
 
 
 
This is the author version published as: 
 
 
This is the accepted version of this article. To be published as : 
This is the author version published as: 
 
 
 
 
  
 
Catalogue from Homo Faber 2007 
 
 
 
 
 
 

QUT Digital Repository:  
http://eprints.qut.edu.au/ 

 
La Rosa, Marcello and Dumas, Marlon and ter Hofstede, Arthur H.M. and 
Mendling, Jan (2010) Configurable multi-perspective business process 
models. Information Systems Databases : Their Creation, Management and 
Utilization. 

           
Copyright 2010 Elsevier 



Configurable Multi-Perspective

Business Process Models

Marcello La Rosa a,∗ Marlon Dumas b

Arthur H.M. ter Hofstede a Jan Mendling c

aQueensland University of Technology, GPO Box 2434, Brisbane 4001, Australia
bUniversity of Tartu, J Liivi 2 Tartu 50409, Estonia

cHumboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

Abstract

A configurable process model provides a consolidated view of a family of business
processes. It promotes the reuse of proven practices by providing analysts with
a generic modeling artifact from which to derive individual process models. Un-
fortunately, the scope of existing notations for configurable process modeling is
restricted, thus hindering their applicability. Specifically, these notations focus on
capturing tasks and control-flow dependencies, neglecting equally important ingre-
dients of business processes such as data and resources. This research fills this gap
by proposing a configurable process modeling notation incorporating features for
capturing resources, data and physical objects involved in the performance of tasks.
The proposal has been implemented in a toolset that assists analysts during the
configuration phase and guarantees the correctness of the resulting process models.
The approach has been validated by means of a case study from the film industry.

Key words: business process, configurable process model, EPC

1 Introduction

Some business processes recur in similar forms from one company to another.
For example, the term “order-to-cash” refers to a recurrent business process

∗ Corresponding author. Tel.: +61731389482; fax: +61731389390.
Email addresses: m.larosa@qut.edu.au (Marcello La Rosa),

marlon.dumas@ut.ee (Marlon Dumas), a.terhofstede@qut.edu.au (Arthur
H.M. ter Hofstede), jan.mendling@wiwi.hu-berlin.de (Jan Mendling).

Preprint submitted to Information Systems 28 May 2010



that starts when a purchase order is received by a supplier and ends when
the purchase order has been fulfilled and settled. Order-to-cash processes are
found in a vast majority of companies. But while sharing common traits,
order-to-cash processes in different companies or industry verticals may differ
from one another in significant ways. An order-to-cash process for the delivery
of goods is quite different from an order-to-cash process for services. In the
first case, there is often a physical delivery that happens at a discrete point
in time, and the condition of the goods can be checked upon receipt. On the
other hand, the delivery of a service may occur over an extended period of
time (e.g. 6 months) and may involve complex quality control activities.

Despite such differences, it would be inefficient if every time a company en-
gages in modeling and re-designing its order-to-cash process, it did so “from
scratch” without consideration of how other companies perform their order-to-
cash process. Reference process models such as the Supply Chain Operations
Reference (SCOR) model [41] or the SAP Reference Model [11], aim at en-
abling systematic reuse of proven practices across process (re-)design projects.
They do so by capturing knowledge about common activities, information ar-
tifacts and flows encountered in specific application domains.

In general, reference process models take the form of libraries of process mod-
els structured as hierarchies. Analysts are expected to use these models and
their associated documentation in order to derive process models for a specific
set of requirements. In this way, reference process models provide an alter-
native to designing process models from scratch. However, reference process
models in commercial use lack a representation of variation points and config-
uration decisions. In other words, they focus on the common traits found in
recurrent business processes, but they do not capture possible variations in a
systematic manner. As a result, analysts are given little guidance as to which
model elements need to be removed, added or modified to meet a given set of
requirements – a practice known as individualization.

The concept of configurable process model has been put forward as a means
to address this limitation [37]. A configurable process model is a model that
captures multiple variants of a business process in a consolidated manner.
For example, Figure 1 shows a configurable process model (right-hand side)
that consolidates two variants of a film shooting process: shooting on tape and
shooting on film. The configurable model contains one variation point that can
be configured into one of two variants. Although highly simplified, the example
illustrates that a configurable process model captures the commonalities and
the variability of a family of process models in a consolidated manner.

Given a configurable process model, analysts are able to define a configuration
of this model by assigning values to its variation points based on a set of
requirements. Once a configuration is defined, the model can be individualized

2



Film variant

Tape shooting
process model

Film shooting
process model

Prepare 
footage for 

editing

Offline editing

Online editing

commonality

variability
variation point

Tape variant

Configurable
process model

Shooting
finished

V

Footage 
prepared

Offline
finished

Online
finished

Prepare 
footage for 

editing

Offline editing

Negmatching

Shooting
finished

Footage 
prepared

Offline
finished

Online
finished

Prepare 
footage for 

editing

Offline editing

Online editing

Shooting
finished

Footage 
prepared

Offline
finished

Online
finished

Online editing

Online
finished

Fig. 1. A configurable process model consolidating two variants

automatically, thereby relieving analysts of this tedious and error-prone step.

Several notations for configurable process modeling have been proposed, in-
cluding Configurable Event-driven Process Chains (C-EPCs) [37] and exten-
sions of UML Activity Diagrams and BPMN as discussed later. The config-
urable process model shown in Figure 1 is represented using the C-EPC nota-
tion. This notation adds two concepts on top of the EPC notation: configurable
function (a function that can be removed during the configuration phase) and
configurable connector (a connector that can be removed or modified during
the configuration phase). For example, Figure 1 features a configurable OR
connector. During the configuration phase, either of the branches emanating
from this connector can be removed. Alternatively, the configurable connector
can be replaced by a non-configurable OR connector, or by an AND connector
or by an XOR connector. This decision is made based on whether the modeler
needs to configure the process to work with Tape only, with Film only, or with
both, or to leave the option open until runtime.

It is customary in the literature to partition the elements found in process
models into four major perspectives [19]. The control-flow perspective cap-
tures the occurrence and temporal ordering of activities. The data perspective
(herein called object perspective) captures the data objects that are consumed
and produced by the process and by its activities and how these data objects
are used by decision points in the process. The resource perspective describes
the organizational structure supporting the business process in the form of
resources, roles, and groups. Finally, the operational perspective describes the
elementary actions required to complete each activity, and how these actions
map into underlying applications. Since the applications supporting a business
process will almost always vary from one organization to another, common-

3



alities along the operational perspective are rare and thus this perspective is
generally not found in reference process models. None of the reference mod-
els mentioned above covers the operational perspective, but they do contain
elements across the other three perspectives. 1

A major shortcoming of existing approaches to configurable process modeling
is the lack of mechanisms for representing variability beyond the control-flow
perspective. The situation is illustrated by Figure 1, which fails to capture
the resources required during the performance of the editing and negmatching
activities, and the inputs and outputs of these activities. This shortcoming
limits the applicability of existing configurable process modeling notations.

The key contribution of this paper is an extension of the C-EPC notation with
the notions of roles and objects. This extended notation, namely C-iEPC, sup-
ports a range of variations in the way roles and objects are associated to tasks.
Given the subtle interplays between the control-flow, object and resource per-
spectives, decisions made along one of these perspectives may affect the other
perspectives. Maintaining these perspectives synchronized is essential in order
to ensure the correctness of the individualized process models. Accordingly,
the paper also presents a notion of valid configuration and an algorithm to
individualize a configurable process model with respect to a valid configura-
tion in a way that guarantees the syntactic correctness of the individualized
model. The proposal has been implemented in a toolset and has been applied
to a case study in the film industry.

This paper is an extended and revised version of our previous work [23]. With
respect to this previous work, this paper adds a formalization of the individu-
alization algorithm, a theorem proving that the algorithm yields syntactically
correct process models, a tool implementation and a case study.

The paper is structured as follows. Section 2 reviews previous work on multi-
perspective and configurable process modeling. Section 3 introduces the inte-
grated EPC (iEPC) notation, which allows one to capture business processes
from the control-flow, object and resource perspectives in an integrated man-
ner. Next, Section 4 presents the Configurable iEPC (C-iEPC) notation, al-
lowing one to capture variation points on top of an iEPC. Section 5 presents
a formal definition of C-iEPCs as well as the individualization algorithm. Sec-
tion 6 describes the implemented toolset, while Section 7 presents the case
study. Finally, Section 8 concludes the paper and discusses future work.

1 Other perspectives include the context perspective, covering location and con-
textual attributes attached to activities, and the performance perspective, covering
activity durations, costs, resource capacity, etc. These additional “non-functional”
perspectives are outside the scope of this paper and may warrant a separate study.

4



2 Background and Related Work

We discuss related work on two aspects: multi-perspective process modeling
and configurable process modeling. Given the high number of process mod-
eling notations, it is impractical to be exhaustive. Accordingly, we focus on
notations that emphasize activities and their dependencies, leaving aside pro-
cess modeling notations based on data-flow, e.g. IDEF [29], and goal-based
process modeling notations [21].

2.1 Integrated Multi-Perspective Process Modeling

The control-flow perspective of process models is commonly captured in terms
of activities and events related by control-flow arcs and connectors. Such con-
cepts can be found in virtually any process modeling notation. The resource
perspective, on the other hand, is commonly modeled in terms of associa-
tions between activities and roles, where a role represents a set of capabilities
and/or an organizational group [2]. In UML Activity Diagrams (ADs) [15] and
BPMN [31], this association is encoded by means of swimlanes. Each activity
is associated with a swimlane representing a role or an organizational unit.
UML ADs allow multiple swimlanes (or partitions) to be associated with an
activity. In extended EPCs (eEPCs) [39], symbols denoting roles or organiza-
tional units can be attached to functions. In this paper, we deal with role-based
resource modeling features that go beyond these simple constructs found in
UML ADs, BPMN and eEPCs. For example, whereas eEPCs allow one to ex-
press that a given resource may be needed for the performance of a function,
or that a given object may be produced or consumed by a given function, the
iEPC notation we introduce allows one to exactly state which combinations
or resources may be used by an activity and which combinations of objects
may be produced or consumed by an activity.

The flow of data and physical artifacts in a business process is generally cap-
tured by associating objects with activities. UML ADs support the association
of object nodes with activity nodes to denote inputs and outputs. One can
associate multiple objects as input or as output of an activity. The execution
of an activity consumes one object from each of the activity’s input object
nodes and produces one object for each of its output object nodes. Similar
features are found in BPMN and extended EPCs. In this paper, we propose
a more fine-grained object-activity associations and mechanisms to capture
variability in relation to object-activity associations.

Languages for executable process modeling, such as ADEPTflex [34], BPEL [30]
or YAWL [3], rely on global or net-level variables to capture data-flow between

5



actions. These languages support the definition of data mappings between
global or net variables and task input and output parameters. Our aim is
to define configurable process models for analysis and design. As such, our
proposal does not cover aspects such as the definition of variables and data
mappings, which are relevant at the execution level.

In addition to task-role associations, resource modeling in business processes
also encompasses resource allocation and role-based access control. Russell et
al. [38] identify a set of resource patterns describing various ways in which
resources are represented and utilized in process models. Ferraiolo et al. [16]
outline a reference model of well-accepted mechanisms for role-based access
control, while Bertino et al. formalize role authorization constraints in work-
flow models [8]. As mentioned above, the models we deal with are analysis
and design models. Accordingly, we do not deal with role-based access control
and resource binding mechanisms which are relevant during the deployment
and execution of business processes.

2.2 Configurable Process Modeling

Variability mechanisms have been widely studied in the field of Software Prod-
uct Line Engineering (SPLE) [32]. Techniques developed in this field enable
the configuration of software artifacts based on models that relate these arti-
facts to domain concepts (e.g. parameters, options or features). Among others,
two research streams have emerged in SPLE, namely Software Configuration
Management and Feature Diagrams. The former capture variability in terms
of system dependencies, while the latter focus on the system features from a
stakeholders perspective [4,13].

Existing methods for capturing variability in process models can be classi-
fied into four categories, based on their underlying variability mechanism:
configurable nodes, model projection, annotation and hiding and blocking of
elements.

Configurable nodes are used as a configuration mechanism in Configurable
EPCs [37]. The key idea is that configuration options are associated with
particular types of process model elements. We will discuss this approach in
detail in Section 4.1.

Model projections are introduced as a variability mechanism in [5,6]. Since a
reference process model typically contains information on multiple application
scenarios, it is possible to create a projection for a specific scenario (e.g. a
particular class of users) by fading out those process branches that are not
relevant to the scenario in question. The configuration is conducted by setting
configuration parameters defined in the form of simple attributes or logical

6



terms over characteristics. These can be elements of a model, but also elements
of the meta-model. In this way, whole element types can be excluded. Those
elements whose parameters evaluate to false are hidden.

