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Chitin is an essential part of the carbohydrate skeleton of the

fungal cell wall and is a molecule that is not represented in

humans and other vertebrates. Complex regulatory mechanisms

enable chitin to be positioned at specific sites throughout the cell

cycle to maintain the overall strength of the wall and enable rapid,

life-saving modifications to be made under cell wall stress

conditions. Chitin has also recently emerged as a significant

player in the activation and attenuation of immune responses to

fungi and other chitin-containing parasites. This review

summarises latest advances in the analysis of chitin synthesis

regulation in the context of fungal pathogenesis.
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Introduction
Chitin is an essential component of the cell walls and

septa of all pathogenic fungi, and occurs in the cyst walls

of pathogenic amoebae, the egg-shells and gut lining of

parasitic nematodes and the exoskeletons of invertebrate

vectors of human disease including mosquitoes, sand

flies, ticks and snails. Despite the fact that chitin is only

outweighed in abundance in nature by cellulose and is

present and essential in so many parasites and pathogens,

fundamental information about its biosynthesis and

recognition by the immune system is lacking.

Chitin, a b(1,4)-linked homopolymer of N-acetylglucosa-

mine, is a simple polysaccharide that is represented in the

cell walls of all fungi studied to date [1,2]. The nascent

primary polysaccharide of fungi folds back on itself to

form anti-parallel chains, which form intra-chain hydro-

gen bonds that further stiffen the carbohydrate into

immensely strong fibrous microfibrils tougher than any

other molecule in nature, and stronger, weight-for-

weight, than bone or steel (Figure 1). The 3D network

of chitin microfibrils is covalently attached to b(1,3)-
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glucan — a second load-bearing polysaccharide present

in most fungal cell walls [3]. In many species, such as the

human pathogen Candida albicans, the major classes of

cell wall proteins are attached through a GPI-remnant to

b(1,3)-glucan or chitin via a branched b(1,6)-glucan linker

[3]. A variable proportion of fungal chitin is synthesised

and then deacetylated to chitosan by the action of one or

more chitin deacetylases. In C. albicans, less than 5% of

chitin is deacetylated to chitosan, while most zygomy-

cetes and the basidomycete Cryptococcus neoformans have

more than two thirds deacetylated to chitosan [4,5].

Chitin deacetylation may make the polymer more elastic

and protect it from the action of hostile chitinases.

The apparent simplicity of the chitin primary structure

belies a complex underlying biosynthetic process. Chitin is

synthesised by large families of chitin synthase (CHS)

enzymes that fall into seven discernable classes

(Table 1). We have chosen to follow the classification

proposed by Niño-Vega et al. [6] and Roncero [7], and

not that of Chigira et al. [8] and Choquer et al. [9] who

reverse classes VI and VII. The functional significance of

all CHS classes is not clear and seems to differ in different

fungi [1,2]. The roles of individual CHS genes have been

investigated principally by analysis of specific CHS

deletion strains. Class I enzymes are most readily measured

in in vitro biochemical assays, yet they normally make only

a minor fraction of cell wall chitin, and mutants lacking

class I CHS genes are invariably viable with mild pheno-

types under non-stressed conditions [1]. Class II enzymes

often are immeasurable in enzyme assays, and make little

chitin, but their deletion results in marked deleterious

effects on cell viability through effects on vital processes

such as primary septum formation [10]. Class IV enzymes

often make substantial amounts of wall chitin, but mutants

are usually viable although sometimes attenuated in viru-

lence [11]. Class IV, V and VII sequences share some

sequence homology, and class V and some class VII

proteins also contain myosin-like domains. Class III, V,

VI and VII have only been identified in filamentous fungi

and some dimorphic fungi and are absent from yeasts like

Saccharomyces cerevisiae and C. albicans.

