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Abstract

Microdata protection is a hot topic in the field of Statistical Disclosure Control, which

has gained special interest after the disclosure of 658000 queries by the America Online

(AOL) search engine in August 2006. Many algorithms, methods and properties have

been proposed to deal with microdata disclosure. One of the emerging concepts in mi-

crodata protection is k-anonymity, introduced by Samarati and Sweeney. k-anonymity

provides a simple and efficient approach to protect private individual information and is

gaining increasing popularity. k-anonymity requires that every record in the microdata

table released be indistinguishably related to no fewer than k respondents.

In this paper, we apply the concept of entropy to propose a distance metric to eval-

uate the amount of mutual information among records in microdata, and propose a

method of constructing dependency tree to find the key attributes, which we then use

to process approximate microaggregation. Further, we adopt this new microaggregation

technique to study k-anonymity problem, and an efficient algorithm is developed. Ex-

perimental results show that the proposed microaggregation technique is efficient and

effective in the terms of running time and information loss.
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1 Introduction

British politicians gasped with astonishment when they were told on November 20th, 2007,

that two computer disks full of personal data of 25m British individuals had gone missing

[24]. The fate of the disks is unknown and the privacy of the individuals, whose personal data

are lost, is in danger. Unfortunately, this is the latest in a series of similar incidences. In

October, HM’s Revenue and Customs (HMRC) lost another disk containing pension records

of 15,000 people, and it also lost a laptop containing personal data on 400 people in September

[7]. Data on 26.5m people were stolen from the home of an employee of the Department of

Veterans Affairs in America in 2006, and 658000 queries were disclosed by the AOL search

engine in August of the same year [15]. These pitfalls are not new. Due to the great advances

in the information and communication technologies, it is very easy to gather large amounts

of personal data, and mistakes such as those described are magnified.

There are many real-life situations in which personal data is stored: For example: (i)

Electronic commerce results in the automated collection of large amounts of consumer data.

These data, which are gathered by many companies, are shared with subsidiaries and partners.

(ii) Health care is a very sensitive sector with strict regulations. In the U.S., the Privacy

Rule of the Health Insurance Portability and Accountability Act (HIPAA [16]) requires the

strict regulation of protected health information for use in medical research. In most western

countries, the situation is similar, (see e.g. [2]). (iii) Cell phones have become ubiquitous

and services related to the current position of the user are growing fast. If the queries that a

user submits to a location-based server are not securely managed, it could be possible to infer

the consumer habits of the user [33]. (iv) The massive deployment of the Radio Frequency

IDentification (RFID) technology is a reality. On the one hand, this technology will increase

the efficiency of supply chains and will eventually replace bar codes. On the other hand, the

existence of RFID tags in almost every object could be seen as a privacy problem [34].

In addition to these real-life situations, most countries have legislation which compels

national statistical agencies to guarantee statistical confidentiality when they release data

collected from citizens or companies; see [23] for regulations in the European Union, [26] for

regulations in Canada, [27] for regulations in the U.S, and [28] for regulations in Australia.

Thus, protecting individual privacy is a key issue for many institutions, especially statistical
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agencies, Internet companies, manufacturers, etc; and many efforts have been devoted to

develop techniques guaranteeing some degree of personal privacy.

In order to protect privacy, Samarati and Sweeney [31, 38, 29, 30] proposed the k-

anonymity model, where some of the quasi-identifier fields are suppressed or generalized so

that, for each record in the modified table, there are at least k − 1 other records in the mod-

ified table that are identical to it with respect to the quasi-identifier attributes. The general

approach adopted in the literatures to achieve k-anonymity is suppression/generalization, so

that minimizing information loss translates to reducing the number and/or the magnitude of

suppressions and generalizations [1, 29, 38, 35, 37, 39, 20, 19, 21].

Another method to achieve anonymity is through microaggregation [12, 11, 32]. Microag-

gregation is a Statistical Disclosure Control (SDC) technique consisting in the aggregation of

individual data. It can be considered as an SDC sub-discipline devoted to the protection of

microdata. Microaggregation can be seen as a clustering problem with constraints on the size

of the clusters. It is somehow related to other clustering problems (e.g., dimension reduction

or minimum squares design of clusters). However, unlike clustering, microaggregation is not

considered with the number of clusters or the number of dimensions, but only the minimum

number of elements that are grouped in each cluster.

1.1 Motivation

As stated in [9, 10, 11], the result and execution time of miroaggregation depends on the

number of the variables used in the microaggregation process. Microaggregation using fewer

variables sometimes offer the best solution. The question of interest is: Do we have to use

all the dimension resources (attributes) in the microaggregation, or can we use only a small

number of the attributes in the microaggregation process and obtain better solutions?

