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Abstract

Partial Least Squares (PLS) is a highly efficient statistical regression technique

that is well suited for the analysis of high-dimensional genomic data. In this paper we

review the theory and applications of PLS both under methodological and biological

points of view. Focusing on microarray expression data we provide a systematic

comparison of the PLS approaches currently employed, and discuss problems as

different as tumor classification, identification of relevant genes, survival analysis

and modeling of gene networks.
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1 Introduction

In the last few years, multivariate statistical methods for microarray data analysis have

been the subject of numerous publications in statistics, machine learning, bioinformat-

ics and biology. A challenging problem connected with transcriptome data is that they

contain typically many more variables (p, genes) than observations (n, gene chips, time

points). For instance, it is not uncommon to collect expression data for 20,000 genes using

only 10-20 microarrays. Since most traditional multivariate techniques are not applicable

in this case predicting, e.g., the survival time or the tumor class of a patient with such

high-dimensional data is a difficult and challenging task that requires special techniques

such as variable selection or dimension reduction.

A powerful yet comparatively unknown approach for analyzing high-dimensional mi-

croarray data analysis issuperviseddimension reduction based on Partial Least Squares

(PLS). PLS is also known as a regression method, since the obtained latent components

may be used instead of the original variables in regression to overcome the dimensional-

ity problemn� p. As a supervised approach, it uses the response variable of interest in

the dimension reduction step, which often makes it more efficient in prediction problems

than the unsupervised Principal Component Analysis (PCA) approach [1]. In contrast to

other supervised dimension approaches such as sufficient dimension reduction [2, 3, 4], it

is applicable and very fast even if the number of variables is much larger than the num-

ber of observations. As an alternative to dimension reduction, most authors cope with

the high-dimensionality of microarray data by selecting the variables (genes) of interest

preliminarily to their analysis. Using this approach, a large amount of information is sys-

tematically excluded from the analysis and interactions and correlations between genes

are often omitted. Moreover, the results of the statistical analysis depend largely on the

variable selection procedure and on the number of selected variables, which is most often

chosen on a purely heuristic basis. Thus, global dimension reduction methods such as

PLS are especially appropriate to deal with high-dimensional microarray data.

PLS methods are characterized by (i) a high computational efficiency, (ii) a great

flexibility and versatility in terms of the addressed concrete problems, (iii) the existence of

a large variety of diverse algorithmic variants. The points (i) and (ii) render PLS methods

very attractive for the analysis of microarray data. It is the aim of this paper to address

point (iii) by providing a systematic overview over available PLS method and to review

the broad range of their applications to genome data.

In this paper, we review applications of PLS methods to the analysis of microarray

data both under the methodological and biological points of view. In Section 2, we sum-

marize the main methodological aspects of PLS regression. In Section 3, various appli-

cations of PLS regression to microarray studies are reviewed. Section 4 is devoted to
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PLS-based methods that are especially designed for particular types of response variables

(for instance survival time or categorical outcome) and to their practical use in microarray

data analysis. A recapitulation of the notations and abbreviations that are used throughout

the manuscript can be found in the appendix.
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2 PLS dimension reduction and regression

2.1 History and framework

Two recent papers [5, 6] about the early developments of PLS regression give a chronolog-

ical overview of how PLS regression emerged from Herman Wold’s work on multi-block

path modeling. The term ’Partial Least Squares’ first referred to a general approach de-

veloped by Herman Wold in the 60s and 70s, which is based on successive least squares

fits and used in the context of path modeling with latent variables. Early references are,

e.g., Wold [7], Wold [8], or Wold [9]. The connection between PLS path modeling and

the statistical LISREL approach is studied in Schneeweiss [10]. Applications of partial

least squares methods to regression problems are first proposed in the early 80s and focus

on the analysis of high-dimensional chemometric data. Most methodological papers on

PLS regression and dimension reduction can be found in the journalsJournal of Chemo-

metricsandChemometrics and Intelligent Laboratory Systems. PLS regression is studied

from the point of view of statisticians in, e.g., Helland [11], Stone and Brooks [12] and

Frank and Friedman [13]. It is often described as a data analysis tool rather than a proper

statistical method as it lacks an underlying probabilistic model [14]. Nevertheless, its

efficiency when applied to very high-dimensional data is unquestionable. However, the

many variants of PLS methods render them very confusing and difficult to understand at

first sight. Sections 2.3 and 2.4 give an overview of the most common approaches in the

case of univariate and multivariate responses, respectively.

There have been several attempts to place PLS into a global regression or dimension

reduction framework. Dimension reduction methods that are related to PLS in terms of

the objective function include Principal Component Regression (PCR) and Reduced Rank

Regression (RRR). PLS, OLS and PCR and the Ridge Regression (RR) method can also

be tied together within a continuum regression framework [12]. The connections of PLS

to PCR, OLS, RRR and RR are briefly reviewed in Section 2.5.