[6] also introduces a distinction between configuration and adaptation. Con-
figuration is concerned with the individualization of a reference process to fit
the needs of an organization. Configuration does not lead to a fully-detailed
process model because it is fundamentally limited by what is captured in the
reference process model, which is generally a public and standardized model.
Reference process models do not capture organization-specific details such as
rules for calculating interests and penalties in a credit recovery process. After
individualization, an adaptation step is required in order to incorporate such
organization-specific details not covered in the reference process model. In this
paper, we are concerned with configuration rather than adaptation.

Different approaches have been defined to achieve configuration by means of
annotations. The PESOA (Process Family Engineering in Service-Oriented
Applications) project [40] defines so-called variant-rich process models as pro-
cess models extended with stereotype annotations to accommodate variability.
These stereotypes are applied to both UML Activity Diagrams and BPMN
models. The places of a process model where variability can occur are marked
as variation points with the stereotype <<VarPoint>>. These can be activities
in UML Activity Diagrams and tasks in BPMN. Further stereotypes including
<<Variant>>, <<Default>>, <<Abstract>>, <<Alternative>>, <<Null>>,
and <<Optional>> are used for the specification of different configuration
options. A subset of these stereotypes proposed by the PESOA project ap-
pears in [33] where the authors focus on optionality and alternatives. These
annotations can be applied to the control-flow and object-flow of UML Activ-
ity Diagrams. Comparable approaches to process model configuration based
on annotations are introduced in [36,12,35].

In [17] the authors investigate a set of process configuration operators based
on hiding (skipping) and blocking of model elements. These operators are ap-
plied to Labeled Transition Systems (LTSs). LTSs are a formal abstraction
of computing processes, therefore any process model with a formal semantics
(e.g. Petri Nets or YAWL) can be mapped to an LTS. The blocking opera-
tor corresponds to disabling the execution of an atomic action. In the LTS
this means that a blocked edge cannot be taken anymore. Meanwhile, hiding
corresponds to abstraction, i.e. the execution of an atomic action becomes un-
observable. In the LTS a hidden edge is simply skipped, but the corresponding
path is still taken. This approach has been subsequently applied to define a
configurable extension of YAWL, namely C-YAWL [18].

Only two of these approaches take aspects beyond the configuration of control-
flow into consideration. The approach by Becker et al. [5] can be used to hide

7



elements and element types in extended EPCs for configuration purposes,
which includes non-control flow elements. However, this only affects the view
on the EPC, not its underlying behavior. Also, this approach does not enable
fine-grained configuration of task-role and task-object associations (beyond
hiding). A second approach by Razavian et al. [33] is restricted to the con-
figuration of simple forms of role-task and object-task associations that are
present in UML ADs. As a result, both offer only basic features to configure
resources and objects, such as removing a role or an object.

We conclude that richer mechanisms for the configuration of roles and objects
in process models are needed. The two approaches that partially take these
aspects into consideration suffer from limited expressiveness of the underlying
meta-model. As a consequence, we will first formalize role and object modeling
in a process model, leading to a notation we call integrated EPC (iEPC). We
will then add features for capturing variability to this iEPC notation.

3 Integrated Business Process Modeling

We define our notation as an extension of EPCs. Three reasons underpin this
choice. Firstly, EPCs are widely used by modelers and analysts for reference
process modeling (cf. the SAP R/3 reference model). Hence, this can foster the
adoption of the proposed extension. Secondly, eEPCs provide basic features
for associating objects and resources to tasks, which we extend in this paper.
Finally, this choice allows us to build on top of the existing definition of
the C-EPC notation. Nonetheless, we present our extensions in an abstract
and formal manner to make them applicable beyond the scope of EPCs. In
particular, the concepts we put forward can be directly transposed to other
flowchart-like notations such as UML ADs and BPMN.

EPC’s main elements are events, functions, control-flow connectors, and arcs
linking these elements. Events model triggers or conditions, functions corre-
spond to tasks and connectors denote splits and joins of type AND, OR or
XOR. An integrated EPC (iEPC) extends an EPC by associating roles and
objects to EPC functions. A role, shown to the left of a function, captures a
class of organizational resources that is able to perform that function. For ex-
ample, the role Producer associated with function Picture editing in Figure 2,
captures the set of all the persons with this role in a given screen project. At
run-time a role is dynamically bound to one concrete resource (e.g., Producer
can be bound to Steven Spielberg).

Resources can be human or non-human, such as an information system or a
robot. The SAP system associated with function Process Invoice in Figure 2 is
an example of a non-human role. Therefore we can distinguish among manual

8



functions (those performed by human roles), automated functions (those per-
formed by non-human roles) and semi-automated functions (those performed
by both).

An object, shown to the right of a function, captures an information artifact
(e.g. file) or a physical artifact (e.g. paper document or production material)
of an enterprise that is used (input object) or produced (output object) by
a function. For example, Edit notes is an input object for Picture editing in
Figure 2, while Debit note is an output object for Process invoice. Each object
in the process model is statically bound to a concrete artifact. Therefore if
two objects in a model have the same label they are treated as being the same
artifact.

Picture
editingProducer

Process 
InvoiceSAP system

Invoice

Debit note

Edit notes

Fig. 2. Two examples of task-role and task-object associations in iEPC.

The associations shown in Figure 2 are two examples of basic task-role and
task-object associations. To illustrate more complex associations that can be
captured in iEPC, we use the working example in Figure 3. This model is an
exemplification of a reference process model on audio editing for screen post-
production, which was developed and validated in collaboration with subject-
matter experts of the Australian Film Television & Radio School (AFTRS) 2 .
We chose this case study for the high level of creativity, and thus of variability,
that characterizes the screen business. For example, the number of personnel
involved depends greatly on the type of project. In an animation movie, dialogs
are often recorded before the characters are finalized and scenes are complete.
In a small budget feature film, the design and editing begins once the picture
editing is complete, and is carried out by a single sound designer. On the other
hand, on a high budget feature film the sound department can be made up of
30 or more roles. More information on the case study is provided in Section 7.

The first function of the model is Spotting session, which is performed once
the shooting has been completed. Roles and objects can be linked to functions
either directly or via a connector. A connector allows one to specify a logical
condition for a set of roles or objects. For example, the OR-join between Com-
poser and Sound Designer indicates that at least one of these roles is required
to perform this activity. Composer is needed if the project features music,
Sound Designer is needed if the project features sound. Sound is a composi-
tion of dialogs, effects and/or atmospheres (atmos). Based on the screening
of the Picture cut, Composer and Sound Designer hold a Spotting session to
decide what music and sound should be added and at which point of time in

2 www.aftrs.edu.au

9



Sound
premixing

Music
premixing

Sound premix

Shooting 
finished

Spotting 
session

x

Composer

S. Designer

Changes 
required

x

Spotting 
finished

Sound
design

Dialog tracks Effect tracks Atmos tracks

Music
design

Design 
finishedV

V

V

V

V

Atmos cuesEffect cues

Atmos cuesEffect cuesDialog cuesMusic cues

Music premix

Composer

S. Designer

Producer

Director

Director

Producer

Dialog cuesMusic cues
A. Director

V

2:k

Picture cut

Picture cut

Music notes Sound notes

V

Sound notes Picture cut

Editing
finished

Final
mixing

Editor

Negcutter
Edited picture

Picture
editing

Edited picture

Picture 
edited

Music notes

Function

Optional role / 
object / connector

Role

Object

Picture cut

Composer

Mixer

Producer

S. Designer

Mixer

Temp music file

Temp sound file

Temp sound fileTemp music file

Dialog tracks Effect tracks Atmos tracks

Music tracks

Music tracks

Sound premixMusic premix

V

Final mixDeliverable

S. Designer

V

Editor

Mixer

Composer

VV

Producer

V
Composer

S. Designer

V

Progress 
update

V

V

V

V

V

Event

Connector

Consumption for 
input object

Audio
premixed

Changes
not required

Fig. 3. Reference process model for audio editing at the AFTRS.

the Picture cut. This information is stored in the cues (e.g. Music cues for
music). Picture cut is thus an input object while music cues, dialog cues, etc.,
are output objects. These are connected via an OR-split which imposes that
at least one set of cues be produced as a result of the Spotting session. This
choice depends on the type of project. For example, a documentary would
typically have no effects.

A spotting session may be supervised by at least two roles among Producer,
Director and Assistant Director that have creative authority in the project.
These roles are linked together by a range connector. This connector indicates
the lower bound and upper bound for the number of elements (roles or ob-
jects) that are required. The parameter k for a range connector refers to the
outdegree for a split or to the indegree for a join. In this case k = 3. A range

10



connector subsumes the routing behavior of the common logical connectors of
OR (equivalent to a range of 1 : k), AND (k : k) and XOR (1 : 1). Therefore
we consider all connectors involving roles and objects as being range con-
nectors, although we maintain the standard EPC notation for OR (∨), XOR
(×) and AND (∧). All the range values that can be captured through the
range connector are illustrated in Figure 4 (the example of roles is shown). A
function associated with more than one human role captures teamwork, i.e. a
collaborative activity where each person contributes different skills. For exam-
ple, function Spotting session captures the teamwork between the Composer,
the Sound Designer and two roles among Producer, Director and Assistant
Director.

Once the cues are ready the design of music and sound starts. In Music design,
the Composer records the project’s Music tracks (an output) following the
Music cues and using the Picture cut as a reference (an AND-join connects
these two inputs). A Temp music file may also be produced at this stage.
This object is linked to the function via a dashed arc which indicates that an
object or a role is optional, whereas a full arc indicates mandatoriness. The
optionality of a group of roles/objects linked by a range connector is modeled
by making the connector optional (see Figure 4). Sound design is usually more
complex than Music design as it involves the recording of the Dialog, Effects
and/or Atmos tracks, according to the respective cues on the Picture cut. The
Editor or the Sound Designer are responsible for this task. Similarly to Music
design, a Temp sound file may also be produced.

Afterwards, the Composer and/or the Sound Designer provide the Director
and usually the Producer with an update on the work-in-progress. Producer
is an optional role. At least one mandatory role is to be assigned to each
function to ensure its execution. Temp files may be used by the Composer
and by the Sound Designer as a guide for the Progress update (the OR-join
between these two objects is thus optional). Generally, the result of this task
is a set of notes describing the changes required; sometimes, however, the
Composer or the Sound Designer may prefer not to take notes. If changes are
needed, the Music and Sound design can be repeated as specified by the loop
in the model. In this case, the notes can be used as input to these tasks.

Upon completion of the design phase, the Mixer and the Composer mix the
Music tracks into a Music premix if the project has music, while the Mixer and
the Sound Designer mix the Sound tracks into a Sound premix if the project
has sound. The Producer may supervise both mixings. In Picture editing, the
Picture cut is edited by an Editor, while a Negcutter is required if the cut is on
Film. A cross below an object, like the cross below ‘Picture cut’ in Figure 3,
indicates that the object is consumed by the function and is no longer available
afterwards.

11



0 or
at most m f

r1

rk

k:m

at most m f

r1

rk

k:m

0 or
at least n f

r1

n:k

rk

at least n f

r1

rk

n:k

= f

r1

V

rk

at least 1 f

r1

rk

1:k

= f

r1

X

rk

exactly 1 f

r1

rk

1:1

= f

r1

X

rk

at most 1 f

r1

rk

1:1

= = f

r1

rk

f

r1

V

rk

all f

r1

rk

k:k

= f

r1

rk

V0 or all f

r1

rk

k:k

exactly m f

r1

rk

m:m

0 or
exactly m f

r1

rk

m:m

at least n,
at most m f

r1

rk

n:m

0 or
at least n,
at most m

f

r1

rk

n:m

Fig. 4. Range values for the range connector.

The process ends with Final mixing, where the Mixer, helped by the Sound
Designer and/or the Composer, releases a Final mix using the available Pre-
mixes. A Deliverable may also be released by overlaying the premixes onto
the Edited picture, should a demo of the video with the integrated audio be
required.

Besides the process model, we use a hierarchy model to represent all the roles
and objects referred to by the nodes of the process model. For example, in the
audio editing process model there are five nodes labeled ‘Producer’ and four
labeled ‘Picture cut’. A hierarchy model also captures the specializations that
can be associated with a role or an object, by means of a specialization rela-

12



tion. Figure 5 shows the hierarchy models for the roles and objects involved in
the audio editing process, where the specialization relation is depicted by an
empty arrow linking a specialized role (object) to its generalization. Typically,
for a role this relation represents a separation of duties among its specializa-
tions (e.g., Executive Producer, Line Producer and Co-Producer share the
Producer’s duties). For an object, it represents a set of formats (e.g. 16mm,
35mm and 65mm are three Film formats, while Paper and XML are two cues
formats). The specializations in the hierarchy models will be used later on for
configuration.

