the third key issue – land salinisa-
tion – which threatened agricultural productivity, local liveli-
hoods and the useful life of existing infrastructure, as well as
having detrimental impacts on riverine ecology. This predica-
ment was exacerbated by the use of irrigation, which created
pervasive waterlogging (Kandasamy et al., 2014).

All three of these issues acted as management response
levers with varying degrees of severity, albeit with a time lag.
Escalating concern for the health of the environment over
the 1990s and 2000s spurred remedial action at the high-
est levels of government. A number of measures are being
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Table 1.Application of the conceptual framework: comparison of two Australian catchments.

Model component Variable/
Function

Irrigated farming catchment
(1900–present)

Dryland farming catchment
(1900–present)

Summary We have chosen to present an idealisation of the Murrumbidgee catchment in eastern Australia, based on the
data and narrative presented in Kandasamy et al. (2014). Please see Sect. 4.1 for further context and detail.

We have chosen to present an idealisation of an example catchment in the Wheatbelt of Western Australia (Lake
Toolibin catchment) based largely on the figures and narrative presented in Allison and Hobbs (2004). Please
see Sect. 4.2 for further context and detail.

Water balance SGW,SUS,SQ,SW
Smax,QS,QSS,

QES,QRin,QRout

SQ is relatively large as the catchment relies heavily on irrigation water for farming, and catchment flows
became increasingly diverted to storages over the past 100 years. In the recent severe drought this led to the
over allocation of water and consequent decline in wetland storages and provision of environmental flow. For
the purpose of this illustrative example, a full water balance has not been constructed. Instead, storage capacity
data (Smax) has been sourced directly from Kandasamy et al. (2014) (Fig. 6c). For simplicity, water availability
in a given year is calculated using the ratio of actual annual discharge to average discharge. To the extent that
this ratio is greater than 1 (i.e. wet year),SQ = Smax, however where the ratio is less than 1 (i.e. dry year),Smax
is reduced by half the shortfall to account for cumulative storage from previous years (Fig. 6e).

This is a semi-arid catchment with a low runoff coefficient, a deep saline groundwater aquifer and ephemeral
wetland system. The natural woodland vegetation, crops and pasture are all supported by moisture in the vadose
zone. The rise of the water table into the root zone caused by increased recharge will induce tree mortality and
land degradation.SQ is relatively small as a minor amount of surface water is diverted to farm dam storages to
support livestock.
In lieu of a water balance model, growing season (May–Sep) rainfall data has been sourced from the Bureau of
Meteorology (Fig. 7c). Water availability in the vadose zone is then calculated using as a proxy the inverse of
the soil moisture deficit (i.e. long-term mean growing season potential evapotranspiration less annual growing
season rainfall) (Fig. 7e).

Population Pn Population numbers have been sourced from Kandasamy et al. (2014) (Fig. 6a). Population numbers have been obtained from Australian Bureau of Statistics census data using the total of Shire
of Narrogin and Town of Narrogin data as proxies for the catchment (Fig. 7a).

Economy

Eq. (2a, b)

EC, Epc

pc, Bc, pwc,
AC,AD

Kandasamy et al. (2014) use the main crop, rice, as the economic proxy. We use their rice production data as
a proxy for agricultural output in our model,AC (1− AD)Bc (Fig. 6b). In a full model,pc would be driven
by the annual global price of rice, however for the purposes of this simplistic illustrationpc is assumed con-
stant at USD 200. Furthermore, for simplicity we have assumedτA is 1,Eext is zero, and the cost component,[
(cAAC (1− AD)) +

(
pwcUc + pwpUp

)]
, is constant at 50 % of gross revenue, thus foregoing a delineation of

costs at this stage. In our illustration therefore, the evolution ofEpc is driven by rice production and population
(Fig. 6f).
In a full run of the model economic productivity would be a function of the annually evolving area of cleared
land (AC), degraded land (AD), crop yield (Bc) relative to irrigation water applied, the cost of irrigation water
(pwc), as well as technological advancements affecting agricultural costs and productivity (e.g. mechanisa-
tion/pesticides).