This paper is highly motivated by this. To answer the question, we introduce the concept of

entropy, an important concept in information theory, and propose a distance metric to evaluate

the amount of the mutual information among records in the microdata, and propose the

method of constructing dependency tree to find the key attributes, which we can use to process

approximate microaggregation. Further, we apply this new microaggregation technique to

solve k-anonymity problem, and an efficient algorithm is developed. Finally, experimental
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results show that the proposed microaggregation technique is efficient and effective in terms

of running time and information loss.

Our Contributions:

• We propose a novel metric to measure the mutual information between attributes in the

microdata based on the concept of entropy, which captures the expected uncertainty in the

attribute pairs and the mutual information between them. We also discuss the properties of

this metric.

• Based on this mutual information measure, we develop a simple, yet efficient algorithm

to find the best dependency tree from the given microdata, and we also discuss how to

select key attributes from the best dependency tree, and how to use it for the approximate

microaggregation.

• We apply our technique to k-anonymity problem, and develop an efficient algorithm for

it. Experimental results show that the proposed microaggregation technique is effective and

efficient compared with the previous microaggregation method.

Running Example

ID A1 A2 A3 A4 A5 A6

r1 0 0 0 1 1 1
r2 0 1 1 0 1 0
r3 1 1 0 1 0 0
r4 0 0 1 1 1 1
r5 0 1 1 1 0 0
r6 0 0 1 0 0 1
r7 1 1 1 0 0 1
r8 0 1 1 0 0 0
r9 1 1 1 0 1 1
r10 0 1 1 1 0 1
r11 0 1 1 1 0 0
r12 1 1 1 1 1 1

Table 1: Sample data
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For the simplicity of illustration, we use the data shown in Table 1 as our running example.

There are 12 records {r1, r2, · · · , r12} in the sample data and each record contains 6 attributes

{A1, · · · , A6}. For each attribute Ai (1 ≤ i ≤ 6), we define the probability P (Ai = x) as

the fraction of rows whose projection onto Ai is equal to x, where x ∈ {0, 1}. For instance,

P (A1 = 1) = 1/3, P (A3 = 0) = 1/6 and P (A1 = 1, A3 = 0) = 1/12.

2 Background

Many techniques have been proposed to deal with the anonymity problem. In this section,

we introduce some basic concepts regarding this. First, we take a look at some fundamental

concepts of microaggregation and k-anonymity. Then, we show how to achieve k-anonymity

through microaggregation.

2.1 Microaggregation

Statistical Disclosure Control (SDC) seeks to transform data in such a way that the data can

be publicly released whilst preserving utility and privacy, where the latter means avoiding

disclosure of information that can be linked to specific individual or corporate respondent

entities. Microaggregation is an SDC technique consisting in the aggregation of individual

data. It can be considered as an SDC sub-discipline devoted to the protection of the micro-

data. Microaggregation can be seen as a clustering problem with constraints on the size of

the clusters. It is somehow related to other clustering problems (e.g., dimension reduction or

minimum squares design of clusters). However, the main difference of the microaggregation

problem is that it does not consider the number of clusters to generate or the number of

dimensions to reduce, but only the minimum number of elements that are grouped in the

same cluster.

Microaggregation has been used for several years in different countries. It started at

Eurostat [8] in the early nineties, and has since then been used in Germany [25] and several

other countries [13]. Microaggregation is relevant not only with SDC, but also in artificial

intelligence [10]. In the latter field, the application is to increase the knowledge of a system

for decision making and domain representation. Microaggregation techniques may also be
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Gender Age Postcode Problem
male middle 4350 stress
male middle 4350 obesity
male young 4351 stress
female young 4352 obesity
female old 4353 stress
female old 4353 obesity

Table 2: A raw microdata

Gender Age Postcode Problem
male middle 4350 stress
male middle 4350 obesity
∗ young 435∗ stress
∗ young 435∗ obesity

female old 4353 stress
female old 4353 obesity

Table 3: A 2-anonymous microdata

69 5 11104

5 55 1010 10

Average

Origianl data

Microaggregated data

record

Figure 1: Example of microaggregation

used in data mining in order to scale down or even compress the data set while minimizing

the information loss.