The multiplicity of CHS enzymes suggests that they may

have redundant roles in cell wall synthesis. This is the

case for some but not all CHS enzymes. It is clear that the

expression and activity of CHS is highly regulated both

throughout the cell cycle and under conditions of stress,

such as in response to potentially lethal challenges to cell

integrity imposed by lytic enzymes or antibiotics or

oxidants that are generated by the respiratory burst within

the phagolysomes of lymphocytes.
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Figure 1

Chitin structure and diversity in fungi. Chitin is a b(1,4)-homopolymer of N-acetylglucosamine that folds in an anti-parallel manner forming intra-chain

hydrogen bonds. Chitin chains are cross-linked covalently to b(1,3)-glucan (green) to form the inner skeleton of most fungi. Examples of shadow cast

electron microscopy images of chitin from (a) Neurospora crassa; (b) Coprinus cinereus; (c) chitin–chitosan from Mucor mucedo; and (d) Candida

albicans. In (e) and (f), the structure of chitin from C. albicans is shown in a chs3D and chs8D mutant, respectively, demonstrating that the architecture

of chitin is genetically determined [24].
Transcriptional regulation of chitin synthesis
In most fungi, chitin and cell wall synthesis occurs at sites

of polarised growth. During early bud growth, cell wall

material is deposited at the bud tip [12]. A period of
www.sciencedirect.com
isotropic growth occurs in large budded cells where

material is deposited over the entire bud surface. Follow-

ing nuclear division, a repolarisation phase begins where

material is directed towards the mother-bud neck to
Current Opinion in Microbiology 2010, 13:416–423
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Table 1

Members of the seven classes of CHS enzymes in various fungia

Fungusb I II III IV V VI VII Total

S. cerevisiaed Chs1 Chs2 Chs3 3

C. albicansd Chs2

Chs8

Chs1 Chs3 4

A. nidulansd ChsC ChsA ChsB

ChsF

ChsD CsmA ChsG CsmB 8

A. fumigatusd ChsA ChsB ChsC

ChsG

ChsF ChsE ChsD Afu2g13430 8

W. dermatitidisd Chs2 Chs1 Chs3 Chs4 Chs5 Chs6 Chs7 7

U. maydise Chs3

Chs4

Chs2 Chs1 Chs5

Chs7

Mcs1 Chs6 8

C. neoformanse Chs6

Chs8

Chs6

Chs8

Chs2

Chs7

Chs1

Chs3

Chs5 Chs4 8

P. blakesleeanusf Chs5

Chs6

Chs1

Chs2

Chs3

Chs4

Chs7

Chs8

Chs9

Chs10

10c

a Standard genetic nomenclature for S. cerevisiae and C. albicans has been used to designate CHS proteins from all fungi. The enzymes have been

assigned to classes based on the classification proposed by Niño-Vega et al. [6] and Roncero [7].
b d: ascomycete; e: basidomycete; and f: zygomycete.
c 34 putative CHSs have been annotated in the P. blakesleeanus genome (http://genome.jgi-psf.org/Phybl2/Phybl2.home.html).
prepare for cytokinesis. In hyphal or filamentous forms,

cell extension is a continuous and indefinite process of

apical growth [13].

Accordingly, chitin synthesis must be regulated both

temporally and spatially in relation to the cell cycle.

The S. cerevisiae class II enzyme ScChs2 synthesises

the primary septum and ScChs1 of class I acts a repair

enzyme that replenishes chitin in the birth/bud scar

immediately after cytokinesis [1,14]. A genome-wide

analysis of cell cycle regulation at the mRNA level using

synchronised S. cerevisiae cultures indicated that expres-

sion of ScCHS2 peaked in M-phase and ScCHS1 in M/G1,

both at appropriate times for the functions of these

enzymes [15]. Transcription during the cell cycle of an

opaque C. albicans MTLa FAR1OP strain synchronised

after release from a-factor arrest showed that expression

of CaCHS1 (orthologous to ScCHS2), CaCHS8 and to a

lesser extent CaCHS3 peaked in G2 phase, whereas

expression of CaCHS2 was non-periodic [16�].

Disruption of cell wall biosynthetic genes or treatments

with cell wall perturbing agents often results in compen-

satory alterations in the cell wall, including activation of

chitin synthesis, in an attempt to maintain cellular integ-

rity (reviewed in [17]). Defects in the cell wall are sensed

in S. cerevisiae by transmembrane proteins such as ScWsc1

and ScMid2, or the signalling mucins ScMsb2 and ScHkr1

that activate downstream mitogen-activated protein

(MAP) kinase cascades to bring about cell wall remodel-

ling (Figure 2). In S. cerevisiae this so-called ‘cell wall

salvage’ or ‘cell wall compensatory’ pathway is mediated

primarily through the protein kinase C (PKC) cell integ-

rity MAP kinase cascade and its downstream target the
Current Opinion in Microbiology 2010, 13:416–423
transcription factor ScRlm1 [18]. A second MAP kinase

cascade, the high osmolarity glycerol response (HOG)

pathway, has also been suggested to play a role in reg-

ulating cell wall architecture [19] (Figure 2).