Dialog tracks Effect tracks Atmos tracks

Sound premixMusic premix

Picture cut

Temp music file Temp sound file

Deliverable

Tape

Analogue

Uncomp. digital

Compr. digital

Film

16mm

35mm

65mm

Sound notesMusic notes

Director

Composer

Sound Designer

Edited picture

Mixer

Music tracks

Final mix
Negcutter

Producer

Editor

Assistant Director

Line Producer

Executive Producer

Co-Producer

2nd A. Director

1st A. Director

3rd A. Director

Sound Editor

Video Editor

FX Editor

Atmos Editor

Dialog Editor

Music cues

Effect cues

Atmos cues

Dialog cues

Paper

XML

Fig. 5. The role-hierarchy model and the object-hierarchy model for the audio edit-
ing process model.

4 Configurable Integrated Process Models

In this section we extend iEPCs in order to capture variability and we discuss
interplays among different process perspectives during configuration.

4.1 Configurable iEPCs

As mentioned in Section 1, a C-EPC is an EPC in which functions and connec-
tors can be marked as “configurable”. Given a C-EPC, a modeler can derive
an individualized EPC by selecting a possible variant for each configurable
element. Certain simple rules guide the space of possible variants for each
configurable element. During configuration, configurable functions can be left
ON or turned OFF (the function is replaced by an arc) or turned OPT (the
decision whether to keep or discard the function is deferred until run-time).
A configurable XOR connector with two outgoing branches can be configured

13



in three ways: either the left branch is removed, or the right branch is re-
moved, or the connector is simply turned into a regular (non-configurable)
XOR connector, meaning that the choice between the two branches is post-
poned until run-time. Finally, a configurable OR connector with two outgoing
branches can be configured in five different ways as explained in the example
in Section 1.

The Configurable iEPC (C-iEPC) notation that we propose in this paper ex-
tends C-EPCs by widening the spectrum of variation points beyond functions
and control-flow connectors in order to include roles, objects and range con-
nectors. With respect to C-EPCs, the C-iEPC notation adds three concepts:
configurable roles, configurable objects and configurable range connectors. The
configurable version of the reference process model for audio editing is shown
as a C-iEPC in Figure 6, where variation points are indicated with a thicker
border as in the C-EPC notation.

Configurable roles and configurable objects have two dimensions: optionality
and specialization. If a configurable role (object) is ‘optional’ (OPT ), it can
be restricted to ‘mandatory’ (MND), or switched OFF to be removed from
the process. If it is ‘mandatory’ it can only be switched OFF . For example, if
a project does not feature music, the participation of the Composer and the
production of Music cues can be excluded from the Spotting session.

Configurable roles and objects for which there exists a specialization in the
hierarchy model can be restricted to any of their specializations. As per the
hierarchy model of Figure 5, the object Picture cut in Figure 6 can be special-
ized to Tape if the project does not support an editing on Film. Also, the role
Producer associated with function Progress update can be specialized to Line
Producer and made mandatory, should the Director need creative support in
this phase. The availability of a specialization for an object or role is depicted
with a small pyramid in the node’s top-right corner.

Configurable input objects have a further configuration dimension, namely us-
age, such that those inputs that are ‘consumed’ (CNS ) can be restricted to
‘used’ (USE ). For instance, we can restrict Picture cut to used if its special-
ization is Tape. This is because a Picture cut is only physically destroyed if it
is on Film.

Configurable range connectors have two configuration dimensions: optionality
and range restriction. The same rules for roles and objects govern the possible
changes of optionality values for range connectors. For example, the optional
OR-join connecting the temp files in Progress update, can be made mandatory
if the temp files are always used by this function. The range restriction allows
one to restrict the routing behavior of the connector at configuration time,
i.e. before the actual execution of the process. This is achieved by increasing

14



Sound
premixing

Music
premixing

Sound premix

Changes
not required

Shooting 
finished

Spotting 
session

x

Composer

S. Designer

Changes 
required

x

Spotting 
finished

Sound
design

Dialog tracks Effect tracks Atmos tracks

Music
design

Design 
finishedV

V

V

V

V

Atmos cuesEffect cues

Atmos cuesEffect cuesDialog cuesMusic cues

Music premix

Composer

S. Designer

Producer

Director

Director

Producer

Dialog cuesMusic cues
A. Director

V

2:k

Picture cut

Picture cut

Music notes Sound notes

V

Sound notes Picture cut

Editing
finished

Final
mixing

Editor

Negcutter
Edited picture

Picture
editing

Edited picture

Picture 
edited

Music notes

Conf. function Conf. connector

Conf. optionality 
for role

Conf. optionality 
for object

Conf. specialization 
for role / object

Conf. consumption 
for input object

Picture cut

Composer

Mixer

Producer

S. Designer

Mixer

Temp music file

Temp sound file

Temp sound fileTemp music file

Dialog tracks Effect tracks Atmos tracks

Music tracks

Music tracks

Sound premixMusic premix

V

Final mixDeliverable

S. Designer

V

Editor

Mixer

Composer

VV

Producer

V
Composer

S. Designer

V

Progress 
update

V

V

V

V

V

Audio
premixed

Fig. 6. The configurable version of the model in Figure 3.

the lower bound and/or decreasing the upper bound. Moreover, a choice can
be made for a single node (role or object) to be associated with the function
linked to the connector, effectively removing the connector altogether. This
latter option is similar to configuring a control-flow connector to a sequence of
nodes, and is allowed if the lower bound is 1 and the node is in the connector’s
postset in case of a split, or in its preset in case of a join. For example, the
configurable range connector 2 : k associated with Spotting session can be
restricted to 3 : k – all the supervisors have to partake in the Spotting session
– or to 2 : 2 – exactly two of them have to partake – but not to a single role.

The configuration of range connectors is consistent with the configuration of
control-flow connectors, since as mentioned before the range connector sub-

15



sumes all connector types. In fact, a 1 : k range connector is equivalent to an
OR and can thus be restricted to an XOR (1 : 1), to an AND (k : k) and to a
single node, but also to any other reduced range (e.g. 2 : k). A range 1 : 1 can
only be restricted to a single node while a rage k : k cannot be restricted.

4.2 Configuration Interplays

Domain requirements may prevent a configuration node from being freely set,
or more generally, may impose a set of configurable nodes to take only certain
combinations of values. For example, in Figure 6, the role Editor associated
with Sound design cannot be specialized to Video Editor since the capabilities
required by the associated function include audio editing. Similarly, the Editor
associated with Picture editing cannot be specialized to Sound Editor.

An example of a more intricate interdependency is that involving the role
Negcutter. This role is required only if the project is edited and delivered
on Film. Thus, if Negcutter is configured to MND , all the occurrences of
objects Picture cut, Edited picture and Deliverable must be specialized to
Film. Furthermore, in this case the Picture cut, which is an input object
of Picture editing, must be restricted to CNS because it will be physically
destroyed during the editing (the film roll is manually cut in a number of
parts which are then spliced in a different order to obtain the desired editing).

Similarly, switching OFF function Progress update implies the restriction of
the subsequent XOR-split to the sequence starting with event Changes not
required. This is because at run-time the decision whether or not to repeat
the design phase is determined by the outcome of Progress update.

Interdependencies may also involve range connectors. For instance, the two
OR-joins for the roles and the input objects of Progress update must be con-
figured the same way. The configuration of the first join allows the restriction
of the run-time choice of which role is to partake in Progress update, while the
configuration of the second join allows the restriction of which temp files have
to be used. Although the second connector is optional (i.e. no temp file may
be used), a configuration where, e.g., the first OR is restricted to AND and the
second one is restricted to a mandatory XOR must be denied. This is because
if temp files are available, these need to be linked to the roles Composer and
Sound Designer that will actually use them. The Composer will use the Temp
music files, while the Sound Designer will use the Temp sound files.

Besides domain requirements, structural requirements may also restrict the
configuration space, in order to avoid the generation of incorrect individual-
izations. For example, we mentioned earlier that a function needs to have at
least a mandatory role that can perform it. Thus, if a function is no longer as-

16



sociated with a role after configuration, it needs to be dropped from the model,
because there are no resources that can execute it. This is the case for func-
tion Music design, which needs to be removed from the model if its sole role
Composer is not available in the project. We discuss correctness requirements
in Section 5, where we provide the definition of syntactically correct iEPC
and formulate an algorithm that guarantees the model correctness during in-
dividualization. The integration of domain requirements with C-iEPC models
is discussed in Section 6, where we describe a questionnaire-based approach
for process model configuration and its tool support.

Spotting 
session

Spotting 
finished

S. Designer

Producer

Director

Picture cut 
(Tape)

Editing
finished

Editor
(Video Editor)

Picture
editing

Picture 
edited

Audio
premixed

Sound premix

Final mix

S. Designer

Design 
finished

V

Edited picture
(Tape)

Picture cut
(Tape)

Deliverable
(Tape)

Final
mixing

Edited picture
(Tape)

Dialog cues 
(Paper)

Sound premix
S. Designer

Mixer
Dialog tracks

V Sound
premixing

Shooting 
finished

Mixer

Sound
design

Dialog tracks
S. Designer

V

V

V

Picture cut 
(Tape)

Dialog cues 
(Paper)

V

V

Editor
(Sound Editor)

Fig. 7. The audio editing process model individualized for a project without music.

An example of a configured iEPC is depicted in Figure 7. This model describes
the audio editing process that was followed by Bill Bennett to direct the feature
film “Kiss or Kill” [7]. It is the result of configuring and individualizing the
reference process model of Figure 6 for editing a feature movie without music
on tape. Accordingly, functions Music design and Music premixing have been
switched OFF and thus they have been replaced by an arc. Progress update
has been excluded and thus the subsequent XOR-split has been configured
so as to remove the possibility for iteration. The Editor in Picture editing
has been specialized to Video Editor whereas the Editor in Sound design has
been specialized to Sound editor. Furthermore, since the editing is on Tape, all

17



instances of Picture cut, Edited picture and Deliverable have been specialized
to Tape, the Picture cut input to Picture editing has been set to ‘used’ and
Negcutter has been switched OFF . This model complies with the domain and
structural requirements described above.

5 Correctness and Configuration of Integrated Process Models

In this section we formalize the C-iEPC meta-model to provide a precise char-
acterization of a C-iEPC configuration and discuss the requirements that need
to be fulfilled to yield a syntactically correct individualized iEPC. First, we
define the notion of iEPC and syntactically correct iEPC. Next, we provide
the definition of C-iEPC and configuration and show an algorithm to individ-
ualize C-iEPCs. Finally, we prove that the algorithm guarantees the syntactic
correctness of the models. For example, this algorithm is able to generate the
model shown in Figure 7 from the model of Figure 6 given a configuration.

5.1 Integrated Business Process Model

The main iEPC elements and their relationships are shown in Figure 8 via an
UML Class Diagram.

Function
Node

Event

Control-flow 
Connector

Role
Node

Role
Connector

Role

Role
Assignment 

Node

Input
Connector

Input Object
Node

maps to

Role
Arc

Output Object
Node

Output
Connector

Object

Object
Node

maps to

Ouput
Arc

Output-flow
Node

Input
Arc

Input-flow
Node

Control-flow 
Node

Control-flow
Arc

[1..*]

[1..*]

Function
maps to

[1..*]

source

target

source

target

source

target

source

target

Fig. 8. UML Class Diagram showing the main iEPC elements (association cardinal-
ities of 1 are omitted).

18



An iEPC is made up of control-flow nodes, role assignment nodes, input-
flow nodes and output-flow nodes. Control-flow nodes divide into function
nodes (each mapped to one function), events and control-flow connectors. Role
assignment nodes divide into role nodes (each mapped to one role), function
nodes and role connectors. Finally, input-flow nodes divide into input object
nodes, function nodes and input connectors, whereas output-flow nodes divide
into output object nodes, function nodes and output connectors. Input and
output object nodes are two types of object node and each object node is
mapped to one object. A node can only be linked with another node of the
same type, via the respective arc type. For example, a role node is linked with
a role connector via a role arc. Function nodes inherit from all four types
of nodes and can thus be connected to all types of nodes. For presentation
purposes, the diagram in Figure 8 does not specify the restrictions in the
way nodes of the same type can be connected with each other through arcs.
For example, the diagram allows arcs between two role connectors or between
a function and a role, with the function being the source of the arc. These
restrictions are captured in the formal definition of iEPC which follows below.

In order to formally define the concepts of iEPC and correct iEPC, we first
need to have a formal definition of role and object-hierarchies. A role-hierarchy
is essentially a set of roles with a specialization relation. Similarly, an object-
hierarchy is a set of objects with a specialization relation.