Wheat is the main crop farmed in this region. In a full model,pc would be driven by the annual global price of
wheat, however for consistency across cases in this instancepc is assumed constant at AUD 450, the long-term
average price/tonne at 2004 prices. Wheat production data is calculated usingAC (1− AD)Bc (Fig. 7b), with
data for bothAC andAD sourced from Fig. 7 in Allison and Hobbs (2004) and tonne/hectare wheat yields (Bc)

sourced from the Australian Bureau of Statistics.Bc begins at 0.5 tonne ha−1 in 1900, rises to 1.0 tonne ha−1 in
the early 1940s, breaks the 1.5 tonne ha−1 mark in the early 1980s, remaining above this mark to the present.
For consistency across cases, we assumeτA is 1, Eext is zero, and the cost component,[
(cAAC (1− AD)) +

(
pwcUc + pwpUp

)]
, is constant at 50 % of gross revenue. The evolution ofEpc is

thus driven by wheat production and population (Fig. 7f).

Ecosystem
Services

Eq. (3)

LES

f
(
WQ

)
f (QES)

f (SW)

f (AN)

Although there are numerous environmental issues in this catchment, the primary ones relate to the loss of
biodiversity due to the diversion of natural flows and significant increases in nutrient runoff levels which have
resulted in severe algal blooms.
Data forQES has been sourced from Kandasamy et al. (2014) using the annual ratio of upstream to downstream
flow (Fig. 6d). Water quality (WQ) indicator has been assumed to start at 1 and deteriorate to a low of 0.05 at
the height of the algal bloom in the early 1990s, followed by a slight recovery up to 0.10–0.14 in the 2000s. A
lag has been assumed such that a measurable impact on the water quality indicator is not detected until 1960.
The closure relationships are then defined as follows:

f (QES) =

{
1 QES ≥ 0.6

QES
0.5 QES < 0.6

f
(
WQ

)
= W0.6

Q

Finally, LES is calculated as an equally weighted average of the moving 10 year averages of each off (QES)

andf
(
WQ

)
(Fig. 6g).

Land clearing, consequent salinisation and secondary salinity in the lake (from saline surface water inflows and
rising groundwater tables) are the overriding drivers of ecosystem degradation.
Data forAC has been obtained from Fig. 7 in Allison and Hobbs (2004), andAN has been calculated as 1− AC
(Fig. 7d). To capture the increasing salt loads into the lake, a water quality (WQ) indicator has been assumed
to start at 1 and deteriorate to a low of 0.05 immediately prior to the diversion of saline flows into the lake,
followed by a slight recovery up to 0.10–0.14 in the 2000s. A lag has been assumed such that a measurable
impact on the water quality indicator is not detected until 1960.
The closure relationships are then defined as follows:

f
(
WQ

)
=

{
1 QES≥ 0.6
WQ

0.5 QES< 0.6

f (AN) =

{
1 QES≥ 0.75
AN

0.6 QES< 0.75
Finally, LES is calculated as an equally weighted average of the moving 10 year averages of each off

(
WQ

)
andf (AN) (Fig. 7g).

Sensitivity

Eq. (4)

α,β,ϕ The UNEP Aridity Index was used to calculate anα of 0.545 for the Murrumbidgee catchment (using annual
rainfall of 600 mm and annual potential ET of 1100 mm,Australian Bureau of Meteorology). The HDI for
Australia is currently 0.864 (β) and the CPI for Australia is currently 85 out of a maximum of 100 (ϕ). These
three values were set as constants for the period for simplicity, however a full model run could use time series
data.

The UNEP Aridity Index was used to calculate anα of 0.342 for the Lake Toolibin catchment (using annual
rainfall of 410 mm and annual potential ET of 1200 mm,Australian Bureau of Meteorology). The HDI and CPI
are consistent across cases. These three values were set as constants for the period, however a full model run
could use time series data.

−S̃xγs Community sensitivity in an irrigated catchment is predominantly a function of the amount of water available
in storage (i.e.SQ). Thus storage infrastructure development would be expected to decrease sensitivity levels,
while periods of prolonged drought and declining water stocks would increase sensitivity (Fig. 6h).
The change in available stored water (1SQ) has been calculated using the difference in the present period’s
10 year average value and the previous time step’s 10 year average. This approach is taken as community sensi-
tivity would begin to reflect the impacts of a new reservoir for instance for some time prior to its inauguration.
The reference value (SQ) is calculated as follows:

SQ =

{
100yr aveSQ pre− 1965
20yr rolling aveSQ post− 1965

Finally, γs has been set at 100 for the whole period.