2.2 Introduction to PLS regression

Suppose we want to predictq continuous response variablesY1, . . . ,Yq usingp continuous

predictor variablesX1, . . . ,Xp. The available data sample consisting ofn observations is

denoted as (̇xi , ẏi)i=1,...,n, where ẋi ∈ R
p and ẏi ∈ R

q denote thei-th observation of the

predictor and response variables, respectively. The dots denote uncentered basic data, as

in Stone and Brooks [12]. Their removal indicates the subtraction of the sample average,

i.e.
xi = ẋi −

1
n

∑n
j=1 ẋ j

yi = ẏi −
1
n

∑n
j=1 ẏj .
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Thexi = (xi1, . . . , xip)T are collected in then× p matrix X. Similarly,Y is then×q matrix

containing theyi = (yi1, . . . , yiq)T :

X =


xT

1

. . .

xT
n

 , Y =


yT

1

. . .

yT
n

 .
Whenn < p, the usual regression tools such as classical linear regression, which is often

denoted as Ordinary Least Squares (OLS) can not be applied since thep× p covariance

matrix XT X (which has rank at mostn − 1) is singular. In contrast, PLS may be ap-

plied also to cases wheren < p. PLS regression is based on the basic latent component

decomposition

X = TPT + E (1)

Y = TQT + F, (2)

whereT ∈ Rn×c is a matrix giving the latent components for then observations,P ∈

Rp×c andQ ∈ Rq×c are matrices of coefficients andE ∈ Rn×p andF ∈ Rn×q are matrices of

random errors. Note that if given matricesT, P andQ satisfy equations (1) and (2), then

T̃ = TM , P̃ = P(M−1)T andQ̃ = Q(M−1)T also do for any non-singularm× m matrix

M . Thus, the space spanned by the columns ofT is more important than the columns of

T themselves.

PLS, as well as PCR and RRR can all be seen as methods to construct a matrix of

latent componentsT as a linear transformation ofX:

T = XW, (3)

whereW ∈ Rp×c is a matrix of weights. In the rest of the paper, the columns ofW and

T are denoted aswi = (w1i , . . . ,wpi)T and t i = (t1i , . . . , tni)T , respectively, fori = 1, . . . , c.

For a fixed matrixW, the random variables obtained by forming the corresponding linear

transformations ofX1, . . . ,Xp are denoted asT1, . . . ,Tc:

T1 = w11X1 + · · · + wp1Xp,

. . . = . . .

Tc = w1cX1 + · · · + wpcXp.

The latent components are then used for prediction in place of the original variables: once

T is constructed,Q is obtained as the least squares solution of equation (2):

QT = (TTT)−1TTY.
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Finally, the matrixB of regression coefficients for the modelY = XB + F is given as

B =WQT =W(TTT)−1TTY,

and the fitted response matrix̂Y may be written as

Ŷ = T(TTT)−1TTY.

If we have a new raw observatioṅx0, the prediction̂̇y0 of the response is given by

̂̇y0 =
1
n

n∑
j=1

ẏj + BT(ẋ0 −
1
n

n∑
j=1

ẋ j).

In PLS, dimension reduction and regression are performed simultaneously, i.e. they

output the matrix of regression coefficientsB as well as the matricesW, T, P andQ, hence

the term PLS regression. In the PLS literature, the columns ofT are often denoted as

’latent variables’ or ’scores’. In this paper, we prefer the term ’latent components’, since

in PLS the columns ofT are rather the result of a matrix decomposition than realizations

of underlying random variables.P andQ are denoted as ’X-loadings’ and ’Y-loadings’,

respectively.

The characterization of the various PLS regression approaches might be done at four

different levels:

• the objective function maximized by theW matrix,

• theW matrix itself,

• the obtained matrix of regression coefficientsB,

• the algorithm used to computeW.

These four different levels are connected as follows:

• The sameW matrix can maximize several objective functions. For instance, the

SIMPLS objective function 3 (SIMPLS) might be reformulated as in objective func-

tion 4. But a given objective function is generally satisfied by only oneW matrix

(and its opposite−W).

• There might be several algorithms that output the sameW matrix.

• A givenW matrix leads to only one possible matrix of regression coefficients. But

two different matricesW andW̃ can lead to the same regression coefficients, if there

exists an invertiblep× p matrix M such thatW̃ =WM. Note that, althoughW and
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W̃ lead to the same prediction, they do not necessarily satisfy the same objective

function.

2.3 Univariate response

In this section, the case of univariate response variables (q = 1) is considered. Thus,Y is

a n× 1 matrix. Y1 is denoted asY in the present section. For a fixed weight vectorwT
i =

(w1i , . . . ,wpi), the sample covariance between the response variableY and the random

variableTi = w1iX1 + · · · + wpiXp can be computed as

Ĉov(Y,Ti) =
1
n

wT
i XTY, (4)

since the matricesX andY contain the centered data. Similarly, for the sample variance

of the random variableTi, we have

V̂ar(Ti) =
1
n

wT
i XT Xwi =

1
n

tT
i t i .

and for the sample covariance ofTi andT j (i , j, i, j = 1, . . . , c)

Ĉov(Ti ,T j) =
1
n

wT
i XT Xw j =

1
n

tT
i t j .

In PLS univariate regression, there is only one commonly adopted objective function.

The columnsw1, . . . ,wc of the p × c weight matrixW are defined such that the squared

sample covariance betweenY and the latent components is maximal, under the condition

that the latent components are mutually empirically uncorrelated. Moreover, the vectors

w1, . . . ,wc are constrained to be of unit length.