Definition 1 (Role-hierarchy Model) A role-hierarchy model is a tuple

Rh = (R,
R^), where:

• R is a finite, non-empty set of roles,
• R^ ⊆ R × R is the specialization relation on R (

R^ is transitive, reflexive
and antisymmetric).

Definition 2 (Object-hierarchy Model) An object-hierarchy model is a

tuple Oh = (O,
O^), where:

• O is a finite, non-empty set of objects, i.e. physical or information artifacts,
• O^ ⊆ O × O is the specialization relation on O (

O^ is transitive, reflexive
and antisymmetric).

If x1
R/O^ x2, we say x1 is a generalization of x2 and x2 is a specialization of x1

(x1 6= x2). For example, Dialog Editor is a specialization of Editor.

The definition of iEPC given below extends that of EPC from [37] which fo-
cuses on the control-flow only. Specifically, iEPCs add a precise representation
of roles and objects participating in the process. These roles and objects stem
from the hierarchy models defined above. In an iEPC each function node, role
node and object node represents an instance of a function, role or object, as

19



illustrated in the UML diagram of Figure 8.

The range connector is modeled by a pair of natural numbers: lower bound (n)
and upper bound (m). AND, OR and XOR correspond to a range connector
respectively with n = m = k, with n = 1,m = k and with n = m = 1. So we
do not need to model the logical operators with separate connectors for roles
and objects, although they can be graphically represented with the traditional
EPC notation, as in Figure 3. For the sake of keeping the model consistent
with previous EPC formalizations, the range connector is not allowed in the
control-flow, although a minimal effort would be required to add this construct.
The optionality of roles, objects and range connectors, shown in Figure 3
as a dashed arc that links a node with a function, is modeled in iEPC as
an attribute of the node being optional. Similarly, the consumption of input
objects is modeled as an attribute of the object being consumed.

Definition 3 (iEPC) Let F be a set of functions, Rh = (R,
R^) be a role-

hierarchy model and Oh = (O,
O^) be an object-hierarchy model. An integrated

EPC over F , Rh and Oh is a tuple iΥF,Rh,Oh = (E,F
N
, R

N
, O

N
, nm, C, A, L),

where:

• E is a finite, non-empty set of events;
• F

N
is a finite, non-empty set of function nodes for the process;

• R
N

is a finite, non-empty set of role nodes for the process;
• O

N
is a finite set of object nodes for the process;

• nm = nf ∪ nr ∪ no, where:
– nf ∈ F

N
→ F assigns each function node to a function;

– nr ∈ R
N
→ R assigns each role node to a role;

– no ∈ O
N
→ O assigns each object node to an object;

• C = C
CF
∪ C

R
∪ C

IN
∪ C

OUT
is a finite set of logical connectors, where:

– C
CF

is the set of control-flow connectors,
– C

R
is the set of range connectors for role nodes (role connectors),

– C
IN

is the set of range connectors for input object nodes (input connec-
tors),

– C
OUT

is the set of range connectors for output object nodes (output con-
nectors),
where C

CF
, C

R
, C

IN
and C

OUT
are mutually disjoint;

• A = A
CF
∪ A

R
∪ A

IN
∪ A

OUT
is a set of arcs, where:

– A
CF
⊆ (E×F

N
)∪ (F

N
×E)∪ (E×C

CF
)∪ (C

CF
×E)∪ (F

N
×C

CF
)∪ (C

CF
×

F
N

) ∪ (C
CF
× C

CF
) is the set of control-flow arcs,

– A
R
⊆ (R

N
× F

N
) ∪ (R

N
× C

R
) ∪ (C

R
× F

N
) is the set of role arcs,

– A
IN
⊆ (O

N
× F

N
) ∪ (O

N
× C

IN
) ∪ (C

IN
× F

N
) is the set of input arcs,

– A
OUT
⊆ (F

N
×O

N
)∪ (F

N
×C

OUT
)∪ (C

OUT
×O

N
) is the set of output arcs,

where A
R
, A

IN
and A

OUT
are intransitive relations;

• L = lT
C
∪ lN

C
∪ lM

C
∪ lM

R
∪ lM

O
∪ lU

O
is a set of label assignments, where:

– lT
C
∈ C

CF
→ {AND ,OR,XOR} specifies the type of control-flow connec-

20



tor,
– lN

C
∈ (C

R
∪C

IN
∪C

OUT
)→ (N×(N∪{k}))∪{(k, k)}, specifies lower bound

and upper bound of the range connector,
– lM

C
∈ (C

R
∪C

IN
∪C

OUT
)→ {MND ,OPT} specifies if a role connector, an

input connector or an output connector is mandatory or optional,
– lM

R
∈ R

N
→ {MND ,OPT} specifies if a role node is mandatory or op-

tional,
– lM

O
∈ O

N
→ {MND ,OPT} specifies if an object node is mandatory or

optional,
– lU

O
∈ OIN

N
→ {USE ,CNS} specifies if an input object node is used or

consumed, where OIN
N

= dom(A
IN

) ∩O
N

.

Given a connector c, let lN
C

(c) = (n,m) for a c ∈ C \ C
CF

. Then we use
lwb(c) = n and upb(c) = m to refer to the lower bound and the upper bound
of c. Moreover, if F , Rh and Oh are clear from the context, we drop the
subscript from iΥ. Also, we refer to function nodes, role nodes and object
nodes simply as functions, roles and objects, wherever this does not lead to
confusion.

Before defining a syntactically correct iEPC, we introduce the following sub-
sets of nodes, functions and predicates to allow a more concise characterization
of iEPCs.

Definition 4 (Auxiliary sets, functions and predicates) Let F be a set
of functions, Rh be a role-hierarchy model, Oh be an object-hierarchy model
and iΥ = (E,F

N
, R

N
, O

N
, nm, C, A, L) be an iEPC. Then:

• N
CF

= E ∪ F
N
∪ C

CF
is the set of control-flow nodes;

• N
R

= F
N
∪R

N
∪ C

R
is the set of role assignment nodes;

• N
IN

= F
N
∪OIN

N
∪ C

IN
is the set of input-flow nodes;

• N
OUT

= F
N
∪ OOUT

N
∪ C

OUT
is the set of output-flow nodes, where OOUT

N
=

codom(A
OUT

) ∩O
N

;
• N = N

CF
∪N

R
∪N

IN
∪N

OUT
is the set of nodes;

• ∀n∈Nσ
σ• n = {x ∈ Nσ | (x, n) ∈ Aσ} is the σ-preset of n, where σ ∈

{CF ,R, IN ,OUT};
• ∀n∈Nσ n

σ•= {x ∈ Nσ | (n, x) ∈ Aσ} is the σ-postset of n, where σ ∈
{CF ,R, IN ,OUT};
• •X =

⋃
x∈X,σ∈{CF ,R,IN ,OUT}

σ• x is the union of the presets of X;

• X• =
⋃
x∈X,σ∈{CF ,R,IN ,OUT} x

σ• is the union of the postsets of X;

• Es = {e ∈ E | | CF• e| = 0 ∧ |e CF• | = 1} is the set of start events;

• Ee = {e ∈ E | | CF• e| = 1| ∧ |e CF• | = 0} is the set of end events;

• CS
CF

= {c ∈ C
CF
| | CF• c| = 1 ∧ |c CF• | > 1} is the set of control-flow split

connectors;
• CJ

CF
= {c ∈ C

CF
| | CF• c| > 1 ∧ |c CF• | = 1} is the set of control-flow join

connectors;

21



• linkσ(x, y) =


(y, x) ∈ A

R
, if σ = R, determines if (y, x) is a role arc,

(y, x) ∈ A
IN

, if σ = IN , determines if (y, x) is an input arc,

(x, y) ∈ A
OUT

, if σ = OUT , determines if (x, y) is an output arc;

• degree(x) =


| R• x|, if x ∈ C

R
, returns the indegree of a role connector,

| IN• x|, if x ∈ C
IN

, returns the indegree of an input connector,

|x OUT• |, if x ∈ C
OUT

, returns the outdegree of an output connector;

• φ = 〈n1, n2, . . . , nk〉 is a control-flow path such that (ni, ni+1) ∈ A
CF

for
1 ≤ i ≤ k−1, or k = 1. For short, we indicate that φ is a path from n1 to nk
as φ : n1 ↪→ nk if k > 1, or φ : n1

∗
↪→ nk if k ≥ 1. Also, α(φ) = {n1, . . . , nk}

indicates the alphabet of φ.

It follows that for all f ∈ F
N
|f R• | = 0, |f IN• | = 0 and | OUT• f | = 0; for all

r ∈ R
N
| R• r| = 0; for all o ∈ O

N
| IN• o| = 0 and |o OUT• | = 0.

We can now define a syntactically correct iEPC. This definition extends that
of syntactically correct EPC [37] by adding additional requirements for roles,
objects and range connectors. For example, it specifies that range connectors
associated with roles and input objects must be of type join, while range con-
nectors associated with output objects must be of type split. Also, it imposes
that functions be associated with at least one mandatory role or one manda-
tory role connector, and that roles and objects linked with range connectors
be mandatory since the optionality of a group of roles/objects is modeled by
making the connector optional.

Definition 5 (Syntactically Correct iEPC) Let F be a set of functions,
Rh be a role-hierarchy model, Oh be an object-hierarchy model and iΥF,Rh,Oh =
(E,F

N
, R

N
, O

N
, nm, C, A, L) be an iEPC. iΥ is syntactically correct if it fulfills

the following requirements:

(1) Every control-flow node is on a control-flow path from a start event to an
end event: ∀n∈N

CF
∃es∈Es,ee∈Ee [(eS, n) ∈ A+

CF
∧ (n, eE) ∈ A+

CF
].

(2) There is at least one start event and one end event in iΥ: |Es| > 0 and
|Ee| > 0.

(3) Events have at most one incoming and one outgoing control-flow arc:

∀e∈E [| CF• e| ≤ 1 ∧ |e CF• | ≤ 1].
(4) Functions have exactly one incoming and one outgoing control-flow arc:

∀f∈F
N

[| CF• f | = |f CF• | = 1].
(5a) Control-flow connectors have one incoming and multiple outgoing arcs or

vice versa: ∀c∈C
CF

[(| CF• c| = 1∧ |c CF• | > 1) ∨ (| CF• c| > 1∧ |c CF• | = 1)],
(split, join),

(5b) Role connectors have multiple incoming arcs and exactly one outgoing

arc: ∀c∈C
R

[| R• c| > 1 ∧ |c R• | = 1], (join),

22



(5c) Input connectors have multiple incoming arcs and exactly one outgoing

arc: ∀c∈C
IN

[| IN• c| > 1 ∧ |c IN• | = 1], (join),
(5d) Output connectors have exactly one incoming arc and multiple outgoing

arcs: ∀c∈C
OUT

[| OUT• c| = 1 ∧ |c OUT• | > 1], (split).

(6) Roles have exactly one outgoing arc: ∀r∈R
N
|r R• | = 1.

(7) Objects have exactly one outgoing input arc or one incoming output arc:

∀o∈O
N

[(|o IN• | = 1 ∧ | OUT• o| = 0) ∨ (|o IN• | = 0 ∧ | OUT• o| = 1)].
(8) Functions are linked to at least a mandatory role or a mandatory role

connector: ∀f∈F
N

[∃
r∈R•f

[lM
R

(r) = MND ] ∨ ∃
c∈R•f

[lM
C

(c) = MND ]], it

follows that | R• f | > 0.
(9) Roles and objects linked to connectors are mandatory:
∀r∈R

N
[r ∈ dom((R

N
× C

R
) ∩ A

R
) ⇒ lM

R
(r) = MND ],

∀o∈OIN
N

[o ∈ dom((O
N
× C

IN
) ∩ A

IN
) ⇒ lM

O
(o) = MND ],

∀o∈OOUT
N

[o ∈ dom((C
OUT
×O

N
) ∩ A

OUT
) ⇒ lM

O
(o) = MND ].

(10) Upper bound and lower bound of range connectors are restricted as fol-
lows: ∀c∈C

R
∪C

IN
∪C

OUT
[1 ≤ lwb(c) ≤ upb(c) ∧ (lwb(c) ≤ degree(c) ∨

upb(c) = k)], where n ≤ m iff (n ≤ m) ∨ (m = k) ∨ (n = m = k).

The audio editing process model of Figure 3 is syntactically correct, and so is
the individualized model of Figure 7.

The behavior of an iEPC has to take into account the routing rules of the
control-flow, the availability of the resources and the existence of the objects
participating in the process. A state of the execution of an iEPC can be
identified by a marking of tokens for the control-flow, plus a variable for each
role indicating the availability of the respective resource, and a variable for
each object indicating its existence.