When we microaggregate data we have to keep two goals in mind: (i) Preserving data

utility. To do this, we should introduce as little noise as possible into the data; i.e., we should

aggregate similar elements instead of different ones. In the example in Figure 1, groups of

three elements are built and aggregated. Note that elements in the same aggregation group

are similar. (ii) Protecting the privacy of the individuals. Data have to be sufficiently modified

to make re-identification difficult; i.e., by increasing the number of aggregated elements, we

increase data privacy. In the example in Figure 1, after aggregating the chosen elements, it is

impossible to distinguish them, so that the probability of linking any individual is inversely

proportional to the number of aggregated elements.

In order to determine whether two elements are similar, a similarity function such as

the Euclidean distance, Minkowski distance or Chebyshev distance can be used. A common
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measure is the Sum of Squared Errors (SSE). The SSE is the sum of squared distances from

the centroid of each group to every record in the group, and is defined as:

SSE =
s∑

i=1

ni∑
j=1

(xij − x̄i)
′(xij − x̄i) (1)

where s is the number of groups, ni is the number of records in the ith group, xij is the jth

record in the ith group and x̄i is the average record of the ith group. Optimal multivariate

microaggregation, that is, with minimum SSE, was shown to be NP-hard in [22]. The only

practical microaggregation methods are heuristic.

2.2 K-Anonymity

k-anonymity, suggested by Samarati and Sweeney [31, 38, 29, 30], is an interesting approach to

reduce the conflict between information loss and privacy protection. To define of k-anonymity,

we need to enumerate the various types of attributes that can appear in a microdata set T :

• Identifier attributes that can be used to identify a record, such as Name and Medicare

card. Since our objective is to prevent sensitive information from being linked to specific

respondents, we will assume in what follows that identifier attributes in the microdata have

been removed or encrypted in a pre-processing step.

• Quasi-identifier (QI) attributes are those, such as Postcode and Age, that in combination,

can be linked with external information to re-identify (some of) the respondents to whom

(some of) the records in the microdata belong. Unlike identifier attributes, QI attributes

can not be removed from the microdata, because any attribute is potentially a QI attribute.

• Sensitive attributes that are assumed to be unknown to an intruder and need to be pro-

tected, such as Disease or ICD-9 Code1.

1International Statistical Classification of Diseases and Related Health Problems: ICD-9, which provides
multiple external links for looking up ICD codes. Available http://icd9cm.chrisendres.com/.
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Definition 1 (k-anonymity). A protected microdata set is said to satisfy k-anonymity, if,

for each combination of QI attributes, at least k records exist in the microdata sharing that

combination

Note that, if a protected microdata T ′ satisfies k-anonymity, an intruder trying to link

T ′ with an external non-anonymous data source will find at least k records in T ′ that match

any value of the QI attributes the intruder use for linkage. Thus re-identification, i.e., map-

ping a record in T ′ to a non-anonymous record in the external data source, is not possible.

For example, Table 3 is a 2 anonymous view of Table 2 if QI attributes are {Gender, Age,

Postcode}.
If for a given k, k-anonymity is assumed to be enough protection for respondents, one can

concentrate on minimizing information loss with the only constraint that k-anonymity should

be satisfied. This is a clean way of solving the tension between data protection and data

utility. The general approach adopted in the literature to achieve k-anonymity is suppres-

sion/generalization, so that minimizing information loss translates to reducing the number

and/or the magnitude of suppressions and generalizations [29, 38, 35]. Generalization consists

in substituting the values of a given attribute with more general values. We use ∗ to denote

the more general value. For instance, in Table 3, Postcode 4351 and 4352 are generalized to

435∗. Suppression refers to removing the part or entire value of attributes from the microdata.

Note that suppressing an attribute to reach k-anonymity can equivalently be modeled via a

generalization of all the attribute values to ∗.
The drawbacks of partially suppressed and coarsened data for analysis were highlighted

in [12]:

1. Satisfying k-anonymity with minimum data modification using generalization (recod-

ing) and local suppression was shown to be NP-hard by Meyerson and Williams [21],

Aggarwal et al. [1] and Sun et al. [36];

2. Using global recoding for generalization causes too much information loss, and using

local recoding complicates data analysis by causing old and new categories to co-exist

in the recoded data;
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3. There is no standard way of using local suppression and analyzing partially suppressed

data usually requires specific software;

4. Last but not least, when numerical attributes are generalized, they become non-numerical.

Joint multivariate microaggregation of all QI attributes with minimum group size k was

proposed in [12] as an alternative to achieve k-anonymity. Besides being simpler, this alterna-

tive has the advantage of yielding complete data without any coarsening (nor categorization

in the case of numerical data). Other proposals [18, 35, 36, 37] generalize ordinal numeri-

cal data, replacing numerical data by intervals. In the case of the k-anonymity application,

micro-aggregation is performed on the projection of records on QI attributes.