Objective function 1 Univariate PLS (PLS1)

For i = 1, . . . , c

wi = arg max
w

wT XTYYT Xw

subject towT
i wi = 1 and tT

i t j = wT
i XT Xw j = 0, for j = 1, . . . , i − 1,

wherec is the number of latent components fixed by the user. The maximal number

of such latent components which have non-zero covariance withY is cmax = min(n, p).

The weight vectorsw1, . . . ,wc can be computed sequentially via a simple and fast non-

iterative algorithm given e.g. in Martens and Naes [15] and denoted as “algorithm with

orthogonal scores”, because the matrixTTT is diagonal. Martens and Naes [15] also

give another algorithm denoted as “algorithm with orthogonal loadings” which outputs

a differentW matrix. Using this algorithm, one obtains orthogonal loadings instead of
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orthogonal latent components (PT P is diagonal but notTTT). It can be shown [11] that

the resulting regression coefficients in matrixB are the same with both algorithms. Since

the orthogonal latent components are easier to interpret than orthogonal loadings, the

first algorithm is almost always preferred in the literature. Some statistical aspects of

univariate PLS regression are discussed, e.g., in Stone and Brooks [12], Garthwaite [14]

and Frank and Friedman [13]. The case of multivariate response (q > 1) is presented in

the following section.

2.4 Multivariate response

The case of multivariate response is more difficult to handle, since one has to find la-

tent components which explain all the responsesY1, . . . ,Yq simultaneously. There are two

main variants for multivariate PLS regression. The first variant is usually denoted as PLS2

in contrast to the univariate method PLS1, or simply PLS. To avoid misunderstandings,

we use the term PLS2. TheW matrix corresponding to PLS2 may be obtained via several

algorithms. The most well-known are the NIPALS algorithm and the Kernel-PLS algo-

rithm which is implemented in theR packagespls andpls.pcr. Recently, ter Braak and

de Jong [16] discovered that the PLS2 maximizes the same expression as SIMPLS, but

with different -and less intuitive constraints.

Objective function 2 PLS2

wi = arg max
w

(wT XTYYT Xw)

subject towT
i (I p −WW+)wi = 1 and tT

i t j = wT
i XT Xw j = 0, for j = 1, . . . , i − 1, whereI p

denotes the p× p identity matrix andW+ is the unique More-Penrose inverse ofW.

The second important variant of multivariate regression is SIMPLS (Statistically In-

spired Modification of PLS), which is first introduced by de Jong [17]. In contrast to

PLS2, SIMPLS was first developed as an optimality problem. Algorithms were then de-

veloped to solve this optimality problem.

Objective function 3 SIMPLS

wi = arg max
w

(wT XTYYT Xw)

subject towT
i wi = 1 and tT

i t j = wT
i XT Xw j = 0, for j = 1, . . . , i − 1.

The termwT XTYYT Xw which is maximized by both PLS2 and SIMPLS is the same as in

the univariate case. In the case of a multivariate response (q > 1), it can be reformulated
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as the sum of the squared empirical covariances betweenT andY1, . . . ,Yq:

wT XTYYT Xw = ((Xw)TY)T((Xw)TY)

= n2∑q
j=1 Ĉov(T,Yj)2,

whereT is the random variable corresponding to the latent componentt = Xw. Note that

SIMPLS can be seen as a generalization to multivariate response variables of univariate

PLS, because it has the same criterionwT XTYYT Xw and the same constraints. Another

equivalent objective function for SIMPLS is often found in the literature, which involves

weight vectors for both the response variables and the predictor variables. Since this

objective function is the most common one, we give it here for exhaustivity, although

objective function 3 is certainly more easy to interpret. It can be shown using results from

linear algebra [18] that the objective functions 3 and 4 are equivalent.

Objective function 4 SIMPLS (Equivalent formulation)

(wi ,ui) = arg max
(w,u)

(wT XTYu)

subject towT
i wi = 1, uT

i ui = 1 and tT
i t j = wT

i XT Xw j = 0, for j = 1, . . . , i − 1.

As for PLS2, there exist several algorithms that solve the optimality problem of SIMPLS.

One of them is implemented in the functionsimpls from theR packagepls.pcr. A

particularity of theR functionsimpls is that it returns unit length scores instead of unit

length weights (as one would expect when considering objective function 3). By trans-

forming the weights to have unit length, one obtains weights satisfying objective function

3. A user-friendly version of SIMPLS implementing this transformation can be found in

theR packageplsgenomics by Boulesteix and Strimmer [19].

A third -quite rarely used variant of PLS satisfying a simple objective function and

denoted as undeflated PLS (UPLS) is proposed by Burnham et al. [20], rather as a piece

of their global framework than to improve the prediction performance of the original PLS

variants. The UPLS weight vectors satisfying objective function 5 are simply obtained as

the eigenvectors of the matrixXTYYT X.

Objective function 5 UPLS

wi = arg max
w

(wT XTYYT Xw)

subject towT
i wi = 1 andwT

i w j = 0, for j = 1, . . . , i − 1.