Community sensitivity in a rainfed catchment is primarily a function of crop productivity, which is linked to
water storage in the vadose zone –f (SUS). To a lesser extent, dam storage could also be considered since
small farm dams service livestock and hence sheep farmers will be sensitive to water availability in local dams,
however this has been ignored for simplicity in the present example. As expected, sensitivity levels oscillate
with reasonable frequency depending on rainfall (Fig. 7h)
The change in soil moisture (1SUS) has been calculated using the difference in the present period’s 10 year
average value and the previous time step’s 10 year average. The reference value (SUS) is calculated as:
SUS = −(ETP− P)

over the growing season for the entire period under investigation.
Finally, γs has been set at 40 for the whole period.

−L̃ESγes A marked deterioration in ecosystem services that are sufficiently observable so as to detract from the commu-
nity’s quality of life would be expected to increase sensitivity levels (Fig. 6h).1LES has been calculated as
Lt

ES− Lt-1
ES. LES is calculated as the 20 year moving average ofLES. Finally, γes is set at 400 for the whole

period, as environmental issues in this catchment, and the wider Murray–Darling Basin of which it is a part, have
been elevated to matters of national importance and security as the basin currently provides half of Australia’s
rice production (Kandasamy et al., 2014).

As with the case for the irrigated catchment, a large deterioration in ecosystem services that are sufficiently
observable so as to detract from the community’s quality of life would be expected to increase sensitivity levels
(Fig. 7h).1LES has been calculated asLt

ES− Lt-1
ES. LES is calculated as the 20 year moving average ofLES.

Finally, γes is set at 250 for the whole period.

−Ẽpcγe(1+ δ) Economic prosperity within the catchment was increasing at various rates up to the 2000s when prolonged
drought caused a sharp decline in economic well-being. Thus we would expect the economic component to
cause a general downward pull on community sensitivity levels up to the point at which the turnaround occurred,
at which stage sensitivity levels should feel upward pressure from economics (Fig. 6h).
1Epc is calculated as the difference in the current time step’s 5 year average value and the previous time step’s
5 year average.Epc is calculated using a 10 year moving average.γe is set at 100 for the whole period. The GDP
concentration metric for agriculture (δ) has been set to vary between 20 and 35 % in the first half of the 20th
century (peaking at 35 % in 1950) and declining steadily to a its current value of 3 %, in line with the narrative
in Kandasamy et al. (2014).

Economic prosperity occurred within the catchment in three large bursts related to land clearing policies and
incentives in place in the State of Western Australia. The large decrease in prosperity in the 2000s was largely
due to the significant land salinisation that became more widespread as a delayed impact of a legacy of land
clearing (Fig. 7h).
The calculation of1Epc andEpc as well as assumptions related toγe andδ have been held constant across both
cases.

V
dV
dt

The starting value forV has been arbitrarily set at 100.dV
dt

has been calculated using 10 year averages of each
of the underlying catchment-scale components outlined above.
The macro-scale contextual closure relationships have in this case been defined as follows:
f (1− α) = 1− α,

f (1− β) = 1− β,

f (1− ϕ) = 1− ϕ

The trajectories ofV and dV
dt

appear in Fig. 6i.
Change in community sensitivity over time displays a generally decreasing trend until the 1990s when
widespread environmental degradation was observed. This would be expected to be exacerbated by drought
conditions causing a simultaneous worsening in economic conditions and water security, which is observable in
Fig. 6i.

All assumptions and calculation approach in relation toV anddV
dt

is held constant across cases. Their trajectories
appear in Fig. 7i.
As expected, change in community sensitivity over time exhibits a sharp decline early in the period due to the
onset of expansion activities, levels out and then shows an increase from the 1990s onwards as environmental
damage became widespread and began to threaten agricultural productivity.