The first algorithm, known as Maximum Distance to Average Vector (MDAV), to achieve

microaggregation through k-anonymity was proposed in [11]. The MDAV algorithm works as

follows: First, it computes the centroid (average record) of records in the data set, and find

the most distant record r from the centroid and the most distant record s from r. Second,

it forms two groups around r and s: the first group contains r and the k − 1 records closest

to r; the other group contains s and the k − 1 records closest to s. Finally, the two group

are microaggregated and removed from the original dataset. The steps are repeated until

there are no records in the original dataset. Although MDAV generates groups of fixed size

k, it lacks flexibility for adapting the group size to the distribution of the records in the

data set, which may result in poor homogeneity in a group. Variable-size MDAV (V-MDAV)

was proposed to overcome this limitation by computing a variable-size group, and a detailed

analysis can be found in [32].

In the next section, we will propose our approximate microaggregation technique, and

show how to apply it to solve k-anonymity in order to overcome most of the problems of

generalization/suppression listed above.

3 Approximate Microaggregation

The work presented in this paper is based on information theory, and is related to the applica-

tion of dependency tree of information theory in data mining and databases. In this section,
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we first introduce the concept of entropy, and the mutual information measure, which cap-

tures the mutual dependency between attributes. Then we introduce our microaggreation

technique by constructing the dependency tree, and finally, we apply this microaggregation

technique to k-anonymity problem, and an efficient algorithm is proposed.

3.1 Mutual Information Measure

We are more surprised when an unlikely outcome happens than a likely one occurs. A useful

measure of the surprise of an event with probability p is −log2p. The main concept of infor-

mation theory is that of entropy, which measures the expected uncertainty or the amount of

information provided by a certain event. The entropy of X is defined by:

H(X) = −
∑
x

P (X = x)log2P (X = x)

with 0log20 = 0 by convention. It can be shown that 0 ≤ H(X) ≤ log2|X|, with H(X) =

log2|X| only for the uniform distribution, P (X = x) = 1/|x| for all x ∈ X. For instance,

in the given running example, H(A1) = −(8/12)log2(8/12) − (4/12)log2(4/12) = 0.9183,

H(A2) = 0.8113 and H(A1, A2) = 1.5546.

The conditional entropy H(Y |X) of a random variable Y given X is then defined as:

H(Y |X) = −
∑
x,y

p(x, y)log2p(y|x)

where p(x, y) is the joint distribution of variables X and Y . The conditional entropy has the

following properties:

Proposition 1: Let H(Y |X) be the conditional entropy for Y given X, then,

(1) 0 ≤ H(Y |X) ≤ H(Y );

(2) H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y );

(3) H(X, Y ) ≤ H(X) +H(Y )
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The proof of Proposition 1 is given in [40]. According to the proposition, the condi-

tional entropy H(Y |X) can be rewritten as: H(Y |X) = H(X,Y ) − H(X), which provides

an alternative and easy way to compute the conditional entropy H(Y |X). For instance, in

our running example, H(A1|A2) = H(A1, A2) − H(A1) = 1.5546 − 0.9183 = 0.6363 and

H(A2|A1) = 0.7433.

We adopt the conditional entropy to measure the mutual information, which is a distance

metric.

Definition 2 (Mutual Information Measure). The mutual information measure with re-

gard to two random variables A and B is defined as:

MI(A,B) = H(A|B) +H(B|A) (2)

Mutual information measure is a measure of how independent are the two random variables

when the value of each random variable is known. Two events A and B are independent if and

only if their mutual information measure achieves the maximum H(A) + H(B). Therefore,

the less the value of the mutual information measure is, the more dependent the two random

variables are. According to this measure, A is said to be more dependent on B than C, if

MI(A,B) ≤ MI(A,C).

Theorem 1: The mutual information measure MI(A,B) satisfies the following properties:

(1) MI(A,B) ≥ 0;

(2) MI(A,B) = MI(B,A);

(3) MI(A,B) +MI(B,C) ≥ MI(A,C)

Proof: The first two are easy to be verified. Here, we give the detail for the third one. Note

that,
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H(A|C) ≤ H(A,B|C) (3)

≤ H(B|C) +H(A|B,C)−H(C) (4)

≤ H(B|C) +H(A|B) +H(C)−H(C) (5)

= H(B|C) +H(A|B) (6)

The inequalities (3) and (4) hold because of Proposition 1(1) and (2). (5) holds due to

Proposition 1(3) and (6) holds because of Proposition 1(2). Then,

MI(A,B) +MI(B,C) (7)

= H(A|B) +H(B|A) +H(B|C) +H(C|B) (8)

= (H(A|B) +H(B|C)) + (H(C|B) +H(B|A))

≥ H(A|C) +H(C|A) (9)

= MI(A,C) (10)

The equality (8) holds because of the definition of mutual information measure and the

inequality (9) holds because of (6).