It can be shown [16, 17] that the objective functions of PLS2 and SIMPLS are equiv-

alent in the univariate case (q = 1). In the multivariate case, there is no rule of thumb as
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to whether one should use PLS2 or SIMPLS. According to ter Braak and de Jong [16], it

depends on the data. SIMPLS has become increasingly popular in the last decade because

(i) of the simplicity of its criterion, (ii) of the computational efficiency of the algorithm(s),

(iii) it can be seen as a generalization of the univariate case discussed in Section 2.3. In

the literature, one can find many extensions of PLS regression that are reported to per-

form well in some situations. For example, Milidiu and Renteria [21] suggest two fast

PLS procedures for very large data sets denoted as DPLS and PPLS, whereas Durand

[22] proposes to perform PLS regression using splines transformations of the predictors

to incorporate nonlinear structures.

2.5 Connections between PLS and OLS, PCR, CR, RR and RRR

Comparing PLS2 and SIMPLS to related methods such as Principal Component Regres-

sion (PCR) or Reduced Rank Regression (RRR) gives another interesting perspective on

PLS dimension reduction/regression. In this section, we briefly review the connections of

PLS to a few related approaches.

Objective function 6 PCR

wi = arg max
w

(wT XT Xw)

subject towT
i wi = 1 and tT

i t j = wT
i XT Xw j = 0, for j = 1, . . . , i − 1.

The objective function of PCR looks quite similar to that of PLS, the only difference

being that PCR maximizes the variance of the latent components, whereas PLS maximizes

the covariance with the response. Stone and Brooks [12] are among the first to notice this

similarity in the univariate case. They formulate the objective function of OLS, PLS and

PCR as the unique objective function

(wT XTYYT Xw)(wT XT Xw)α/(1−α)−1,

whereα takes some value in the continuum 0≤ α ≤ 1. If α = 0, the problem is equivalent

to maximizing the sample correlation betweenY and the latent component. The sequential

construction terminates withw1 and the OLS regression coefficients are obtained. PLS1

is obtained forα = 1
2, whereas PCR is obtained forα → 1. The connection between

Stone and Brook’s Continuum Regression (CR) and standard Ridge Regression (RR) is

studied by Sundberg [23]. It turns out that the vector of regression coefficients obtained

with standard RR is proportional to the vector of regression coefficients from CR with

one latent component, where the ridge parameter and CR parameter are monotonically

related.
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Another related dimension reduction technique is Reduced Rank Regression (RRR),

which has the following objective function.

Objective function 7 RRR

wi = arg max
w

(wT XTYYT Xw)

subject towT
i XT Xwi = 1 and tT

i t j = wT
i XT Xw j = 0, for j = 1, . . . , i − 1.

The connection of RRR with PLS becomes more clear by considering the underlying

model structure. The matrixW in Reduced Rank Regression is the least squares estimate

of the model corresponding to equation (2) [24]:

Y = XWQT + F, (5)

whereW andQ have dimensionsp×c andq×c, respectively. Hence, RRR concentrates on

the prediction and does not aim to explain the variation of the predictors. A maximum-

likelihood interpretation of RRR is given in Burnham et al. [25]: RRR can be derived

as the maximum-likelihood solution of model (5), if the rows ofF are assumed i.i.d.

multivariate normal with a known covariance matrix of the formσY2Iq. In contrast to

RRR, PCR can be seen as the least square solution of model (1) [24]:

X = TPT + E.

Thus, the latent components are constructed without consideration for the response matrix

Y, which often leads to poor prediction performance compared to methods making use

of Y. The weight vectorsw1, . . . ,wc are the eigenvectors corresponding to thec largest

eigen-values ofXT X.

In contrast, neither PLS2 nor SIMPLS can be seen as parameter estimations for a

given model. Simulations performed by Burnham et al. [25] suggest that PLS might be

somewhere between RRR and PCR when one considers a continuum regression method

based on equations (1) and (2). In this framework, the rows ofE and F are assumed

have multivariate normal distributionsNp(0,ΣX) andNq(0,ΣY), respectively. If we have

ΣX = σX2I p andΣY = σY2Iq andφ = σX/σY, the maximum-likelihood solution leads to

PCR if φ → 0 and to RRR ifφ → +∞. PLS is believed to lie somewhere in the middle,

thus combining the advantages of RRR (supervised method) and PCR (n < p is allowed).
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3 Applications of PLS regression to high-dimensional mi-

croarray data

3.1 Regression

A straightforward application of univariate PLS regression to expression data from yeast

saccharomyces cerevisiaecan be found in Datta [26]. Some handpicked gene expression

levels are regressed against expression levels of other genes using PLS univariate regres-

sion (PLS1) with different numbers of latent components. The magnitude of the obtained

regression coefficients are interpreted in terms of interaction strength between genes. Un-

fortunately, in this paper many conclusions are drawn on a purely heuristic basis without

concern for statistical relevance and validation. Furthermore, the choice of the number of

latent components is purely heuristic.

Huang et al. [27] use PLS regression for another purpose. The aim is to model a

continuous variable (LVAD support time) usingp gene expression levels as predictors.

LVAD stands for “Left Mechanical Ventricular Assist Device” and is a successful sub-

stitution therapy for heart failure patients waiting for transplantation. Although PLS re-

gression can handle a very large number of predictors and can thus be applied to this

problem without adaptation, Huang et al. [27] suggest a penalized version of PLS regres-

sion (PPLS) which eliminates genes with poor prediction power. Their method is based

on the shrinkage of thep regression coeffcients obtained by PLS regression. After the

shrinkage procedure, a number of genes (depending on the shrinkage parameter∆) do not

contribute anymore to the model. Huang et al. [27] suggest to use cross-validation for the

selection of both the shrinkage parameter∆ and the numberc of latent components used

to produce the regression coefficients.