A function is enabled and can fire if it receives control, if resources are available
for all its mandatory roles (i.e. persons in the case of manual functions) and if
all its mandatory input objects exist. The state of roles and objects is evaluated
directly or via the respective range connectors. Once a function terminates its
execution, its output objects are created (i.e. they become existent), and those
ones that are indicated as consumed are destroyed. Initial process objects, e.g.
those ones that are used by a function that follows a start event, exist before
the process execution starts. A function does not wait for a resource bound to
an optional role to become available. However, if such a resource is available
before the function is executed, it is treated as if its role was mandatory.

These definitions have implications for the correctness of a process model. Even
if the control-flow of an iEPC is sound, i.e. the iEPC is syntactically correct
and there are neither deadlocks nor livelocks (so-called behavioral issues), it
is not guaranteed that the process can complete properly. The reason is that
there can be further issues related to the object flow. Such issues may occur

23



when, as a result of configuring a process model, a required input object does
not exist at the time of executing a given function, despite the individualized
model is syntactically correct. Below, we briefly illustrate two examples of how
this issue can occur by using the audio editing process model of Figure 6.

The first example relates to the OR-join for input objects Temp music file and
Temp sound file of function Progress update, which is optional. Since both
Temp music file and Temp sound file are optional output objects respectively
of functions Music design and Sound design, these objects might not be created
in some instances of these functions. If so, there would be an issue if the
above OR-join was configured to a ‘mandatory’ AND-join, because function
Progress update could not be executed and thus the process instance would
deadlock. The second example relates to the OR-join among the input objects
Dialog tracks, Effect tracks and Atmos tracks of function Sound premixing.
If we configured this to an AND-join, there would be instances in which this
function might not be executed, given that the OR-split among the same
output objects in Sound design produces non-deterministic behavior.

It is outside the scope of this paper to formally address the semantic issues of
an iEPC. For a formal definition and a corresponding verification approach,
we refer to separate work [26].

5.2 Integrated Process Configuration

A C-iEPC is an extension of an iEPC where a subset of its functions, connec-
tors, roles and objects is identified as configurable. As per a C-EPC, control-
flow connectors of type AND are not configurable.

Definition 6 (Configurable iEPC) A configurable iΥ is a tuple iΓ = (E,
F

N
, R

N
, O

N
, nm, C, A, L, F C

N
, RC

N
, OC

N
, CC ), where:

• E,F
N
, R

N
, O

N
, nm, C, A, L refer to the elements of an iΥ, they form the

iEPC component of the C-iEPC,
• F C

N
⊆ F

N
is the set of configurable functions,

• RC
N
⊆ R

N
is the set of configurable roles,

• OC
N
⊆ O

N
is the set of configurable objects,

• CC ⊆ (C \ CAND) is the set of configurable connectors, where CAND is
the set of AND connectors.

All the auxiliary sets of Definition 4 are also defined for iΓ. For example, with
NC = F C

N
∪RC

N
∪OC

N
∪ CC we indicate the set of configurable nodes.

We define a C-iEPC valuation as an assignment of values to each configurable
node according to the node type. This valuation is then constrained to achieve

24



a configuration.

Definition 7 (C-iEPC Valuation) Let iΓ = (E,F
N
, R

N
, O

N
, nm, C, A, L,

F C
N
, RC

N
, OC

N
, CC ) be a C-iEPC. Let also M = {MND , OPT ,OFF} be the

set of optionality attributes, U = {USE ,CNS} the set of usage attributes,
CT = {OR,XOR} the set of configurable control-flow connector types and
CTS

CF
= {SEQn | n ∈ N

CF
} the set of sequence operators for the control-

flow. A valuation of iΓ is defined as CiΓ = (C
F
, C

R
, C

O
, C

C
), where:

• C
F
∈ F C

N
9 {ON ,OPT ,OFF};

• C
R
∈ RC

N
9 M×R, (M is used for optionality and R for role specialization);

• C
O

= C
IN
∪ C

OUT
, where:

– C
IN
∈ OIN C

N
9 M ×O × U , (O is used for object specialization and U for

usage);
– C

OUT
∈ OOUTC

N
9 M ×O;

• C
C

= C
C CF
∪ C

C R
∪ C

C IN
∪ C

C OUT
, where:

– C
C CF
∈ CC

CF
9 CT ∪ CTS

CF
, (CT is used for the connector’s type and

CTS
CF

is used to configure the connector to a sequence of nodes);
– C

C R
∈ CC

R
9 M × ((N × N) ∪ R

N
), (N and N are used for lower bound

increment and upper bound decrement, R
N

is used to configure a role
connector to a single role);

– C
C IN
∈ CC

IN
9 M × ((N ×N) ∪ OIN

N
), (OIN

N
is used to configure an input

connector to a single input object);
– C

C OUT
∈ CC

OUT
9 M × ((N × N) ∪ OOUT

N
), (OOUT

N
is used to configure an

output connector to a single output object).

We define the following projections over the codomains of the component sets
of CiΓ, to address each configuration value in a more compact way.

Definition 8 (C-iEPC Projections) Let iΓ = (E,F
N
, R

N
, O

N
, nm, C, A,

L, F C
N
, RC

N
, OC

N
, CC ) be a C-iEPC and CiΓ = (C

F
, C

R
, C

O
, C

C
) be a valuation

of iΓ:

• let x ∈ RC
N
∪ OOUTC

N
, σ ∈ {R,OUT} and Cσ(x) = (m, s), then πM (x) = m

and πS (x) = s;
• let x ∈ OIN C

N
and C

IN
(x) = (m, s, u), then πM (x) = m, πS (x) = s and

πU (x) = u;
• let x ∈ CC

R
∪ CC

IN
∪ CC

OUT
and σ ∈ {R, IN ,OUT}. If C

C σ
(x) = (m, (p, q)),

then πM (x) = m, πi(x) = p and πd(x) = q, otherwise if C
C σ

(x) = (m, y),
then πM (x) = m and πN (x) = y.

The restrictions on the values each configurable node can take are captured a
set of partial orders. These are used to constrain the possible values a C-iEPC
valuation can take in order to be a valid valuation, i.e. a configuration of C-
iEPC. The partial order on the optionality dimension prevents a ‘mandatory’

25



node from being configured to ‘optional’ while it allows the contrary. Similarly,
the partial order on the usage dimension prevents a ‘used’ input object from
being configured as ‘consumed’ while it allows the contrary. The partial order
on the type of control-flow connectors prevents an XOR connector from being
configured as an OR or AND, while it allows all other combinations.

Definition 9 (C-iEPC Partial Orders) Let M , U , CT and CTS
CF

be as
in Definition 7. The partial orders for the configuration of a C-iEPC are de-
fined as follows:

• �M = {MND ,OFF} × {MND} ∪ M × {OPT} (on optionality),
• �U = {(n, n) | n ∈ U} ∪ {(USE ,CNS )} (on usage),
• �CF = {(n, n) | n ∈ CT} ∪ {XOR,AND}×{OR} ∪ CTS

CF
×{XOR,OR}

(on the type of control-flow connectors).

With these elements we are now ready to define the notion of C-iEPC config-
uration, which formalizes the concepts presented in Section 4.1.

Definition 10 (C-iEPC Configuration) Let iΓ = (E,F
N
, R

N
, O

N
, nm, C,

A, L, F C
N
, RC

N
, OC

N
, CC ) be a C-iEPC and CiΓ be a valuation of iΓ. Then CiΓ is a

configuration of iΓ iff it fulfills the following requirements for any configurable
node:

(1) Roles and objects can be restricted to MND or OFF if they are OPT , or
to OFF if they are MND:
∀x∈RC

N ∪ OC
N

[πM (x) �M lMσ (x)], where (σ ∈ {R,O}).

(2) Roles and objects can be restricted to any of their specializations:

∀x∈RC
N ∪ OC

N
[πS (x)

σ
^ nm(x)], where (σ ∈ {R,O}).

(3) Input objects that are CNS can be restricted to USE:
∀x∈OC

IN
[πU (x) �U lU

O
(x)].

(4) Control-flow OR connectors can be restricted to XOR,AND or to SEQn;
control-flow XOR connectors can be restricted to SEQn:
∀x∈CC

CF ,n∈NCF
[C

C CF
(x) �CF lT

C
(x) ∧ (C

C CF
(x) = SEQn ⇒ ((x ∈ CS

CF
∧

(x, n) ∈ A
CF

) ∨ (x ∈ CJ
CF
∧ (n, x) ∈ A

CF
)))] (the sequence must be in the

connector’s postset in case of a split or in the connector’s preset in case
of a join).

(5) Range connectors can be restricted to MND or OFF if they are OPT , or
to OFF if they are MND:
∀x∈CC

R ∪ CC
IN ∪ CC

OUT
[πM (x) �M lM

C
(x)].

(6) Range connectors can be restricted to a smaller range or to a single node
(i.e. to one role or one object):
• Range: ∀x∈CC

R ∪C
C
IN ∪C

C
OUT

:

26



– πi(x) = πd(x) = 0, if lwb(x) = upb(x) = k (the AND case cannot be
restricted),

– lwb(x) + πi(x) ≤

 upb(x)− πd(x), if upb(x) ∈ N,

degree(x)− πd(x), if lwb(x) ∈ N and upb(x) = k;

• Node (σ ∈ {R, IN ,OUT}):
∀x∈CC

R ∪C
C
IN ∪C

C
OUT

[πN (x) = y ⇒ (linkσ(x, y) ∧ lwb(x) = 1)] (the node must
be in the connector’s postset in case of split or in the connector’s preset
in case of join, and the lower bound must be 1).

The individualization algorithm applies a configuration to a C-iEPC to gen-
erate an iEPC. If the configuration is partial, i.e. a configuration value is only
assigned to a subset of the configurable nodes in the C-iEPC, then the result-
ing net will still be a C-iEPC. In this case further configurations would need
to be applied in order to obtain an iEPC.

Each step of the algorithm operates over a different type of element in a
C-iEPC. The order of these steps has been chosen in such a way that no
unnecessary operations are applied. For example, the control-flow connectors
are configured first, as this operation may lead to skipping certain paths of the
process model including connectors, events and functions. Then all the roles,
objects and range connectors that are associated with functions no longer
existing are removed as well. Finally, the remaining roles, objects and range
connectors are configured.

The algorithm also removes all functions not associated with a mandatory role
or mandatory role connector, and aligns the range of connectors with possible
changes in degree resulting from switching some role or object OFF . Figure 9
illustrates this situation for the join “2 : k” associated with Spotting session in
Figure 6. Assuming we configure this connector to “3 : k” (πi(c) = 1, πd(c) =
0), if at least one of the two configurable roles linked to it is switched OFF , its
range needs to be restricted. In order to guarantee syntactic correctness, this
rule also applies to non-configurable range connectors. For example, the AND
join associated with Sound premixing must be dropped if Sound Designer is
switched OFF .

When a function is switched OFF , the algorithm replaces the function with
an arc, while when it is set to OPT , it bypasses the function by adding an
XOR-split, an XOR-join and an arc in-between, as shown in Figure 10.

Before presenting the algorithm, we define some operators that allow us to
perform the transformations that are needed to individualize a C-iEPC, e.g.
removing a function or removing all the roles and objects of a function.

Definition 11 (iEPC Operators) Let iΓ = (E,F
N
, R

N
, O

N
, nm, C, A, L,

27



Spotting 
sessionDirector

Spotting 
session

Producer

Director

   A. Director

2:k

c

Spotting 
sessionDirector

Producer

2:k
Spotting 
sessionDirector

   A. Director

2:k

r1

r2

Spotting 
sessionDirector

   A. Director

Producer

3:k

Fig. 9. The range of role and object connectors must be aligned with possible changes
in the connector’s degree.

Progress 
update

x

x

Progress 
update

x

Design 
finished

Design 
finished

x

f
x

Design 
finished

Fig. 10. The individualization of a function configured to OFF or OPT .

F C
N
, RC

N
, OC

N
, CC ) be a C-iEPC. We define the following operators:

• Remove-Operator δ to delete the nodes in set X and their arcs:
δ(iΥ, X) is an iEPC such for all component sets Y δ in δ(iΥ, X) and all
component sets Y in iΥ, Y δ = Y \ X, except Aδ = A \ {(x, y) ∈ A | x ∈
X ∨ y ∈ X}, and for all functions ψδ that are components of δ(iΥ, X) and
all functions ψ that are components of iΥ, ψδ = ψ|dom(ψδ).