It is easy to verify that MI(A,B) = 0 if and only if there is a one-to-one function mapping

between A and B. Since when H(B|A) = 0, B is a function of A, then when MI(A,B) = 0 if

and only if H(B|A) = 0 and H(A|B) = 0; i.e, there is a one-to-one function mapping between

A and B. In this sense, the mutual information measure MI(A,B) we defined is a distance

metric.

3.2 Dependency Tree

Dependency tree was introduced by Chow and Liu [4], in which they introduced an algorithm

for fitting a multivariate distribution with a tree (i.e., a density model that assumes that

there are only pairwise dependency between variables). In the maximum likelihood sense, the
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dependency tree is the best tree to fit the dataset, and it uses mutual information measure

to estimate the dependency of two random variables.

The dependency tree has been used in finding dependency structure in the features which

improve the classification accuracy of the Bayes network classifiers [14]. [5] uses the depen-

dency tree to represent a set of frequent patterns, which can be used to summarize patterns

into few profiles. [17] presents a large node dependency tree, in which the nodes are subsets

of variables of dataset. The large node dependency tree is applied to density estimation and

classification.

Definition 3 (Dependency Matrix). Given microdata T with n records {r1, r2, · · · , rn},
where each record contains m attributes {A1, A2, · · · , Am}, the dependency matrix DT is de-

fined as:

DT = (MI(i, j))m×m

where MI(i, j) is the mutual information measure, i, j ∈ {A1, A2, · · · , Am}.

For instance, the dependency matrix in our running example is as follows:

0 1.3796 1.5339 1.8777 1.8777 1.8126

1.3796 0 1.3753 1.7772 1.6681 1.3180

1.5339 1.3753 0 1.3368 1.6217 1.6217

1.8777 1.7772 1.3368 0 1.9586 1.9586

1.8777 1.6681 1.6217 1.9586 0 1.7510

1.8126 1.3180 1.6217 1.9586 1.7510 0


With the dependency matrix, we could construct a fully connected weighted graph G =

(V,E, ω), where V = {v1, v2, · · · , vm} is the set of vertices, which corresponds to the attributes

in T , and for each pair of vertices (vi, vj) there is an edge eij connecting them, and ω(eij)

refers to the weight of each eij between vi and vj, which can be obtained from the dependency

matrix. An example of such a fully connected graph is shown in Figure 2(Left).

We observe that ω(eij) represents to what extent vertex vi (or attribute Ai) is dependent

on vj (or Aj). Although, in the worst case, any pair of attributes can be dependent, however,

as stated in [4], we could simplify by using an approximation which ignores the conditions on
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A1

A2

A3

A4

A5

A6

G

A1

A2

A3

A4

A5

A6

TG

1.3796

1.3753

1.7772

1.6217

1.3180

Figure 2: Left: Fully connected graph G; Right: Its minimum spanning tree TG (Right)

v1

v2
vm· · · · · ·v3 v1 v2 · · · · · · vm

(a) (b)

Figure 3: Proof of Theorem 2

multiple attributes, and retaining only dependency in at most a single attribute at a time,

which results in a tree-like structure. It is easy to see that in the fully connected weighted

graph G, there are a large number of trees, each of which represents a unique approximation

dependency structure. Here, in order to reduce the uncertainty in the dataset and maximize

the mutual information among the attributes simultaneously, we find the minimum spanning

tree as our best dependency tree from the fully connected graph G based on our proposed

mutual information measure. Here, we use the Kruskal algorithm [6], which is essentially a

greedy algorithm. The candidate edges are sorted in increasing order of their weights (i.e.

mutual information measure). Then, starting with an empty set E0, the algorithm examines

one edge at a time (in the order resulting from the sort operation), checks if it forms a cycle

with the edges already in E0 and, if not, adds it to E0. The algorithm ends when m−1 edges

have been added to E0, where m refers to the number of vertices in G.
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Algorithm 1: Finding best dependency tree
1. Compute the mutual information measure between
each pair of attributes in T and construct the dependency
matrix DT . There are m(m− 1)/2 weight need to be
calculated, since T has m attributes.