Applications of PLS multivariate regression include the prediction of transcription

factor activities from combined analysis of gene expression data and ChIP data as pro-

posed in Boulesteix and Strimmer [19]. The transcription of genes is regulated by DNA

binding proteins which are known as transcription factors. An issue of interest for biolo-

gists is the estimation of the activity levels of these transcription factors. Available data

material include microarray data for the potential target genes under different experimen-

tal conditions, and ’connectivity’ data (e.g. ChIP data) giving the amount of interaction

between the transcription factors and the considered genes. Boulesteix and Strimmer

[19] assume as the relationship between microarray data and connectivity data the linear

structure

Y = A + XB + E,

whereY is then× q constant matrix containing the expression levels ofn genes (rows) in
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q conditions (columns),X is then× p matrix containing the connectivity information for

n genes (rows) andp transcription factors (columns),A is an×q matrix corresponding to

the intercepts andE is an×q error matrix. Thep×q matrix B corresponds to the activity

levels of thep transcription factors in theq considered conditions. Thus, the estimation of

the transcription factor activities can be formulated as a simple regression problem that is

solved in Boulesteix and Strimmer [19] by employing the SIMPLS method. Using PLS in

this context allows not only to extract information on TFAs but also to identify coherent

’meta-factors’ corresponding to the different latent components.

Other applications of PLS to regression problems in genomic data analysis include,

e.g., the prediction of the protein structure (e.g. the helix or strand content using high-

dimensional sequence data [28]).

3.2 Classification

So far, we have considered only the case of continuous response variables. In many

studies, however, the response to be predicted is categorical (either binary or multicate-

gorical). Although PLS regression is designed for continuous response variables, it has

often be applied with success to a categorical response. In the whole section,Y denotes

a categorical response variable andX1, . . . ,Xp are the continuous predictors. In all the

applications reviewed here, each of then observations is a cancer patient,X1, . . . ,Xp are

gene expression levels andY is the tumor type of the considered patient.

It is important to distinguish binary response variables (with possible valuesY = 0,1)

from multicategorical response variables (with possible valuesY = 0, . . . ,K − 1, where

K > 2). Whereas binary variables may be treated as continuous variables in practice,

this approach does not make sense with multicategorical (unordered) variables. IfY is

multicategorical, it has to be transformed before PLS dimension reduction. A simple

transformation method consists to convertY into K random variablesY1, . . . ,YK defined

as follows:

Yj =

1 if Y = j − 1

0 otherwise.

In this framework, it can be shown that multivariate PLS dimension reduction almost leads

to the same components as principal component analysis performed on the between-group

sample covariance matrix. A collection of properties on this topic as well as mathematical

proofs are given in Barker and Rayens [29]. These properties can be seen as a justification

of PLS dimension reduction with categorical variables.

The most basic PLS-based approach to classification using a large number of predic-

tors consists to treatY (in the binary case) orY1 . . . ,YK (in the multicategorical case) as
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if they were continuous responses and to make the prediction by either univariate (in the

binary case) or multivariate (in the multicategorical case) PLS regression. This approach

is adopted by Huang and Pan [30] for binary response variables and compared to other

statistical regression methods using the leukemia data by Golub et al. [31] and the colon

cancer data by Alon et al. [32]. With this approach, one obtains continuous predictions

generally ranging from about -1 to 2. Each observation is then assigned to one of the two

classes 0 or 1, depending on the continuous prediction. Huang and Pan [30] suggest to

determine the best number of latent components by leave-one-out cross-validation. Mul-

tivariate PLS regression is also employed in a more applied paper by Musumarra et al.

[33] for the molecular diagnostic of cancer. Using the softwareSIMCA, they performed

classification with the data set by Ross et al. [34] giving the expression levels of 9605

genes in 60 tumor cell lines of eight different types (leukemia, non-small cell lung, colon,

melanoma, ovarian, breast, central nervous system and renal). This approach is reported

to lead to high prediction accuracy, although it seems rather unappealing to predict cate-

gorical responses using a classical linear model.

Another related approach which is formally more correct consists to split the proce-

dure into

1. a dimension reduction stage,

2. a classification stage consisting to apply a classical discrimination method (e.g.

logistic regression, linear or quadratic discriminant analysis) using the PLS latent

components as predictors.