Behavioural
Response

χ Driver Functions

Eqs. (6a, 6b)

Eqs. (7a, 7b)

f (V ∗)

f (DE)

To calculateV ∗, Vmax has been set to 120 andVt is calculated using the average ofV for the previous 10 time
steps.f (V ∗) is calculated based on the following assumptions:V ∗

crit is set at 0.001;χmaxV is 100;kV is 1;σ is
assumed to remain constant at 2; andf (ε) has been set to 1 for simplicity.
To calculateDE, the following assumptions have been made:ZC is proxied by agricultural export share, which
has been set at an initial value of 80 % in 1912, declining to 70 % in 1950 and assumed to decline steadily to its
current value of 21%;AC

AT
and RE

ST
are assumed to decline from a starting value of 0 to their present value of 0.9;

andζ is assumed to be zero for simplicity. The closure relationshipf (ZC) is defined as1
ZC

. For simplicity and
consistency,f (DE) is then calculated by settingχmaxD to 100 andkD to 1.
We would expect expansion-driven demand to be high in the first half of the 20th century reflecting the aggres-
sive expansion that occurred due to the importance of agriculture to the national economy, gradually slowing
over time as agriculture declined in importance, and the underlying resources approached capacity. This trajec-
tory is observable in Fig. 6j.

All assumptions and calculation approach in relation tof (V ∗) and its components are held constant across
cases. It is worth noting that revegetation efforts have been underway during the 2000s throughout the Wheatbelt,
which is reflected in the recovery in ecosystem services in this period.
The ratio AC

AT
is calculated based on the data sourced from Fig. 7 in Allison and Hobbs (2004). All other as-

sumptions and calculation approach in relation tof (DE) and its components are held constant across cases.
The trajectories for bothf (V ∗) andf (DE) are observable in Fig. 7j.

χ Response
Functions
Eqs. (8a, 8b, 8c)

ηRE
ηAC
ηSmax

All action functions are relevant:ηRE, ηAC andηSmax, since catchment modification has involved land clearing,
water extraction and major water infrastructure expansion, thus these would each be set to 0.33.

The predominant catchment modification has been via land clearing, such that the translation factorηAC will be
close to 1. The amount of surface water being stored, as governed byηSmax, is minor, and household and other
water needs are provided by scheme water, such that the factorηRE is also negligible.
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examined and gradually implemented, including projects
aimed at increasing water usage efficiency, economically mo-
tivated trading mechanisms, more stringent restrictions on
water licences, the relocation of storage infrastructure fur-
ther downstream to allow for greater inundation of wetlands
and riparian areas along the length of the river, and policies
designed to reallocate water in favour of the environment
(Horne, 2012).

Kandasamy et al. (2014) interpreted this historical tra-
jectory in terms of a pendulum swing between people and
the environment. It is hypothesised that in fact this pendu-
lum swing is indicative of a gradual change in the commu-
nity’s Sensitivity state variable over time. As the adverse
impacts of development and land clearing manifested them-
selves throughout the catchment, the community’s sensitivity
to an imminent decline in its quality of life increased, which
drove the shift in response function components. Table 1 ex-
plains the assumptions used for a preliminary examination
of this catchment. Figure 6a–d reflect the inputs used in the
model (based on information provided in Kandasamy et al.,
2014), whilst Fig. 6e–h show the evolution in each of the
underlying components of the Sensitivity state variable. Fig-
ure 6i–j demonstrate the evolution of the Sensitivity and Re-
sponse variables over the time period.