2. Construct a fully connected graph, where the nodes
correspond to the attributes in T . The weight of each edge
refers to their mutual information measure.

3. Find the best dependency tree by the the minimum
spanning tree algorithm.

The algorithm of finding best dependency tree is briefly described in Algorithm 1 and an

example of the found out best dependency tree is shown in Figure 2(Right).

After finding out the best dependency tree, we need to set out rules to select the key

attributes from the dependency tree to process approximate microaggregation.

Definition 4 (Degree of The Vertex). Let G = (V,E) be a graph, where V = {v1, v2, · · · , vm}.
Then, the degree of the node vi is the number of edges incident to the nodes, denoted by deg(vi).

For example, in Figure 2(Right), deg(A2) = 4, and deg(A3) = 2. Let TG be the best

dependency tree found in G. We then compute the degree of each vertex in TG and sort them

in decreasing order. Without loss of generality, we assume that deg(v1) ≥ deg(v2) ≥ · · · ≥
deg(vm) after they are sorted in decreasing order. Then, the principle of choosing the key

attributes is as follows:

Definition 5 (Choosing Key Attributes). Suppose deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vm)

after they are sorted. Then, the vertices v1, v2, · · · vk are chosen as the key attributes if the

following two requirements are satisfied at the same time:
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Algorithm 2: k-anonymity through approximate microaggregation

Input: Microdata set T consisting of n records having m attributes each.
Output: Microaggregated microdata T ′ satisfying k-anonymity property

1. Find out the best dependency tree by Algorithm 1 and select the key attributes

2. Project the records of T to the key attributes.

3. Computes the centroid (average record) x̄ of records in the projected data set, and find
the most distant record r from the centroid and the most distant record s from r.

4. Form two groups around r and s: the first group contains r and the k − 1 records
closest to r; The other group contains s and the k − 1 records closest to s.

5. If there are at least 2k records which do not belong to any of the groups formed
in Step 4, go to Step 3, taking the previous set of records minus the groups formed
in the latest instance of Step 4, as the new set of records.

6. If there are between k and k − 1 records which do not belong to any of the groups
formed in Step 4, form a new group with those records and exit the algorithm.

7. If there are less than k remaining records which do not belong to any of the groups
formed in Step 4, add them to the group formed in Step 4 whose centroid is closest to
the centroid of the remaining records.

8. Return microaggregated data T ′ by replacing each record by the centroid of the group
it belongs to.

k−1∑
i=1

deg(vi) < m (11)

k∑
i=1

deg(vi) ≥ m (12)

For example, for the minimum spanning tree TG in Figure 2, we choose attributes A2 and

A3 as the key attributes, since according to the principle described above, deg(A2) < 6 and

deg(A2) + deg(A3) = 6.

Theorem 2: Let TG be the best dependency tree of G, with V = {v1, v2, · · · , vm}, and N be

the number of selected key attributes. Then, 2 ≤ N ≤ m/2.
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Proof: Since in a tree-like structure, the maximum degree of a vertex ism−1 [6], and without

loss of generality, we assume that deg(v1) = m − 1, and in this case, the best dependency

tree found has the form as shown in Figure 3(a), and then according to Definition 5, only

two vertices will be selected as key attributes, say v1 and v2. This is the situation when

the number of the selected key attributes reaches the minimality. On the other hand, when

the number of the selected key attributes reaches the maximality, the structure of the best

dependency tree has the form as shown in Figure 3(b), and in this case, at most m/2 key

attributes will be selected. So, 2 ≤ N ≤ m/2.

Theorem 2 assures that at most half the amount of dimension resources are needed in the

microaggregation process with our technique, which could significantly reduce the execution

time. In the next section, we discuss in detail how to apply this technique to k-anonymity

problem.

3.3 Application to K-Anonymity

Our aim is to obtain k-anonymous microdata without coarsened nor partially suppressed

data. This makes their analysis and exploitation easier, with the additional advantage that

numerical continuous attributes are not categorized. In this section, we adopt the approximate

microaggregation technique to solve k-anonymity problem.

Our algorithm receives as input a microdata set T consisting of n records having m at-

tributes each. The result of the algorithm is a k-partition used to microaggregate the original

microdata set and to generate a microaggregated data set T ′ that fulfils the k-anonymity

property. Instead of taking all the attributes into the microaggregation process, we only use

the selected key attributes, which captures the dependency between attributes, to microag-

gregate the data. The novelty and difference from the previous microaggregation methods

exist here. Our proposed approach is effective and efficient in terms of running time and

information loss.