In C. albicans, the PKC and HOG MAP kinase cascades

and the Ca2+/calcineurin pathway regulate CHS gene

expression and chitin synthesis in response to cell wall

stresses [20]. Promoter dissection experiments have

defined the regulatory regions of the class I CHS pro-

moter sequences and revealed that C. albicans uses differ-

ent transcription factors and/or consensus binding

sequences to regulate chitin synthesis compared to S.
cerevisiae [21] (Figure 2).

Upregulation of chitin synthesis in response to cell wall

stress may be clinically relevant. In C. albicans, the tran-

scriptional activation of chitin synthesis through the PKC,

HOG and Ca2+/calcineurin pathways confers resistance to

the echinocandin class of antifungal drugs [22�], and in

Aspergillus fumigatus, calcineurin-mediated elevated tran-

scription of AfCHSA and AfCHSC is required for paradox-

ical growth in the presence of high concentrations of the

echinocandin drug caspofungin [23��].

Post-transcriptional regulation of chitin
synthesis
Coordinated synthesis of chitin also requires the localis-

ation of the enzymes to be regulated throughout the cell

cycle. Fungal CHS enzymes that are responsible for

synthesising cell wall and/or septal chitin tend to be

localised to sites of polarised growth. For example, in

C. albicans, the class IV enzyme CaChs3 is involved in

both cell wall and septum synthesis [11]. It is localised to
www.sciencedirect.com
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Figure 2

Signalling pathways that regulate Candida albicans CHS gene expression. The HOG, PKC and the Ca2+/calcineurin signalling pathways regulate

chitin synthesis and CHS gene expression [20]. The Rlm1 transcription factor downstream of the PKC MAP kinase cascade controls the expression

of a number of cell wall related genes in S. cerevisiae. Putative Rlm1 binding motifs (red boxes) in the promoters of CaCHS2 and CaCHS8 contribute

to their cell wall stress-activated regulation [21]. Activation of the calcineurin pathway results in de-phosphorylation of the CaCrz1 transcription

factor. CaCrz1 then moves to the nucleus and induces expression of genes with CDREs (calcium-dependent response elements) within their

promoter sequences. C. albicans has significant re-wiring of signalling pathways compared to S. cerevisiae, for example, the role of the CaSko1

transcription factor in response to caspofungin is independent of the CaHog1 MAP kinase but involves the CaPsk1 PAS kinase [26]. Potential CDREs

and Sko1 binding sites identified in silico upstream of CaCHS2 and CaCHS8 (grey boxes) were not required for regulation of gene expression [21].

Sequences in the first 347 bp and 125 bp of the CaCHS2 and CaCHS8 promoters governed expression through these three signalling pathways

[21].Adapted from [17].
the tip of growing buds and hyphae and relocates to sites

of septum formation before cytokinesis [24]. Similarly, in

A. nidulans, the class III enzyme AnChsB appears to

function at polarised growth sites and in forming septa

during hyphal growth and conidia development [25].

Both the localisation and stability of CHS enzymes can be

regulated by phosphorylation. Recent work has shown

that protein kinases and the establishment of cell polarity

appear to be important for cell wall regulation in C.
albicans [26]. In S. cerevisiae, the primary septum is syn-

thesised by ScChs2 [1,14]. Phosphorylation of ScChs2 by

ScCdk1 at 4 N-terminal sites retains this enzyme in the

Endoplasmic Reticulum (ER) until mitotic exit [27].

Deletion of these phospho-sites resulted in ScChs2 degra-

dation [28], indicating that phosphorylation regulates

chitin synthesis by ScChs2 at specific stages of the cell
www.sciencedirect.com
cycle, either by regulating the cellular localisation or

stability of the protein. Three of the four CHS enzymes

are phosphorylated in C. albicans [29], and phosphoryl-

ation of CaChs3 on S139 is required to target this enzyme

to sites of polarised growth [30�] (Figure 3).