4.2 Lake Toolibin catchment

The Toolibin catchment covers a much smaller area of some
48 000 hectares, located in the Blackwood River basin in
Western Australia’s “Wheatbelt” region. The Wheatbelt was
subject to large-scale development over the course of the 20th
century, the most drastic of which occurred throughout the
1949–1969 period (Allison and Hobbs, 2004). Such rapid
expansion led Conacher (1986) to comment that “no other
area in the world as large as the Wheatbelt has been cleared
of its native vegetation over so short a period of time”. The
Toolibin catchment reflected this rate of growth, with more
than 90 % of the catchment cleared of native vegetation by
the early 1970s for dryland farming purposes, predominantly
sheep and grain farming. Lake Toolibin, located within the
catchment, is a Ramsar-listed wetland of international impor-
tance due to its diversity of water birds, many of which breed
on the lake, now recognised as a “threatened ecological com-
munity” (Munro and Moore, 2005). In much the same trend
as that observed in the Murrumbidgee catchment, the Tooli-
bin catchment began to exhibit signs of increasingly severe
environmental degradation, in the form of rising groundwa-
ter levels and dryland salinisation, which endangered both
agricultural productivity and biodiversity. In response to the
threat of widespread environmental deterioration, the State
government and community began to take remedial action in
the 1990s in an attempt to halt, and potentially reverse, the
adverse impacts of development. The Lake Toolibin catch-
ment thus presents an ideal case study for the application of
the socio-hydrology framework on a small scale.

The fundamental environmental issue to arise throughout
the catchment is that of land and water salinisation. As Hat-
ton et al. (2003, p. 342) note, “while the impacts of agricul-
tural clearing through salinisation extend across the conti-
nent, they are particularly severe and extensive in the Wheat-
belt. . . with up to 8.8 million hectares (33 %) at risk by
2050”. The “at risk” land area for the Toolibin catchment
translates to 24 %, with 8 % already salt-affected (George
et al., 2005). Such a deterioration would result in exten-
sive damage to infrastructure (roads, rail, town sites), rem-
nant vegetation, plant species, wetlands and river systems.
Unique features of the landscape in the Wheatbelt, includ-
ing the Toolibin catchment, are the exceptionally low land
and hydraulic gradients. Historically, the pre-clearing hydro-
geology, climate and native vegetation characteristics of the
region produced hydrological systems with relatively deep
groundwater tables (> 30 m), remarkably high rates of evap-
oration, very low surface flows, and a build-up of salts stored
in the unsaturated root zone. Pervasive clearing throughout
the region caused a drastic shift in these defining charac-
teristics, triggering a significant rise in groundwater tables
and consequent mobilisation of stored salts, a sharp decrease
in evaporation rates, frequent waterlogging due to degraded
soils, and substantial increases in surface runoff leading to
the discharge of saline water into rivers and lakes (Hatton
et al., 2003). These impacts have been further compounded
by the high variability in the amount and spatial distribution
of annual rainfall. Furthermore, post-clearing hydrological
equilibrium has yet to be reached, with groundwater levels
continuing to rise in the majority of the Wheatbelt.

A number of remedial mechanisms have been considered
and applied within the catchment, in an attempt to combat
the unfavourable aspects of a legacy of development. Such
measures include the installation of a gate to divert saline
surface water around the lake and control the inflow of fresh-
water to the lake, continuous groundwater pumping to main-
tain groundwater tables below the lakebed to a maximum of
1.5 m, the installation of shallow interceptor drains and the
revegetation of native plant species (George et al., 2005; Hat-
ton et al., 2003).

Table 1 outlines the assumptions used in a preliminary in-
vestigation of this catchment. Figure 7a–d reflect the inputs
used in the model (based on information provided in Alli-
son and Hobbs, 2004), whilst Fig. 7e–h show the evolution
in each of the underlying components of the Sensitivity state
variable. Figure 7i–j demonstrate the evolution of the Sensi-
tivity and Response variables over the time period.

4.3 Discussion of preliminary case study results

It is important to note that the fully parameterised dynamic
coupled model has not been applied at this stage and fur-
ther work is required to link the behavioural response driver
(χ) to water balance actions(RE, AC, Smax) in each case.
However, the results of a stylised model that uses simplifying
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Figure 6. Stylised model data and results for a semi-idealised irrigated catchment, e.g. Murrumbidgee Catchment.(a) Catchment population
growth (Pn). (b) Rice production.(c) Development of dam and reservoir storage infrastructure (Smax). (d) Environmental flow (QES), taken
as the ratio of annual flow observed at Balranald to that observed at Wagga Wagga.(e) Water availability stored in dams and reservoirs (SQ)
(data for(a–e)sourced from Fig. 4 in Kandasamy et al., 2014).(f) Catchment GDP per capita (Epc). (g) Lumped “lifestyle” ecosystem
services indicator (LES). (h) Evolution of the three underlying catchment-component drivers of Sensitivity (V ) over time.(i) Evolution of
Sensitivity (V ) and dV/dt over time.(j) Evolution of behavioural response component functions,f (V ∗) andf (DE), over time.