The two-stage approach mentioned above is first proposed for a binary response by

Nguyen and Rocke [1] and for a multicategorical response by Nguyen and Rocke [35],

and further studied by Boulesteix [36]. To apply this method, one has to choose (i) the

number of latent components to be extracted in the dimension reduction step, (ii) the clas-

sification method to be reduction for the classification step. In Nguyen and Rocke [35, 1],

three classification methods are studied: logistic regression, linear discriminant analysis

and quadratic discriminant analysis. For a general overview of these classification meth-

ods, see e.g. Hastie et al. [37]. Logistic regression turns out to be inappropriate because

the maximum-likelihood estimate of the regression coefficients does not exist for sepa-

rate and quasi-separate classes [38], which is a common situation when the PLS latent

components are used as predictors. Linear discriminant analysis (LDA) turns out to yield

the best classification performance, whereas quadratic discriminant analysis gives worse

results. In Nguyen and Rocke [1] and Nguyen and Rocke [35], the number of PLS latent

components is chosen on a heuristic basis as a ’tuning’ parameter. In Boulesteix [36],

the only investigated classification is linear discriminant analysis. The two-stage method
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consisting of PLS dimension reduction and linear discriminant analysis will be denoted

as PLS+LDA in the rest of the section. In Boulesteix [36] the choice of the number of

latent components is addressed explicitly, thus making PLS+LDA a parameter-free clas-

sification method. This two-stage method (including the cross-validation procedure) is

implemented in theR packageplsgenomics. In the extensive comparison study per-

formed by Boulesteix [36] including most state-of-art methods, PLS+LDA turns out to

range among the best classification procedures for all the eight studied cancer data sets.

Moreover, it can serve as a visualization tool to represent high-dimensional data in low

dimension and can be connected to gene selection (see Section 3.3 for more details).

Although PLS dimension reduction/regression for categorical response variables may

be interpreted in terms of an eigenvalue problem for the between-group covariance matrix

[29], this approach has been criticized for its lack of formal coherence. Several attempts

have been made to handle the case of categorical responses either by modifying the PLS

regression algorithm or by using it as a piece of a more complicated classification proce-

dure within the framework of generalized linear models. These PLS-based methods that

are especially designed for the prediction of categorical variables are reviewed in Section

4.

3.3 Feature selection

An issue which is tightly connected with the prediction of a clinical outcome is the iden-

tification of genes whose expression levels are associated with the considered outcome.

For instance, a physician might want to find out which genes have different expression

levels in tumor tissues and normal tissues. The selection of relevant genes is important

both for biologists who aim to understand the function of genes and the cell processes

and for statisticians who want to apply statistical methods which can handle a restricted

number of variables.

In the case of univariate PLS (PLS1) dimension reduction (see Section 2.3) applied to

binary classification problems (see Section 3.2), the weight vectorw1 = (w11, . . . ,wp1)T

defining the first latent component may be used to order thep genes in terms of their

relevance for the classification problem [36]. LetF j denote theF-statistic used in analysis

of variance and computed fromX for genej as:

F j = (n− 2)

∑1
k=0

∑
i:yi=k(xk j − x j)2∑1

k=0

∑
i:yi=k(xi j − xk j)2

,

where

x j =
1
n

n∑
i=1

xi j = 0
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and

xk j =
1
nk

∑
i:yi=k

xi j ,

with nk denoting the number of realizations from classk in the sample.F j is often used as

a selection criterion to order genes in terms of their relevance for the classification prob-

lem. Boulesteix [36] proves thatF j is a monotonic transformation of the squared weight

coefficientw2
j1 of PLS1 if the columns of the predictor matrixX have been preliminarily

scaled to unit variance. Thus, the ordering of the genes obtained from the weight vector

w1 is equivalent to the ordering obtained using theF-statistic, which is one of the most

common ordering criteria in microarray data analysis. It shows that PLS dimension re-

duction and variable selection are in fact two tightly related procedures and also indicates

that PLS methods are more integrated than usual univariate gene selection procedures,

since they often involve more than one latent component. Similar results might also be

obtained in the framework of regression.

A gene selection approach based on several PLS latent components is applied to

gene expression data by Musumarra et al. [39, 33]. It is based on all the weight vec-

torsw1, . . . ,wc and implemented in the software packageSIMCA. The ’variable influence’

VIN γ j of genej for theγ-th PLS component is defined as a function ofw2
jγ and the propor-

tion of the sum of squares explained by theγ-th latent component. Finally, the genes are

ordered according to their ’variable importance in the projection’ VIPj, which is defined

for each genej as the sum of the VINγ j over thec PLS latent components. An advantage

of this approach is that it captures information on the single genes from all the PLS latent

components included in the analysis. Thus, it can also discover non-linear patterns which

the F-statistic would fail to detect. A major drawback of the VIP index is its lack of

theoretical background. One might investigate its connections to the matrix of regression

coefficients.

3.4 Survival analysis

Another issue of interest in the statistical analysis of gene expression data is the prediction

of the survival timeY of diseased patients using their gene expression profiles. In this

context, survival data are usually denoted as a triple{t, δ, x}, where

• t is a continuous variable usually called failure time which equals the time to death

Y if δ = 1 or the time to censoring ifδ = 0,

• δ is a binary variable which equals 1 if the death of the patient was observed before

the end of the study, and 0 if the patient was still alive at the end of the study,
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• x = (X1, . . . ,Xp)T is a vector ofp continuous gene expression levels which are

considered as predictor variables.

Standard approaches to predict survival times using continuous predictors such the

proportional hazard regression model (PH model) by Cox [40] may not be applied di-

rectly if n < p. Various approaches based on the clustering of genes or observations have

been proposed, with the inconvenience that the results depend on the chosen clustering al-

gorithm. PLS-based survival analysis is another important family of methods for survival

analysis with many predictors.