The first two steps of the algorithm builds the initial dataset for microaggregation. It

selects the key attributes from the best dependency tree and returns a projected dataset,

which has the same number of records as T , but each record only contains the value of key
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attributes. Once the average record is computed, the algorithm looks for other records which

are distant to it and adds records to it until it reaches a minimum cardinality k (Step 3-

4). After repeating this process several times, a set of groups satisfying the k-anonymity

property is obtained. However, a number of records can remain unassigned, and they must be

distributed amongst the previously created groups (Step 5-7). Finally, the algorithm further

microaggregates the original microdata T by replacing each record in T by the centroid of the

group to which it belongs (Step 8). The algorithm is outlined in Algorithm 2.

In this section, we discuss in detail how to apply our microaggregation technique to solve

k-anonymity in order to overcome most of the problems of generalization/suppression listed

in Section 2 in the following aspects:

• Approximate microaggregation is a unified approach, unlike the dual method combining

generalization and suppression.

• It does not complicate data analysis by adding new categories to the original scale, unlike

generalization/suppression.

• It does not result in suppressed data, which makes analysis of k-anonymous data easy.

• It is suitable to protect continuous data without removing their numerical semantics.

4 Experimental Results

4.1 Data set

We employ a real-life CENSUS data set downloadable at http://www.ipums.org in the ex-

perimental study. The CENSUS data set contains the personal information of 500K American

adults. The data set has 9 discrete attributes summarized in Table 4. From CENSUS, we

create two sets of micro tables, in order to examine the influence of dimensionality and the

impact of cardinality. The first set has 6 tables, denoted as CENSUS-20%, · · · , CENSUS-
100%, respectively. Specifically, CENSUS-t% (20 ≤ t ≤ 100) indicates the data set consisting

of t% records randomly sampled from the whole CENSUS data set, and each record has 9
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Attribute Number of distinct values
Age 78

Gender 2
Education 17
Marital 6
Race 9

Work-class 8
Country 83

Occupation 50
Salary-class 50

Table 4: Summary of attributes in CENSUS

attributes shown in Table 4. The second set contains 5 tables, denoted as 5-CENSUS, · · · ,
9-CENSUS, respectively, where n-CENSUS (3 ≤ n ≤ 9) represents the data set with the first

n attributes selected from Table 4, and each data set has the same number of records as the

whole CENSUS data set.

4.2 Experiment setup

Our aim is to test the efficiency and effectiveness of the proposed approximate microaggrega-

tion algorithm for k-anonymity. We denote our proposed algorithm as MA, and we compare

it with the previous MDAV-based algorithm [11], denoted as MA. We first evaluate the

execution time of our approach by varying the cardinality of the data sets, the number of

attributes and the value of k. In order to compare the effectiveness, for each data set, we

adopt two measurements. One is to measure the information loss in terms of SSE/SST ,

where SSE is the sum of square errors as defined in equation (1), and SST refers to the sum

of square errors applied over the whole dataset. The other metric is to compare the number

of key attributes projected in the microaggregation.

4.3 Results

Efficiency: Figures 4(a)-(c) show the comparison of execution time of two microaggregation

methods. In this set of experiments, we fixed k = 20 and vary the data percentage. Figure
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Figure 4: Running time comparison between different methods

4(a) plots the result by varying the data percentage of the whole Census data set from

20% to 100%. As we can see, the AMA incurs less computation time than MA method.

This is expected since in the AMA process, less attributes are used in the microaggregation.

We can see the difference of the computation cost is getting larger with the increased data

cardinality. Figure 4(b) describes the running time comparison when varying the privacy

parameter k. The computation cost of both MA and AMA algorithms is increasing with k,

but AMA consistently outperforms MA method. Figure 4(c) shows the computation overhead

differences by altering the number of attributes. The computation overhead of both methods

is increasing when enlarging the number of attributes. The result is expected since the

overhead is increased with the more dimensions. The AMA method performs better than MA

algorithm since we use a part of the attributes instead of the whole dimensional resources,

which is significantly reduce the amount of computation.

Effectiveness: Having verified the efficiency of our technique, we proceed to test its effective-

ness. We measure the utility in terms of SSE/SST , where SSE is the sum of square errors

as defined in equation (1), and SST refers to the sum of square errors applied over the whole

data set. Figure 5 shows the number of key attributes used in MA and AMA approaches. As

we can see, the number remains the same for MA method, since it projects all the attributes

into the microaggregation process. On the contrary, the number of key attributes used in
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Figure 5: No. of key attributes comparison

AMA is less than half of that used by MA approaches, which verifies the results in Theorem

2.