assumptions and generic parameterisations provide a pre-
liminary indication of the trajectories of certain key frame-
work components. Both case studies show similar patterns
in population growth and crop production over the time pe-
riod (Figs. 6a–b, 7a–b). These patterns reflect growth rates
in both agricultural expansion and intensification up to a
point, whereupon environmental degradation and climate
factors constrained further growth. Both catchments thus
demonstrate similar GDP per capita trajectories (Figs. 6f, 7f),
which are in line with the theory outlined in the “Economic-
Population Loop” discussed in Sect. 2.1. A similar trajectory
is also evident in lifestyle ecosystem services (Figs. 6g, 7g)
although the mix of proxies used to calculate the index differ
in each case according to contextually relevant issues, with

for instance, environmental (or residual) flow being an appro-
priate indicator in a river basin catchment such as the Mur-
rumbidgee, whilst percentage of natural deep-rooted vegeta-
tion is the more appropriate indicator in the Lake Toolibin
catchment (Figs. 6d, 7d). A key point of difference between
the cases is in relation to the supply of water for agriculture,
with the Murrumbidgee catchment reliant on irrigation and
reservoir storage (Fig. 6c, e) while the Lake Toolibin catch-
ment relies on rainfall and soil moisture during the grow-
ing season (Fig. 7c, e). By altering the appropriate measure
driving sensitivity to the water balance, it can be seen how
the model is able to adapt to context-specific circumstances.
It is worth noting that the framework proposed in this pa-
per is general; however the way it will manifest in various
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Figure 7. Stylised model data and results for an idealised rainfed catchment e.g. Lake Toolibin catchment.(a) Catchment population growth
(Pn). (b) Wheat production.(c) Growing season rainfall (May–Sep).(d) Percentage of Natural deep rooted vegetation cover (AN). (e)
Growing season water availability stored in the vadose zone (SUS). (f) Catchment GDP per capita (Epc). (g) Lumped “lifestyle” ecosystem
services indicator (LES). (h) Evolution of the three underlying catchment-component drivers of Sensitivity (V ) over time.(i) Evolution of
Sensitivity (V ) and dV/dt over time.(j) Evolution of behavioural response component functions,f (V ∗) andf (DE), over time (all data
sources outlined in Table 1).

sites will depend upon local environmental conditions, such
as whether surface or groundwater is exploited by humans
and for what purpose. Accordingly, although groundwater
extractions do not comprise a significant component of either
of the specific case studies examined, the model incorporates
the functionality required to appropriately account for more
significant groundwater depletion in sites where it is a more
crucial component of the cycle.

Despite the contextually specific inputs used in each case,
the theoretical framework has the functionality to translate
these into comparable component drivers of community sen-
sitivity (Figs. 6h, 7h). It can be seen in both cases that envi-
ronmental factors have an increasingly upward pull on sensi-
tivity levels, whereas economic factors have a predominantly

downward pull on sensitivity levels for most of the period
(as economic prosperity increases) with a reversal towards
the end of the period as environmental factors begin to im-
pact upon economic yields. Sensitivity to water availability
shows a much stronger downward pull on sensitivity lev-
els in an irrigated catchment where the water balance is be-
ing more actively modified, relative to a rainfed catchment
where sensitivity levels oscillate about the mean with high
frequency. As hypothesised in Fig. 2, the same broad tra-
jectory in V and dV

dt
is perceptible in both cases (Figs. 6i,

7i). Whilst we note the simplification inherent in the assump-
tions employed in these model runs, the Expansion, Contrac-
tion and Recession phases illustrated in Fig. 2 are evident
in the results. Finally, behavioural response components also
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exhibit a similar pattern over time, despite these responses
manifesting in different ways (Figs. 6j, 7j).f (DE) displays
a strong impetus for agricultural expansion in the early part
of the period, gradually decreasing over time to approach 0.
In the case of the Murrumbidgee catchment, development
was achieved by way of both land clearing and the con-
struction of storage infrastructure that actively diverted the
natural flow regime, while expansion activity in Lake Tooli-
bin was primarily achieved through land clearing.f (V ∗)

meanwhile stays at 0 for the majority of the period, with
a sharp increase towards the end of the period, propelling
the enviro-centric measures instituted in each of these catch-
ments from the mid-1990s onwards. Remediation efforts in
the Murrumbidgee catchment are largely focused on increas-
ing environmental flows, in contrast with remedial efforts in
the Lake Toolibin catchment, which have focused predomi-
nantly on revegetation, drainage and diversion of saline wa-
ter.