• Replace-Operator % to delete the nodes in set X and connect their preset
and postset elements:
%(iΥ, X) = δ(iΥ, X) except A% = Aδ ∪ {(a, b) ∈ N

CF
\ X × N

CF
\

X | ∃
x,y∈X,φ∈X+,φ:x

∗
↪→y [a ∈CF• x ∧ b ∈ y CF• ]}.

• Bypass-Operator ϕ to insert two XOR connectors to bypass the functions in
X:
Let C

X
= {xb | x ∈ X} ∪ {xa | x ∈ X} be the set of new control-flow

connectors that will be placed before and after the functions in X. Then
ϕ(iΥ, X) = iΥ except Cϕ = Cϕ

CF
∪C

R
∪C

IN
∪C

OUT
where Cϕ

CF
= C

CF
∪C

X
,

and Aϕ = (A \ (N × X ∪ X × N)) ∪ {(xb, x) | x ∈ X} ∪ {(x, xa) | x ∈
X} ∪ {(xb, xa) | x ∈ X} ∪ {(y, xb) | (y, x) ∈ A} ∪ {(xa, y) | (x, y) ∈ A}.
• Events-Operator Λ

E
to remove consecutive events and add new arcs:

Let X = {e ∈ E | CF• e ∩ E 6= ∅} be the set of events to be deleted (i.e.
those events that are preceded by an event) and A

X
= {(e, n) ∈ (E \X) ×

(N
CF
\X) | ∃e′∈X ∃φ∈(X∪{e})+ [(e′, n) ∈ A ∧ φ : e ↪→ e′]} be the set of arcs

28



to be added. Then Λ
E
(iΥ) = δ(iΥ, X) except AΛ

E = Aδ ∪ A
X

.
• Connectors-Operator Λ

C
to replace single-entry-single-exit (sese) control-

flow connectors with arcs:
Let X = {c ∈ C

CF
| | CF• c| = |c CF• | = 1} be the set of control-flow

connectors to be removed (i.e. those connectors that are sese), and let A
X

=
{(x, y) ∈ (N

CF
\ X) × (N

CF
\ X) | ∃φ∈(X∪{x,y})+ [φ : x ↪→ y]} be the set of

arcs to be added. Then Λ
C

(iΥ) = δ(iΥ, X) except AΛ
C = Aδ ∪ A

X
.

• Functions-Operator Λ
F

to add a new event for any two consecutive func-
tions:
Let E

X
= {ef,g |(f, g) ∈ A ∩ (F

N
× F

N
)} be the set of events to be

added and A
X

= {(f, ef,g) ∈ F
N
× E

X
} ∪ {(ef,g, g) ∈ E

X
× F

X
} be the

set of arcs to be added. Then Λ
F
(iΥ) = iΥ except EΛ

F = E ∪ E
X

and
AΛ

F = (A ∪ A
X

) \ (F
N
× F

N
).

• Corona-Operator Ω to identify the corona of functions, i.e. the roles, objects
and range connectors associated with functions:
Let X be the set of control-flow nodes for which a corona needs to be identi-
fied. Then Ω(iΥ, X) = ((•X∪X•)∪•(•X)∪ (X•)•)∩ ((C \C

CF
)∪R∪O). 3

We can now present the individualization algorithm for C-iEPCs.

Definition 12 (Configured C-iEPC) Let iΓ = (E,F
N
, R

N
, O

N
, nm, C, A,

L, F C
N
, RC

N
, OC

N
, CC ) be a C-iEPC and CiΓ be one of its configurations.

βiΓ(iΓ, CiΓ) defines a (C-)iEPC iΨ obtained as follows:

(1) Populate all component sets of iΨ1 with the respective sets of iΓ.
(2) Apply control-flow connector configuration and remove arcs not involving

SEQn:
iΨ2 = iΨ1, except
lT
C ,2

= lT
C ,1
⊕ {(c, C

CF
(c)) | c ∈ CC

CF
∧ C

CF
(c) ∈ CT} and 4

A2 = A1 \ ({(c, n) ∈ CS
CF
× c CF• | ∃

n′∈cCF• ,n′ 6=n
[C

CF
(c) = SEQn′ ]} ∪

{(n, c) ∈CF• c× CJ
CF
| ∃

n′∈CF• c,n′ 6=n
[C

CF
(c) = SEQn′ ]}).

(3) Remove nodes not on some path from an original start event to an original
end event:
Let N

X
= {n ∈ N

CF ,2
| @φ∈N+

CF ,es∈Es,ee∈Ee,φ:es↪→ee [n ∈ α(φ)]}. Then iΨ3 =

δ(δ(iΨ2, NX
),Ω(iΨ2, NX

)).
(4) Replace functions switched OFF with arcs and remove their coronas (this

may result in consecutive events to be removed):
Let F

X
= {f ∈ F

N ,3
|C

F
(f) = OFF}. Then

iΨ4 = δ(Λ
E
(%(iΨ3, FX

)),Ω(iΨ3, FX
)).

(5) Remove range connectors switched OFF , together with their roles and
objects:

3 If X ∩ F = ∅ then Ω(iΥ, X) = ∅.
4 ⊕ is the override operator.

29



Let C
X

= {c ∈ C4 \ CCF ,4
| πM(c) = OFF} and

RO
X

= (RN,4 ∪ON ,4
) ∩ (•C

X
∪ C

X
•). Then

iΨ5 = δ(iΨ4, CX
∪ RO

X
).

(6) Remove roles and objects switched OFF :
iΨ6 = δ(iΨ5, {ro ∈ RN,5

∪O
N ,5
| πM(ro) = OFF}).

(7) Remove range connectors no longer linked to roles and objects:
iΨ7 = δ(iΨ6, {c ∈ C6 \ CCF ,6

| degree6(c) = 0}).
(8) Replace all range connectors with a degree of one with arcs:

iΨ8 = %(iΨ7, {c ∈ C7 \ CCF ,7
| degree7(c) = 1}).

(9) Increment lower bound and decrement upper bound of configured range
connectors:
iΨ9 = iΨ8 except
lN
C ,9

= lN
C ,8
⊕

({(c, (lwb8(c) + πi(c), upb8(c)− πd(c))) | c ∈ C8 ∩ (CC \ CC
CF

) ∧
upb8(c) 6= k}

∪
{(c, (lwb8(c) + πi(c), degree8(c)− πd(c)))| x ∈ C8 ∩ (CC \ CC

CF
) ∧

lwb8(c) 6= k ∧
upb8(c) = k}).

(10) Align lower and upper bound of range connectors with potential change
in degree:
iΨ10 = iΨ9 except
lN
C ,10

= lN
C ,9
⊕

({(c, (degree9(c), upb9(c))) | c ∈ C9 \ CCF
∧

lwb9(c) > degree9(c) ∧
(upb9(c) ≤ degree9(c) ∨ upb9(c) = k)}

∪
{(c, (lwb9(c), degree9(c))) | c ∈ C9 \ CCF

∧
lwb9(c) ≤ degree9(c) ∧
upb9(c) > degree9(c) ∧
upb9(c) 6= k)}

∪
{(c, (degree9(c), degree9(c)))| c ∈ C9 \ CCF

∧
lwb9(c) > degree9(c) ∧
upb9(c) > degree9(c) ∧
upb9(c) 6= k)}).

(11) Apply configuration to remaining roles, objects and range connectors:
Let σ ∈ {C,R,O}. Then iΨ11 = iΨ10 except
lMσ,11 = lMσ,10⊕

{(x, πM (x)) | x ∈ N10 ∩
(dom(C

R
) ∪ dom(C

O
) ∪ (dom(C

C
) \ dom(C

C CF
)))},

lU11 = lU10 ⊕ {(x, πU (x)) | x ∈ N10 ∩ dom(C
IN

)}, and
nm11 = nm10 ⊕ {(ro, πS (ro)) | ro ∈ N10 ∩ (dom(C

R
) ∪ dom(C

O
))}.

(12) Replace functions without mandatory role assignment with arcs (this may

30



result in consecutive events to be removed):
Let F

X
= {f ∈ F

N ,11
| @

r∈R•f
[lM

R
(r) = MND ] ∧ @

c∈R•f
[lM

C
(c) = MND ]}.

Then iΨ12 = δ(Λ
E
(%(iΨ11, FX

)),Ω(iΨ11, FX
)).

(13) Replace sese control-flow connectors with arcs (this may result in consec-
utive functions to be interleaved with events and consecutive events to be
removed):
iΨ13 = Λ

E
(Λ

F
(Λ

C
(iΨ12))).

(14) Insert connectors to bypass optional functions:
βiΓ(iΓ, CiΓ) = iΨ14 = ϕ(iΨ13, {f ∈ F13 | CF (f) = OPT}).

Figure 11 shows how the individualization algorithm is applied to a fragment
of the audio editing process model of Figure 6, according to the configuration
described in Section 4.2 (editing a feature movie without music on tape).
The first model on the top-left corner shows the result of applying steps 2
and 3 of the algorithm. Since the XOR-split after function Progress update
was configured to the SEQn starting with event Changes not required, step
2 removes the arc linking the split with this event. In step 3 this event and
its outgoing arc to the XOR-join after event Spotting session are removed
from the model, as they are no longer on a path from the original start event
Shooting finished, to the original end event Editing finished (not shown in
the fragment). The second model illustrates the result of applying step 4 of
the algorithm, where functions Music design and Process update have been
replaced by an arc and their roles and objects have been removed altogether,
because these functions were switched OFF . This change does not generate
any sequence of events so no further operation is performed in this step. Step
5 does not produce any change in the model since no range connectors were
switched OFF .

The third model is the result of applying step 6. Here roles Composer and
Assistant Director and output objects Music cues, Effect cues and Atmos
cues, are removed from function Spotting session, while input objects Effect
cues and Atmos cues, and output objects Effect tracks and Atmos tracks are
removed from function Sound design. This is because the movie featured music
only, so the above roles and objects were not required and thus were switched
OFF . Step 7 does not produce any change in the model since after step 6 all
range connectors are still linked to at least one role or object. The next model is
the result of applying steps 8 and 9. Step 8 replaces each range connector that
remained with a degree of one after step 6, with one arc. Step 9 increments
the lower bound of the OR-join (1 : k) connector for the roles of function
Sound design from 1 to k, because both roles were required to partake in this
function. For convenience, this range is thus shown as an AND. Similarly, the
role connector 2 : k of function Spotting session is shown as an AND, given
that k : k is the only possible range after removing Assistant Director. Step
10 does not change the model since there is no misalignment in the range of
the remaining range connectors after steps 6 and 9.

31



Shooting 
finished

Spotting 
session

x

Composer

S. Designer

x

Spotting 
finished

Sound
design

Dialog tracks FX tracks Atmos tracks

Music
design

Design 
finishedV

V

V

V

V

Atmos cuesEffect cues

Atmos cuesEffect cuesDialog cuesMusic cues

Composer

S. Designer

Producer

Director

Director

Producer

Dialog cuesMusic cues
A. Director

V

2:k

Picture cut

Picture cut

Music notes Sound notes

V

Sound notes Picture cut

Music notes

Temp music file

Temp sound file

Temp sound fileTemp music file

Music tracks
S. Designer

V

Editor

Composer

Progress 
update

V

V

V

Shooting 
finished

Spotting 
session

x

x

Spotting 
finished

Sound
design

Dialog tracks FX tracks Atmos tracks

Design 
finished

V

V

V

Atmos cuesEffect cues

Atmos cuesEffect cuesDialog cues

Composer

S. Designer

Producer

Director

Dialog cuesMusic cues
A. Director

V

2:k

Picture cut

Sound notes Picture cut

Temp sound file

S. Designer

V

Editor

V

V

Shooting 
finished

Spotting 
session

x

x

Spotting 
finished

Sound
design

Dialog tracks

Design 
finished

V

V

V

Dialog cues

S. Designer

Producer

Director

Dialog cues

V

2:k

Picture cut

Picture cut

S. Designer

V

Editor

V

V

Shooting 
finished

Spotting 
session

x

x

Spotting 
finished

Sound
design

Dialog tracks

Design 
finished

Dialog cues

S. Designer

Producer

Director Dialog cues

Picture cut

Picture cut

S. Designer

Editor

V

V

V

11

Shooting 
finished

Spotting 
session

x

x

Spotting 
finished

Sound
design

Dialog tracks

Design 
finished

S. Designer

Producer

Director

S. Designer

V

V

V

V

Picture cut 
(Tape)

Picture cut 
(Tape)

Dialog cues 
(Paper)

Dialog cues 
(Paper)

2, 3

4

13

6

8, 9

V

Shooting 
finished

Spotting 
session

Spotting 
finished

Sound
design

Dialog tracks

Design 
finished

S. Designer

Producer

Director

S. Designer

Editor

V

V

V

V

Picture cut 
(Tape)

Picture cut 
(Tape)

Dialog cues 
(Paper)

Dialog cues 
(Paper)

Changes
not required

Changes
not required

Changes
not required

Changes
not required

Changes
not required

Editor
(Sound Editor)

Fig. 11. The application of the individualization algorithm to a fragment of the
audio editing process model of Figure 6.