Nguyen and Rocke [41] suggest a two-stage method that consists to (i) perform uni-

variate PLS with the failure time as response variable andX1, . . . ,Xp as predictors, (ii) use

the obtained first latent components as predictors in classical PH regression. They apply

their approach to a data set by [42] giving the survival time and expression levels of 5622

genes for 40 lymphoma patients, and to a data set by [43] giving the survival time and

expression levels of 3846 genes for 49 breast cancer patients. In this two-step procedure,

dimension reduction and prediction using PH regression are performed successively. The

specificity of the failure time is not taken into account during the dimension reduction

stage: it treats both time to death and time to censoring as the same continuous variable in

the dimension reduction step, which is a severe drawback if censoring is non-negligible.

Improvements of this approach are proposed in Nguyen [44], Park et al. [45] and Li and

Gui [46]. Both approaches combine the construction of the successive PLS latent com-

ponents with PH regression, but in different ways. They are reviewed in Section 4 which

deals with PLS-based methods for special response variables.
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4 PLS-based methods for special types of response vari-

ables

So far, we have considered applications of PLS regression to various biological problems.

However, applying a regression method designed for continuous responses to categorical

responses or performing dimension reduction with survival data without taking censor-

ing into account might seem unappealing, although it is reported to give good results in

many cases. In this section, we review methods that use the principle of partial least

squares regression but adapt it to handle special types of responses such as survival time

or categorical outcome. These methods can be divided into two categories. In the first

category of methods, the structure of the univariate PLS regression algorithm remains un-

changed, but the coefficients used to construct the latent components are modified. In the

second category of methods, the PLS algorithm is embedded into a complex generalized

regression procedure. Both approaches can be applied to, e.g., survival analysis and clas-

sification. In the following section, we consider only the univariate case, i.e.Y is an× 1

matrix.

4.1 Modification of the latent components in PLS regression

Let us consider objective function 1. Some calculation using the Lagrange multiplier

method yields

t1 = XXTY/||XTY||.

In the most usual PLS1 algorithm, the weight vectorst1, . . . , tc are built sequentially

in a similar way ast1, except thatX and Y are replaced by deflated matrices. With

tT
1 = (t11, . . . , tn1) andxi j denoting the element ofX at row i and columnj, simple trans-

formations lead to
ti1 ∝

∑p
j=1 Ĉov(Y,Xj)xi j ,

∝
∑p

j=1 V̂ar(Xj)b̂j xi j ,

whereb̂j is the least squares regression coefficient obtained by regressingY againstXj.

The subsequent vectorst2, . . . , tc may be expressed in a similar way using deflated ma-

trices. Several papers are based on the idea thatb̂j is not an optimal choice whenY is

a binary or survival variable. Li and Gui [46] suggest to replaceb̂j by the regression

coefficient of Xj obtained via Cox regression analysis, thus taking the specificity of the

response variableY into account. For the construction oft1, Y is regressed againstXj. For

the construction oft j, j > 1,Y is regressed againstXj and thej−1 first latent components.

The idea consisting to replace a linear regression coefficient by a Cox regression coeffi-

cient also inspired another method denoted as “MPLS”: Nguyen [44] gives a different
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non-sequential expression of the PLS1 latent componentst1, . . . , tc involving eigenvec-

tors of the matricesXT X andXXT (see Nguyen and Rocke [47] for details). This complex

expression also contains a linear regression coefficient, which Nguyen [44] replaces by a

Cox regression coefficient.

The same approach is also used in the context of binary classification by Nguyen

and Rocke [47] and denoted as “PLSM2”. Another related PLS variant aiming to handle

binary responses is also introduced in Nguyen and Rocke [47] under the name “PLSM1”.

4.2 PLS and generalized linear models

Marx’s IRPLS algorithm

Marx [48] proposes an extension of the concept of PLS regression into the framework of

generalized linear models. This approach which is denoted as Iteratively ReWeighted Par-

tial Least Squares (IRPLS or IRWPLS) embeds the univariate PLS regression algorithm

into the iterative steps of the usual Iteratively Reweighted Least Squares algorithm [49] for

generalized linear models, resulting into two nested loops. The loops are iterated a fixed

number of times or until a convergence criterion is reached. This apparently appealing ap-

proach has a major drawback in practical microarray data analysis: convergence is never

reached ifX is full row-rank, which is most often the case in high-dimensional microarray

data withn � p [50]. The IRPLS method as well as a few adaptations overcoming the

convergence problem have been applied both to survival analysis and classification.

Application to classification

Binary classification is one of the most common applications of generalized linear mod-

els and of Marx’s IRPLS algorithm. To our knowledge, the IRPLS algorithm has never

been applied directly to classification with microarray data. However, it has inspired at

least two recent papers on the generalization of PLS regression to categorical response

variables.