4.4 A final word on limitations

As can be seen from the two case studies outlined above, the
generic framework provides a flexible basis from which to
investigate context-specific case studies. In conjunction with
differences in the macro-scale contextual factors depend-
ing on the climate, socioeconomic and political context of
study sites, this framework presents a workable compromise
between accounting for context-specific idiosyncrasies and
system-scale dynamics, in order to observe centurial trends
across various geographic locations. We have put forward a
conceptual framework that seeks to reconcile a number of
theories and findings from diverse research streams, and in
doing so, aimed to introduce novel components in the way
the coupled system may be viewed and analysed.

It is important to note that there are in reality myriad feed-
backs within and amongst the human and hydrological sys-
tems. Conceptualising a model that is a comprehensive re-
flection of all these dynamics is not the intention of this pa-
per, if such an endeavour is even feasible. The model pre-
sented in this paper has only sought to represent and capture
the most vital high-level features of the coupled system as
a starting point to explore dynamics at the catchment system
scale. In this regard it is a stepping stone, with the potential to
be refined in future iterations as diverse case studies are ex-
amined globally and we acknowledge the specific nature of
the parameterisations we have used may indeed evolve over
time. As our knowledge of socio-hydrology, and indeed psy-
chology, advance, this model will undoubtedly be revised and
enhanced, and there is scope for case-study-specific innova-
tions to be applied through careful parameterisation of the
closure functions.

Furthermore, Srinivasan et al. (2013) illustrate how any
coupled human–nature system is comprised of different tem-
poral and spatial scales. Incorporating interactions between
fast and slow processes, as well as between micro and macro

variables, renders the examination of integrated adaptive
system behaviours extremely complex (Liu et al., 2007b).
Whether it be climate change, ecosystem degradation, so-
cioeconomic development, or changes to the catchment’s hy-
drological signature, such shifts generally occur gradually
over decadal to centurial scales. Having said that, certain
large-scale drastic events can and do occur (such as a politi-
cal coup, a market crash, a widespread algal bloom or natural
disaster) which act as external shocks that alter Sensitivity
levels on an immediate scale.

The authors have drawn on recent concepts and findings
in the system dynamics and SES literature (e.g. Lade et al.,
2013; Schlüter et al., 2012) where idealised models relevant
to SES issues have been used to explore theoretical state-
space relationships and response trajectories. We acknowl-
edge that numerical calibration of a model built in line with
this framework will be a challenging undertaking; however,
we believe that over time sufficient case study examples will
emerge which could cover a range of gradients, and slowly
provide confidence in the more complex parameterisations.
Further, the model framework is presented in completeness
to provide a larger vision and guide to hydrology modellers,
but when it comes to specific implementations aspects of the
model can be simplified or removed from the key compo-
nents to make it more tractable or subject to systems analysis
techniques.

5 Conclusions

The sustainable management of global freshwater resources
remains an urgent challenge, with the spotlight in recent
years increasingly being placed upon the importance of
understanding the complex dynamics of coupled human–
hydrology systems. This paper has sought to identify the fun-
damental drivers of one of the key socio-hydrology feedback
loops, termed the “Sensitivity Loop”, with the ultimate goal
of understanding what drives human behaviour and manage-
ment decisions in the hydrological context. A generic con-
ceptual modelling framework has been put forward which
posits a novel construct, a composite Community Sensitivity
state variable, as the crucial driver of behavioural response in
the human system. The six basic components of the frame-
work are outlined in detail, and two Australian case stud-
ies are examined to illustrate how the generic framework
would be tailored to specific contextual applications by way
of localised closure relationships. Furthermore, by including
a number of macro-scale contextual parameters, the frame-
work has the capacity to be applied across climate, socioeco-
nomic and political gradients globally. Indeed, the model is
intended to normalise along each of these gradients.