Figures 6(a) and (b) show the information loss by applying MA and AMA algorithms.

Figure 6(a) is plotted by changing the percentage of data set. Although the result indicates

that AMA generates a little bit more information loss than MA, the difference is not enlarged

when the data cardinality is increased. Similar tread is obtained in Figure 6(b) by varying the

value k. The information loss is increased with k, since larger k demands more strict privacy

requirement, which reduces the utility of the data.

Summary: Overall, the AMA outperforms MA in terms of efficiency, and the difference

is getting larger when the volume and dimension of data are increasing. Although AMA

generates a little bit more information loss than MA, it is still practical since AMA only uses

at most half of the attributes in the microaggregation process.

5 Related Work

Privacy preservation is an important issue in the release of data for mining purpose. The k-

anonymity model, which was introduced for protecting individual identification by Samarati

and Sweeney [29, 31], has been extensively investigated for its simplicity and effectiveness

[1, 29, 38, 35, 37, 39, 20, 19, 21]. k-anonymity requires that each record in the anonymous table
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Figure 6: Information loss comparison between different methods

be indistinguishable with at least k−1 other records within the dataset with respect to a set of

quasi-identifier attributes. In this case, individuals cannot be uniquely identified by adversary,

so the individuals’ privacy can be preserved. Started from [29, 31, 30], the general approach

adopted in the literature to achieve k-anonymity is based on generalization/suppression, which

has some defects on efficiency, information loss and implementation. Our work in this paper

is related to the microaggregation technique, which has been introduced to implement k-

anonymous data set recently and remedies most of defects of generalization and suppression

[12, 10, 11, 22, 9].

In the previous research, all the dimensional resources (attributes) are required in the

microaggregation process. However, as mentioned in [10, 11, 9], the result and execution

time of the microaggregation highly depends on the number of the variables used in the mi-

croaggregation process, since few variables sometimes offers the better solutions. Different

from previous microaggregation methods, in this paper, we propose a new approach to select

only a small number of dimensional resources that captures the maximal dependency rela-

tionship among resources and as experiments show that the new technique achieves better

microaggregation results. Specifically, our microaggregation method is effective and efficient

in terms of information loss and running time. In the case of k-anonymity problem, the

microaggregation approach presented in this paper could overcome most of the problems of
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generalization/suppression. (1) Our method is a unified approach, unlike the dual method

combining generalization and suppression. (2) It does not complicate data analysis by adding

new categories to the original scale, unlike generalization/suppression. (3) It does not result in

suppressed data, which makes analysis of k-anonymous data easy. (4) It is suitable to protect

continuous data without removing their numerical semantics. From a different perspective,

the microaggregation technique discussed in this paper produces better solutions compared

with previous ones.

Our work is also related to the application of dependency tree of information theory

in data mining and databases. The dependency tree has been used in finding dependency

structure in the features which improve the classification accuracy of the Bayes network

classifiers [14]. [5] uses the dependency tree to represent a set of frequent patterns, which can

be used to summarize patterns into few profiles. [17] presents large node dependency tree,

in which the nodes are subsets of variables of data set. The large node dependency tree is

applied to density estimation and classification. As far as its application to privacy preserving

data mining, fewer results are obtained. In this paper, we introduce the concept of entropy

and propose the mutual information measure to evaluate the mutual dependency between

attributes, and the method to construct the dependency tree. We also discuss how to select

key attributes from the constructed dependency tree, and how to use them in the approximate

microaggregation. We prove theoretically that at most half the amount of resources are needed

with our approach.

6 Conclusion and Future Work

k-anonymity is a property that, when satisfied by the microdata, can help increase the privacy

of the respondents whose data is being used. Previous approaches to obtain microdata sets

fulfilling the k-anonymity property were mainly based on suppression and generalization.

In this article, we have shown how to achieve the same property by means of approximate

microaggregation, which, different from the previous microaggregation method, uses a part of

the dimensional resources. It works by selecting key attributes from the best dependency tree,

which is constructed based on a new mutual information measure based on information theory,
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which captures the dependency between attributes in the microdata. The experimental results

show that the proposed technique is efficient and effective in the terms of running time and

information loss.

A number of other sophistication of k-anonymity for protecting against attribute disclosure

have recently been proposed, such as (p+, α)-sensitive k-anonymity [37], l-diversity [20], (α, k)-

anonymity [39], t-closeness [19]. All of them rely on generalizations, so the microaggregation

approach proposed in this paper would be a novelty in all of them. The technique proposed

in this paper restricted its focus on numerical attributes, and it is interesting to investigate

the extension to other types of attributes.
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