The fifth model is the result of applying step 11, where all roles and objects
not switched OFF are assigned their configuration values. Role Producer for
Spotting session is left as it is since it is not specialized whereas role Editor
for Sound design is set to Sound Editor. All occurrences of object Picture cut
are set to Tape since the project is shot on tape, and all occurrences of object
Dialog cues are set to Paper. Moreover, all configurable roles and objects are

32



left as MND . Finally, the last model is the result of applying step 13, where
the two sese control-flow XOR connectors are replaced by arcs. As a result, the
sequence of events Design finished and Changes not required is produced. This
leads to event Changes not required being removed as well. We can observe
that this model is a fragment of the individualized model shown in Figure 7.

The definition of syntactical correctness also applies to C-iEPCs. A C-iEPC is
syntactically correct if and only if its iEPC component is syntactically correct.
The following theorem states that the (C-)iEPC βiΓ(iΓ, CiΓ) resulting from the
application of the individualization algorithm is syntactically correct if the
initial C-iEPC is syntactically correct.

Theorem 13 Let iΓ be a syntactically correct C-iEPC and CiΓ be one of its
configurations. Then βiΓ(iΓ, CiΓ) is a syntactically correct (C-)iEPC.

PROOF. See Appendix.

6 Questionnaire-Based Approach and Tool Support

The extension of process configuration to other process perspectives beyond
the control-flow may induce an overhead in the process modeling lifecycle.
For example, as shown in Section 4.2, there can be interdependencies among
different process perspectives dictated by the application domain and by the
structural requirements of the adopted notation. If, on the one hand, structural
requirements are automatically fulfilled by the individualization algorithm, on
the other hand domain requirements may prevent users from freely setting
configurable nodes.

To cope with this, we propose to configure C-iEPC process models via a
questionnaire-based approach, which we presented in previous work [22,25].
The idea is to encode domain requirements with constraints over domain
choices, in order to abstract from the specific process modeling notation
adopted. These choices capture the variability of the application domain (i.e.
all the available domain options) and form the answers to a set of questions.
For example, a question for audio post-production could be “What audio
elements will be used in the project?” and the answers could be “Music”, “Di-
alog”, “Effect” and “Atmos”. Specifically, each choice is encoded by a domain
fact, which is a boolean variable that can be set to true or false, while domain
constraints are encoded as boolean conditions over the values of domain facts.

Questions and their domain facts are organized in a questionnaire model. The
link between configurable process models and questionnaire models is achieved
by mapping each process variant to a condition over the values of domain facts,

33



such that when the condition holds, the specific variant is selected in the pro-
cess model. In this way process configuration can be achieved by answering
a questionnaire expressed in natural language, thus masking the complexity
of the underlying process model to subject-matter experts. For example, an-
swering the above question only with “Dialog” would imply the removal of
all those tasks, objects and roles that relate to the editing of music, effects
and atmos, thus obtaining a model similar to the one shown in Figure 7. An
extract of the questionnaire model for the process model of Figure 5.2 is shown
in Figure 12, where each question is associated with a number of domain facts
and identified by a unique identifier.

Fig. 12. An extract of the questionnaire model for configuring the audio editing
process model.

A questionnaire model also allows one to specify the order dependencies in
which questions should be posed to users (indicated by an arrow between
questions in Figure 12). In this way the most discriminating questions can be
posed first, so as to restrict the answer to subsequent questions on the basis
of the domain constraints. For instance, since object Sound files (encoded by
fact f49 in q20) and role Sound Designer (encoded by f23 in q14, f30 in q16

and f52 in q18) are not available if a project does not feature any of Dialog,
Effect and Atmos (f8, f9 and f10 in q9), we define the domain constraint
¬(f8 ∨ f9 ∨ f10)⇒ ¬(f49 ∨ f30 ∨ f23 ∨ f52). Then we set q9 to be asked before
q14, q16, q18 and q20, as shown in Figure 12. In this way, if we answer q9 only
with “Music” (f7), the answer to q14, q16, q18 and q20 will be automatically
restricted (e.g. “Sound Designer” will no longer be available in q18). A question
whose answer has been fully determined by answering a preceding question,
is no longer relevant and can thus be skipped. This is the case of q18 where
at least one role between “Composer” (f35) and “Sound Designer” (f52) needs

34



to be chosen to partake in the Final mixing (f35 ∨ f52). After answering q9

only with “Music”, the only possible answer to q18 will be f35 = true and
f52 = false.

For an in-depth description of the questionnaire-based approach and its link
to configurable process models, the reader is referred to [22,25].

The questionnaire-based approach was implemented in an open-source toolset
named Synergia [24]. Synergia assists domain experts and process modelers
in creating questionnaire models and configurable process models, in mapping
questionnaire models to process models, in answering interactive question-
naires and in individualizing process models according to the answers given.
In Synergia configurable process models can be defined in C-EPC and C-
YAWL [18] (the latter being the configurable extension of the YAWL nota-
tion). Figure 13 shows the various tools that compose Synergia and how they
interact with each other.

C-Mapping
(.cmap)

C-(i)EPC model
(.epml)

Configured
C-(i)EPC (.epml)

(i)EPC
(.epml)

Questionnaire 
Model (.qml)

Configured
C-YAWL (.yawl)

YAWL Engine 
spec. (.yawl)

C-YAWL model
(.yawl)

Quaestio

Mapper Process
Configurator

Process
Individualizer

C-(i)EPC Designer

D. Configuration 
(.dcl)

Questionnaire
Designer

Fig. 13. Synergia – tools interaction map.

The first tool of Synergia is Questionnaire Designer, which allows modelers to
visually create and validate questionnaire models. For example, this tool can
identify circular dependencies among questions that would lead to deadlocks
when answering the questionnaire. The generated questionnaire models can
then be imported into Quaestio to be answered. Quaestio is an interactive
questionnaire tool. It poses questions to users in an order consistent with the
order dependencies established in the questionnaire model, and prevents users
from entering incorrect answers that would violate the domain constraints.
The dynamic checking of the domain constraints is achieved by using a SAT
solver that relies on an internal representation of the constraints as Shared
Binary Decision Diagrams.

In order to use the answers given to a questionnaire (i.e. a domain configura-
tion) to configure a process model, users first need to define a mapping between
the questionnaire model and the variation points in the process model. This
can be done in the Mapper tool. A mapping can then be imported in the Pro-

35



cess Configurator tool, along with the respective configurable process model
and domain configuration, and used to configure the process model.

The last step of the questionnaire-based approach is the individualization of
a configured process model. This is done via the Process Individualizer tool,
which produces a syntactically correct EPC or YAWL model, depending on
the language used to describe the configurable process model.

In the course of this research, we have extended the Synergia toolset to cater
for the questionnaire-based configuration of C-iEPC process models. Specif-
ically, we have extended the XML serialization format for EPCs (EPML
1.2 [27]) to provide a serialization for roles, objects, range connectors and
their variants, as well as for hierarchy models. The new version, namely EPML
2.0 [28], also provides a more concise serialization of some existing EPC ele-
ments.

Moreover, we have developed a new tool, namely C-iEPC Designer, to allows
modelers to visually create C-iEPC models in EPML 2.0. This tool has been
realized by extending an existing editor for EPC models (EPC Tools [10]).
A screenshot of C-iEPC Designer showing the configurable model for audio
post-production is depicted in Figure 14. Among other features, this tool offers
a Properties view to specify the attributes of a node, such as the range of a
connector or the optionality of a role. Furthermore, the Properties view can be
used to configure a C-iEPC model for debugging purposes. This can be done
by assigning a value to each configurable dimension of a configurable node.
For example, Figure 14 shows the Properties view for the configurable range
split associated with the output objects of function Spotting session, where
the range has been restricted to the single node Music cues. The tool enforces
the configuration requirements specified in Definition 10. So, for example, it
is not possible to restrict a mandatory role to optional or to restrict a range
connector to a node which is not in its preset or postset. Accordingly, the
range split in Figure 14 can only be restricted to one of Music cues, Dialog
cues, Effect cues and Atmos cues, as shown by the drop-down menu in the
Properties view (property ‘Goto’).

The Mapper has been extended to import C-iEPC models defined in EPML
2.0. Upon import, this tool identifies the variation points of the C-iEPC model,
so that these variation points can be mapped to domain choices from a ques-
tionnaire model. The Process Configurator has also been extended to be able
to configure a C-iEPC model (in EPML 2.0) according to the answers of a
questionnaire while the βiΓ algorithm has been implemented in the Process
Individualizer, to commit the required model transformations and generate a
syntactically correct iEPC.

Synergia and the files for the working example can be downloaded from the

36



Fig. 14. C-iEPC Designer – showing the model in Figure 6.

Process Configuration web-site. 5

7 Post-Production Case Study

The working example used in this paper is a simplified version of a refer-
ence process model for post-production that we created in collaboration with
members of the AFTRS, over a period of nine months. The AFTRS is an Aus-
tralian training and research facility for Graduate Diplomas, Master courses
and short courses in Film and TV production. This school has engaged, with
other stakeholders, in an initiative to capture business process models in the
film industry. However, it was quickly noted that process models in this indus-
try have a high degree of variability. Basically, each production project works
differently from the others.

In this case study, we focused specifically on process models for the post-
production phase. Post-production starts after the shooting phase and deals
with the design and edit of the picture, music and sound of a screen project.

5 www.processconfiguration.com

37



Creativity is a distinguishing feature of this domain: a single decision made
by the director, such as that of not having any music, can radically change
the whole post-production. This necessarily leads to a great deal of variability.
For this reason, the domain in question was deemed suitable to evaluate our
framework.

A number of configurable process models were defined to describe the overall
post-production phase, which comprises picture and audio post-production,
and its variations. In this phase, we received input from a producer and two
sound editors. Given the involvement of the sound editors, we were also able
to capture detailed information regarding roles and business objects for the
audio post-production process. For this reason we used the C-iEPC notation to
model this process, while we used the C-EPC notation to model the process
for picture post-production. The complete reference process model consists
of 792 process elements (spread across different diagrams), of which 183 are
variation points (23% of the total), each allowing a number of process variants
for a total of around 310,000 valid individualizations.

For the construction of this model, we first established the control-flow. Then,
we identified the objects used and produced by each task (examples are the film
roll, the dialogue tracks). Thirdly, we assigned to each task the human roles
that have to perform them (the director, the sound designer, etc.). Afterwards,
we identified variation points in the process model, in terms of which tasks,
objects and roles can vary.

Having defined the process model for post-production, we identified a set of
domain facts to capture the choices that need to be taken to configure the
reference model, and we grouped them into suitable questions. Firstly, we de-
fined one fact for each factor that yields a high number of process variations.
Such factors, like the budget level, correspond to domain decisions which are
usually not captured in the process model. Secondly, we encoded each fine-
grained decision with one fact. Such decisions have little or no impact on the
rest of the system. For example, the type of editing suite only affects the
medium format, while both the type of suite and the format are determined
by the available budget. Thirdly, we defined a system of constraints to encode
the interplay among these facts, and we used the Questionnaire Designer to
check the satisfiability. With the help of the tool, we also realized that some
fine-grained facts were redundant, as the variants they captured could be de-
termined by the configuration of other facts. This is the case with the Telecine
suite, which is a piece of equipment that is only required in particular situa-
tions, such as when the shooting is on film and the release is on tape. Thus,
it was sufficient to encode all the shooting and release formats, to indirectly
capture the Telecine options.

The complete questionnaire model consists of three sub-questionnaires (pic-

38



ture editing, sound editing and screen composition), and an introductory ques-
tionnaire linking them together, for a total of 53 questions and 162 facts.

The questionnaire was used to configure the reference process model to the
requirements of student projects at the AFTRS. This showed that depending
on the context, a customized process model can be generated by domain ex-
perts in a straightforward manner. The generated models can then be used by
the members of the school to guide the planning and the actual execution of
a screen project. Also, they can be used in the learning environment to teach
students who aspire to become editors, sound designers and screen composers
about the stages of the post-production process. Furthermore, they can be
useful for production and direction students to clearly understand the rela-
tions among the various drivers behind post-production, such as budget and
schedule. For these reasons, the models produced during this case study and
the Synergia toolset are planned to be introduced in the AFTRS syllabus of
production and editing courses.

In conclusion, this experience demonstrated that the C-iEPC notation is able
to capture complex variability requirements in a process involving roles, busi-
ness objects and their associations with tasks.