The model framework is now being formally developed
on each of the two case studies highlighted, with the aim of
adding further international case studies to stress test the ba-
sic assumptions of the model and refine closure relationships
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to the extent that more universal principles are found to ap-
ply. The conceptual framework presented in this paper is seen
as a step towards illuminating our knowledge of the workings
of these complex coupled systems. It will no doubt be re-
fined through empirical application and future iterations, and
as additional research comes to light in the underlying disci-
plines (e.g. psychology, ecological economics) that can more
fully inform various aspects and components of the model.
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Appendix A

Table A1. Table of variables.

Variable Explanation Units

Smax Total man-made water storage capacity in catchment (including dam and reservoir storage) m3

ST Total available water in catchment (made up of groundwater storage, vadose zone storage and reservoir storage) m3

SGW Water stored in groundwater store m3

SUS Water stored in the vadose zone m3

SQ Water stored in reservoirs (derived from re-routing of surface/river flows or groundwater pumping) m3

SW Wetland storage m3

hWT Water table height m
QS Surface runoff m3 year−1

QSS Subsurface flow m3 year−1

QRin Flow diverted to reservoirs m3 year−1

QRout Flow released from reservoirs m3 year−1

QES Environmental or residual flow m3 year−1

QOUT Flow to catchment outlet m3 year−1

QET Evapotranspiration m3 year−1

θ Soil moisture parameter Dimensionless
AT Total catchment area m2

AC Area of catchment land cleared for agriculture m2

AD Degraded land factor Fraction
AN Fraction of landscape covered by deep-rooted natural vegetation Fraction
RE Total quantity of water extracted from the catchment m3 year−1

RSW Water extracted from surface flow m3 year−1

RGW Water extracted from groundwater store m3 year−1

RQ Water extracted from reservoir storage m3 year−1

Uc Water usage directed to agricultural activities (i.e. irrigation and livestock) m3 year−1

Up Water usage directed to household and non-agriculture related application within the catchment m3 year−1

Pn Population size Number
b Annual birth rate Number yr−1

m Annual mortality rate Number yr−1

µ Annual net migration rate Number yr−1

Ec Total economic gain for catchment Dollars
Epc Economic gain per head of catchment population Dollars per person
pc Global commodity price Dollars per tonne
Bc Crop biomass Tonnes per m2

τA Economic multiplier of agriculture Dimensionless
cA Non-water related costs of the relevant agricultural crop or enterprise (e.g. fertiliser, machinery, livestock feed,

labour etc.)
Dollars per m2

pwc Price of water supplied for irrigation purposes Dollars per m3

pwp Price of water supplied for household and other uses Dollars per m3

Eext Catchment income generated from non-agricultural sources Dollars
LES Lumped indicator for the state of lifestyle-related Ecosystem Services within catchment Dimensionless
WQ Lumped water quality indicator (including P, N, salt loads etc.) Dimensionless
V Collective community sensitivity Dimensionless
Vmax Maximum value on the community sensitivity scale Dimensionless
α Scalar for climate regime within which catchment operates(0 < α < 1) Dimensionless
β Scalar for socioeconomic development regime within which catchment operates(0 < β < 1) Dimensionless
ϕ Scalar for political regime within which catchment operates(0 < ϕ < 1) Dimensionless
δ Proportion of agriculture production as a percentage of national GDP Dimensionless
ω Fraction of defectors that depart from the collective action of the community (PD/Pn) Dimensionless
χ Impetus for behavioural response Dimensionless
DE Demand for economic expansion Dimensionless
ZC Structural variables driving expansion demand, including agricultural export share, agricultural value added and

crop yield
Dimensionless

ε Development factor reflecting level of development relative to a subsistence economy Dimensionless
ζ Efficiency metric reflecting annual improvement in utilisation of land and water resources Percentage
σ Co-operativity function seeking to capture social cohesion and cooperation within catchment community (calcu-

lated with respect toω and/or the percentage of catchment population with memberships in social organisations)
Dimensionless
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