The regulation of localisation of the class IV CHS enzyme

in S. cerevisiae has been studied extensively and involves a

number of different post-transcriptional regulatory mech-

anisms. Export of ScChs3 from the ER is controlled by the

chaperone ScChs7 and transportation from the Golgi to

the plasma membrane (PM) occurs in specialised vesicles

called chitosomes [31,32]. Generation of the PtdIns(4)P

lipid by ScPik1 promotes forward transport of ScChs3 to

the PM and subsequent de-phosphorylation by ScSac1

terminates the signal, allowing ScChs3 to remain in the

PM and synthesise chitin [33]. ScChs3 is targeted to the
Current Opinion in Microbiology 2010, 13:416–423
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Figure 3

Phosphorylation of Candida albicans Chs3 on a specific serine residue is required to target the CHS to sites of polarised growth. CaChs3 was tagged

with yellow-fluorescent protein (YFP) and the localisation of the CHS in growing hyphae was observed by time-lapse fluorescence microscopy. (a)

CaChs3-YFP localises to the tip of the growing hypha and then flashes at the site of septum formation. (b) Mislocalisation of CaChs3 is observed when

the serine at position 139 has been mutated to an alanine that cannot be phosphorylated (Chs3S139A-YFP).Modified from [30�].
bud neck for septum formation at an appropriate time in

the cell cycle through interactions with ScChs4, ScBni4,

ScGlc7 and the septins [14,34–38].

In addition to mechanisms involving post-translational

modifications or protein–protein interactions, some CHSs

are hybrid proteins with N-terminal myosin motor-like

domains (MMD) and C-terminal CHS domains. These

enzymes tend to fall into classes V and VII, and the best

characterised examples from human pathogens include

WdChs5 (the class V enzyme from Wangiella dermatitidis;
[39]), AnCsmA and AnCsmB (class V and VII from A.
nidulans; [40,41]). Using their MMD, these enzymes

appear to localise themselves to sites of polarised cell

wall expansion in an actin-dependent manner [40,42–44].

The MMD may not possess the motor activity of

traditional myosins [43], however, in the plant pathogen

Ustilago maydis, the myosin-like domain of the class V

UmMcs1 enzyme has been shown to be essential for its

apical localisation and is involved in retention of UmMcs1

in the apical dome (G Steinberg, personal communi-

cation).

Chitin and immune recognition
The immune system has evolved to detect conserved,

basic molecular components of microorganisms called

pathogen associated molecular patterns (PAMPs).

b(1,3)-Glucan is a well studied PAMP that is detected

by Dectin-1, a C-type lectin receptor of monocytes and

macrophages, and is of major importance in activating a

strong, pro-inflammatory response by the innate immune
Current Opinion in Microbiology 2010, 13:416–423
system [45]. In C. albicans, access to the inner cell wall

layer containing b-glucan and chitin is normally shielded

by the superficial mannans and so immune detection of

intact cells is initially focused on mannan-immune re-

ceptor interactions [46]. However, b-glucan can be

unmasked by exposure to host enzymes, antifungal drugs,

heat-treatment and in mannosylation deficient mutants

[47]. In a similar way, an outer a(1,3)-glucan layer masks

detection of the inner chitin/b-glucan layer in Histoplasma
capsulatum [48]. In the case of b-glucan, unmasking has

major immunomodulatory consequences. What therefore

is the immunological role of chitin, the other highly

conserved signature molecule in the inner cell wall?

Recent studies have begun to reveal a complex picture

regarding the immunological properties of chitin [49].

Immune responses seem to be highly dependent on

the size of the chitin fragments used to stimulate immune

cells [50]. Very large (>100 mm) chitin fragments, nor-

mally prepared from invertebrate sources, seem to be

immunologically inert, while intermediate (40–70 mm)

and small chitin (<40 mm) seem capable of activating

macrophages and eliciting IL-17, TNF and IL-23 pro-

duction via a range of pattern recognition receptors

(PRRs) [51]. All of these particles are quite large relative

to the sizes of fungal cells and the molecular scale of

immune receptor–ligand interactions. Also, such exper-

iments have yet to accommodate the fact that the struc-

ture of chitin microfibrils varies significantly in different

organisms and even in different parts of the cell wall [24]

(Figure 1). Size-dependent immune reactivity helps
www.sciencedirect.com
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explain the importance of chitin-degrading proteins, such

as acidic mammalian chitinase [52] and chitotriosidase

[53,54] in allergic immune responses. These enzymes

presumably digest chitin into smaller particles, capable

of mediating allergic responses. Their ability to digest

large chitin fragments results in the accumulation of IL-4

expressing basophils, eosinophils and neutrophils in tis-

sues and induces alternative macrophage activation that is

associated with the immunity to certain chitin-containing

parasites such as the helminth Nippostrongylus brasiliensis
[55��]. Reciprocally, it appears as though certain human

proteins sequester chitin to dampen immune responses

[56].