The first approach is proposed by Ding and Gentleman [51] and can be seen as an

adaptation of Marx’s IRPLS method which solves the problem ofseparation. As already

mentioned in Section 3.2, infinite parameter estimates can occur in binary logistic re-

gression when the two classes are completely or quasi-completely separated [38]. Firth

[52] suggests a procedure to remove the first-order term of the asymptotic bias of maxi-

mum likelihood estimates in GLMs. The procedure is based on a modified score function

which, when applied to logistic regression, guarantees finite estimates [53]. The binary

classification method obtained by using the Firth’s modified score function in place of the

usual score function in the IRPLS algorithm is denoted as IRWPLSF by Ding and Gentle-
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man [51]. They also propose a generalization of the method to multicategorical response

variables which is based on the multinomial logit model and denoted as MIRWPLSF. The

IRWPLSF and MIRWPLSF are reported to achieve a slightly better classification perfor-

mance than usual classification methods such as nearest neighbors or SVM on the colon

cancer data by Alon et al. [32] and on the cancer data by Ross et al. [34]. The second

approach to modify Marx’s IRPLS is suggested by Fort and Lambert-Lacroix [50]: the

procedure embeds a PLS step into ridge penalty logistic regression and might also be gen-

eralized to multicategorical responses. This method is applied with success to the colon

cancer data by [32], the leukemia data by [31] and the prostate cancer data by [54].

Application to survival analysis

Another classical application of generalized linear models and IRPLS is survival analysis.

As suggested by Whitehead [55], Park et al. [45] transform the failure time problem into

a generalized linear regression problem with logarithmic link function. They propose

to use the Iteratively Reweighted Partial Least Squares (IRPLS) estimation method for

generalized linear regression described in Marx [48]. In contrast to the two-stage scheme

developed in Nguyen and Rocke [41], this method takes censoring explicitly into account.

The choice of the number of components is done via a cross-validation procedure which

suggests to usec = 1 for the lung cancer data set by [56]. According to Park et al. [45],

convergence is achieved in a few steps. However, this property seems to be controversial

and lack of convergence problems are invoked as a drawback of the method in the more

recent paper by Li and Gui [46].
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5 Conclusions

The microarray “revolution” has lead to an enormous increase in the availability of high-

dimensional biomedical data. Classical multivariate methods are not applicable to these

“small n, large p” data sets. In this paper we have reviewed the partial least squares (PLS)

approach to regression and dimension reduction that is perfectly suited for this kind of

data. In particular, PLS automatically performs variable selection and can be applied to

a diverse set of tasks, including classification, survival analysis, and modeling genetic

networks.

We finally remark that in this review we have exclusively focused on applications of

the PLS method to gene expression data. However, with the advent of proteomics data,

e.g., from mass spectronometric experiments, we expect PLS to be further established as

one of the prime tools for analyzing extremely high-dimensional molecular data.
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A List of abbreviations

Term Signification Introduced in

PLS1 Univariate PLS 2.3

PLS2 Multivariate PLS (first) 2.4

SIMPLS Multivariate PLS (second) 2.4

ULS Undeflated PLS 2.4

OLS Ordinary Least Squares

PCR Principal Component Analysis 2.5

RRR Reduced Rank Regression 2.5

CR Continuum Regression 2.5

RR Ridge Regression 2.5

PLS+LDA Two-step classification procedure consisting 3.2

of PLS dimension reduction and LDA

IRPLS Marx’s Iteratively Reweighted PLS 4.2

X = (xi j )i=1,...,n, j=1,...,p n× p matrix of predictors 2.2

Y = (yi j )i=1,...,n, j=1,...,p n× q response matrix 2.2

X1, . . . ,Xp Uncentered predictor variables (random variables) 2.2

Y1, . . . ,Yq Uncentered response variables 2.2

(ẋi , ẏi)i=1,...,n Uncentered sample 2.2

(xi , yi)i=1,...,n Centered sample 2.2

w j = (w1 j , . . . ,wp j)T weight vector defining thej-th latent component 2.2

t j = (t1 j , . . . , tn j)T j-th latent component 2.2

T = [ t1, . . . , tc] n× c matrix of latent components 2.2

W = [w1, . . . ,wc] p× c matrix of weights 2.2

T j, j = 1, . . . , c (Uncentered) random variable corresponding tot j 2.2

P p× c matrix of X-loadings 2.2

Q q× c matrix of Y-loadings 2.2

E n× p error matrix 2.2

F n× q error matrix 2.2

B p× q matrix of regression coefficients 2.2
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B Available software

There are currently four R packages that implement partial least squares approaches:

• plsgenomics

http://cran.r-project.org/src/contrib/Descriptions/plsgenomics.html

This package implements PLS regression (using the functionsimpls from the

pls.pcr package) with user-friendly features such as the choice of the number

of components. It also implements the classification method PLS+LDA mentioned

in Section 3.2 and discussed by [1, 36].

• pls.pcr

http://cran.r-project.org/src/contrib/Descriptions/pls.pcr.html

This package implements the two main variants of multivariate PLS regression

SIMPLS and PLS2 as well as Principal Component Regression (PCR).

• pls

http://cran.r-project.org/src/contrib/Descriptions/pls.html

This package is an extension of the earlier package “pls.pcr” including, e.g., various

plot functions and a formula interface.

• gpls

http://cran.r-project.org/src/contrib/Descriptions/gpls.html

This package implements the classification method using generalized PLS

mentioned in Section 4.2 and proposed by [51].

• plss

http://www.math.univ-montp2.fr/~durand/ProgramSources.html

This package implements PLS regression based on splines transformations of the

predictors as described in [22].

Other software: Classification with PLS regression is implemented in the software

tool SIMCA. Several PLS algorithms are also implemented in the procedurePLS in SAS.
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