Recently, several candidate mediators of chitin mediated

immune responses have been identified. RegIIIg (HIP/

PAP) is a C-type lectin with an affinity for chitin that is

expressed in the neutrophil-like Paneth cells of the small

intestine and is induced by certain bacterial peptidogly-

cans [57]. Peptidoglycans are chemically related to chitin

in so far as they are N-acetylglucosamine containing

polysaccharides and the two molecules can activate some

common cellular responses [58]. FIBCD1 has also been

identified as a calcium-dependent acetyl group-binding

tetrameric chitin-binding receptor [59��]. The binding

between this chitin receptor and acetylated BSA could be

inhibited by a variety of acetylated compounds, but not

glucosamine or glucose [59��]. The requirement for acety-

lation suggests that this receptor is unresponsive to chit-

osan, which is known to be able to activate dendritic cells

via a TLR4-dependent mechanism [60]. This is import-

ant because fungal pathogens such as the zygomycetous

fungi and C. neoformans have substantial amounts of

deacetylated chitin in their walls. Therefore further chitin

and chitosan immune receptors remain to be identified

and the role of fungal chitin in immune recognition

requires investigation.

Chitin as a target for anti-fungal
chemotherapy
Chitin and chitosan are hallmark polysaccharides that are

present in all known fungal pathogens and not in humans.

Inhibition of chitin synthesis has therefore been proposed

as an attractive target for antifungal therapies. However, no

CHS inhibitor has ever progressed into clinical practice

[61]. Existing CHS inhibitors such as the nikkomycins and

polyoxins are most potent and specific against class I

enzymes but are less effective inhibitors of other classes

of CHS enzymes, and of fungal growth in vivo [61,62].

The discovery of the essential role of C. albicans CHS1
[10] prompted the screening for class II CHS inhibitors.

Roche developed one compound, RO-09-3143, a specific

inhibitor of CaChs1 that was fungistatic to C. albicans, but

cidal in a chs2D mutant background [63]. This highlighted

the possibility of compensatory functions for different

CHS enzymes and was reinforced by the observation that
www.sciencedirect.com
C. albicans yeast cells stimulated to synthesise chitin by

treatment with Ca2+ and Calcofluor White were able to

grow and divide by forming a novel salvage septum in the

absence the otherwise essential CaCHS1 gene [22�].

A common response to cell wall damage is strengthening

of the wall by the production of excess chitin, primarily by

the class IV enzymes such as ScChs3 and CaChs3 [20,64].

This compensatory mechanism is triggered when fungi

are treated with echinocandin drugs [22�,65,66].

Enhanced chitin levels reduces susceptibility to echino-

candin drugs in C. albicans [17,22�], but reciprocally,

combinations of CHS and glucan synthase inhibitors

are more potent against C. albicans and A. fumigatus than

individual drug treatments [22�,67]. These studies high-

light the potential of combination therapies that target

the synthesis of the two major structural polysaccharides

found in most fungi, in achieving fungicidal regimens that

would prevent the emergence of resistance mechanisms.

In addition, cell wall synthase inhibitors, applied in

combination with antagonists of the signalling pathways

that regulate synthase expression and activity, may have

potential as potent antifungal combination therapies. For

example, the calcineurin pathway is important for regu-

lation of chitin synthesis in C. albicans and A. fumigatus as

well as the response to echinocandin drugs, and drugs that

block the calcineurin pathway act synergistically with the

echinocandins [20,22�,67,68].

Conclusions
The primary structure of chitin comprises a single sugar

type and a single inter-sugar linkage. None-the-less it is

diverse in structure and form and is assembled by differ-

ent classes of enzymes encoded by families of genes

whose expression is regulated in a cell cycle-dependent

manner at the transcriptional and post-transcriptional

levels. Recent advances in our understanding of how

chitin synthesis is regulated and responds to cell wall

stress sustains the attraction of this process as a potential

antifungal drug target, possibly in combination with

inhibitors of b(1,3)-glucan synthesis and/or the cell wall

compensatory pathway. The relevance of fungal chitin

synthesis in human disease is also evident in emerging

research defining the role of this fungal signature mol-

ecule in immune recognition mechanisms.
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