8 Summary and Discussion

This paper addressed a major shortcoming of existing configurable process
modeling notations, namely their lack of support for the resource and ob-
ject perspectives. The main contribution is a notation for configurable process
modeling, namely C-iEPCs, that extends the EPC notation with mechanisms
for representing a range of variations along multiple perspectives. While em-
bodied in the EPC notation, the proposed extensions are defined in an abstract
manner, so that they can be transposed to other notations, such as BPMN
and UML ADs.

The proposal was applied to capture a comprehensive reference process model
for audio post-production as part of a case study conducted with domain
experts from the AFTRS. The validation was supported by a toolset, namely
Synergia, that allows designers to capture and to individualize configurable
process models using the algorithm presented in this paper.

The research highlighted the intricacies that configurable process modeling
across multiple perspectives brings (e.g. removal of a role may entail the re-
moval of a function). To overcome this issue, we proposed to configure process
models via a questionnaire-driven approach that we presented in previous
work. Specifically, we captured dependencies between variation points via do-

39



main constraints encoded in a questionnaire model. Analysts configure the
process model by answering this questionnaire. In this way, we guaranteed
that the individualized models are domain-compliant. We also provided an
individualization algorithm for C-iEPC process models and proved that the
syntactic correctness of the individualized iEPCs is guaranteed by this algo-
rithm.

On the other hand, the proposed approach does not prevent users from creat-
ing inconsistencies between object-flow dependencies and control-flow depen-
dencies that may lead to behavioral issues, e.g. an object-flow dependency that
contradicts a control-flow dependency. As a result, the behavioral correctness
of an iEPC is not guaranteed during configuration. In [26], we defined a verifi-
cation approach for process models including object-flow dependencies, which
is based on reachability graph analysis. This approach works in the general
case but is exponential in computational cost. To avoid the need for verifying
each possible individualization beforehand, in [1] we devised a technique for
individualizing configurable process models in a correctness-preserving way.
Specifically, this technique allows us to automatically infer a set of process con-
straints from the control-flow of a configurable process model that, if satisfied
during configuration, guarantee the syntactic correctness of the individualized
model. We proved that for free-choice nets [14] (a large class of process mod-
els), these constraints also ensure that behavioral correctness is preserved. In
future work we plan to extend these results to cover object-flow dependencies,
by investigating which object-flow dependencies can be mapped to free choice
constructs.

Another direction for future work is to investigate techniques for automating
the construction of configurable process models. A possible starting point is
to collect a number of related process models from different process design
projects, and to merge them together. Since process models are usually rep-
resented as graphs, algorithms from the field of graph matching could prove
beneficial [9]. These algorithms could be employed to identify a common de-
nominator among all models, and variants with respect to such a common
denominator. These variants could then be captured as configurable nodes on
top of this common denominator. Another option to automate the construc-
tion of configurable process models would be to use process mining techniques.
The idea of process mining is to take event logs related to a business process
and to derive a process model that matches the event log in question. In [20]
the authors discuss extensions to existing process mining techniques that allow
one to derive a C-EPC from a regular EPC and one or several logs. Further
research is required to extend these techniques beyond the control-flow per-
spective and to validate their applicability in practice.

Acknowledgments. We thank Florian Gottschalk for his input to a previ-
ous version of this paper and the AFTRS team for their contribution to the

40



design of the reference model. This research is funded by the ARC Discov-
ery Project “Next Generation Reference Process Models” and the Estonian
Centre of Excellence in Computer Science.

References

[1] W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A.H.M. ter Hofstede, M. La
Rosa, and J. Mendling. Preserving Correctness During Business Process Model
Configuration. Formal Aspects of Computing, 2009.

[2] W.M.P. van der Aalst and K. M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002.

[3] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

[4] D.S. Batory and B.J. Geraci. Composition Validation and Subjectivity in
GenVoca Generators. IEEE Transactions on Software Engineering, 23(2):67–
84, 1997.

[5] J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka.
Configurative Process Modeling – Outlining an Approach to increased Business
Process Model Usability. In M. Khosrow-Pour, editor, Proceedings of the
14th Information Resources Management Association International Conference,
pages 615–619. IRM Press, 2004.

[6] J. Becker, P. Delfmann, and R. Knackstedt. Adaptive Reference Modeling:
Integrating Configurative and Generic Adaptation Techniques for Information
Models. In J. Becker and P. Delfmann, editors, Reference Modeling, pages 27–
58. Springer, 2007.

[7] B. Benneth. Kiss or Kill. Feature movie. Australia, 1997.

[8] E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement
of Authorization Constraints in Workflow Management Systems. ACM
Transactions on Information and System Security, 2(1):65–104, 1999.

[9] H. Bunke. Recent Developments in Graph Matching. In A. Sanfeliu,
J.J. Villanueva, M. Vanrell, R. Alquezar, A.K. Jain, and J. Kittler, editors,
Proceedings of the 15th International Conference on Pattern Recognition
(ICPR’00), volume 2, pages 117–124. IEEE Computer Society, 2000.

[10] N. Cuntz and E. Kindler. EPC Tools. Home Page. http://wwwcs.
uni-paderborn.de/cs/kindler/research/EPCTools. Accessed: September
2009.

[11] T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Upper Saddle River, 1997.

41



[12] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. In R. Glück and M.R.
Lowry, editors, Proceedings of the 4th International Conference on Generative
Programming and Component Engineering, volume 3676, pages 422–437.
Springer, 2005.

[13] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

[14] J. Desel and J. Esparza. Free Choice Petri Nets. Vol. 40 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 1995.

[15] G. Engels, A. Förster, R. Heckel, and S. Thöne. Process Modeling Using UML.
In M. Dumas, A.H.M. ter Hofstede, and W.M.P. van der Aalst, editors, Process
Aware Information Systems: Bridging People and Software Through Process
Technology, pages 85–118. Wiley, 2005.

[16] D.F. Ferraiolo, R.S. Sandhu, S.I. Gavrila, D.R. Kuhn, and R. Chandramouli.
Proposed NIST standard for role-based access control. Information and System
Security, 4(3):224–274, 2001.

[17] F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Configurable
Process Models – A Foundational Approach. In J. Becker and P. Delfmann,
editors, Reference Modeling, pages 59–78. Springer, 2007.

[18] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La
Rosa. Configurable Workflow Models. International Journal of Cooperative
Information Systems, 17(2):177–221, 2008.

[19] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts,
Architecture, and Implementation. International Thomson Computer Press,
1996.

[20] M.H. Jansen-Vullers, W.M.P. van der Aalst, and M. Rosemann. Mining
Configurable Enterprise Information Systems. Data & Knowledge Engineering,
56(3):195–244, 2006.

[21] E. Kavakli and P. Loucopoulos. Experiences with goal-oriented modelling of
organisational change. IEEE Transactions on Systems, Man and Cybernetics –
Part C, 36(2):221–235, 2006.

[22] M. La Rosa, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede.
Questionnaire-based Variability Modeling for System Configuration. Software
and Systems Modeling, 8(2), 2009.

[23] M. La Rosa, M. Dumas, A.H.M. ter Hofstede, J. Mendling, and F. Gottschalk.
Beyond Control-Flow: Extending Business Process Configuration to Roles and
Objects. In Q. Li, S. Spaccapietra, E. Yu, and A. Olivé, editors, Proceedings
of the 27th International Conference on Conceptual Modeling (ER’08), volume
5231 of Lecture Notes in Computer Science, pages 199–215. Springer, 2008.

42



[24] M. La Rosa, F. Gottschalk. Synergia – Comprehensive Tool Support for
Configurable Process Models. In A.K. Alves de Medeiros and B. Weber,
editors, Proceedings of the BPM’09 Demonstration Track, volume 489 of CEUR-
WS, CEUR, 2009. http://ftp.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-489

[25] M. La Rosa, F. Gottschalk, M. Dumas, and W.M.P. van der Aalst. Linking
Domain Models and Process Models for Reference Model Configuration.
In A.H.M. ter Hofstede, B. Benatallah, and H.-Y. Paik, editors, BPM’07
Workshops, volume 4928 of Lecture Notes in Computer Science, pages 417–430.
Springer, 2008.

[26] J. Mendling, M. La Rosa, and A.H.M. ter Hofstede. Correctness of Business
Process Models with Roles and Objects. QUT ePrints 13172. Queensland
University of Technology, Brisbane, Australia. 2008.

[27] J. Mendling and M. Nüttgens. EPC Markup Language (EPML) - An
XML-Based Interchange Format for Event-Driven Process Chains (EPC).
Information Systems and e-Business Management, 4(3):245–263, 2006.

[28] J. Mendling, M. Nüttgens, and M. La Rosa. EPML Schema 2.0. http://www.
processconfiguration.com/schemas/EPML_2.0.xsd. Accessed: September
2009.

[29] C. Menzel and R.J. Mayer. The IDEF Family of Languages. Handbook on
Architectures of Information Systems, Part one:215–249, 1998.

[30] OASIS. Web Services Business Process Execution Language (WS-BPEL),
Version 2.0. OASIS Standard. OASIS, 2007. http://docs.oasis-open.org/
wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf. Accessed: September 2009.

[31] Object Management Group. Business Process Modeling Notation (BPMN),
Version 1.2. OMG, 2009. http://www.omg.org/spec/BPMN/1.2. Accessed:
September 2009.

[32] K. Pohl, G. Böckle, and F. van der Linden. Software Product-line Engineering
– Foundations, Principles and Techniques. Springer, 2005.

[33] M. Razavian and R. Khosravi. Modeling Variability in Business Process Models
Using UML. In S. Latifi, editor, Proceedings of the 5th International Conference
on Information Technology: New Generations (ITGN’08), pages 82–87. IEEE
Computer Society, 2008.

[34] M. Reichert and P. Dadam. ADEPTflex : Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

[35] H.A. Reijers, R.S. Mans, and R.A. van der Toorn. Improved Model Management
with Aggregated Business Process Models. Data & Knowledge Engineering,
68(2):221–243, 2009.

43



[36] I. Reinhartz-Berger, P. Soffer, and A. Sturm. A Domain Engineering
Approach to Specifying and Applying Reference Models. In J. Desel and
U. Frank, editors, Workshop Enterprise Modelling and Information Systems
Architectures, volume 75 of Lecture Notes in Informatics, pages 50–63. GI, 2005.

[37] M. Rosemann and W. M. P van der Aalst. A Configurable Reference Modelling
Language. Information Systems, 32(1):1–23, 2007.

[38] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond.
Workflow Resource Patterns: Identification, Representation and Tool Support.
In O. Pastor and J. Falcão e Cunha, editors, Proceedings of the 17th
International Conference on Advanced Information Systems Engineering
(CAiSE’05), volume 3520 of Lecture Notes in Computer Science, pages 216–
232. Springer, 2005.

[39] A.-W. Scheer. ARIS – Business Process Frameworks. Springer, 3rd edition,
1999.

[40] A. Schnieders and F. Puhlmann. Variability Mechanisms in E-Business Process
Families. In W. Abramowicz and H.C. Mayr, editors, Proceedings of the 9th
International Conference on Business Information Systems (BIS’06), volume 85
of Lecture Notes in Informatics, pages 583–601. GI, 2006.

[41] S. Stephens. The Supply Chain Council and the Supply Chain Operations
Reference Model. Supply Chain Management – An International Journal,
1(1):9–13, 2001.

Appendix

In order to prove Theorem 13 from Section 5.2, we first define the following
abbreviations:

• ee iEPC, as an iEPC which may have consecutive events (thus relaxing the
Arc relation of Definition 3),
• ff iEPC, as an iEPC which may have consecutive functions (thus relaxing

the Arc relation of Definition 3),
• dn iEPC, as an iEPC which may have control-flow nodes not on some path

from a start event to an end event (thus relaxing requirement 1 of Defini-
tion 5),
• ss(c) iEPC, as an iEPC which may have sese control-flow connectors (thus

relaxing requirement 5a of Definition 5),
• ss(r) iEPC, as an iEPC which may have sese role connectors (thus relaxing

requirement 5b of Definition 5),
• ss(i) iEPC, as an iEPC which may have sese input connectors (thus relaxing

requirement 5c of Definition 5),
• ss(o) iEPC, as an iEPC which may have sese output connectors (thus re-

laxing requirement 5d of Definition 5),

44



• dc iEPC, as an iEPC which may have coronas that are not connected to
functions (thus relaxing requirements 5b, 5c, 5d, 6 and 7 of Definition 5).
• nmr iEPC, as an iEPC which may have functions without mandatory role

assignment (thus relaxing requirement 8 of Definition 5).
• mrb iEPC, as an iEPC which may have misaligned range connector bounds

(thus relaxing requirement 10 of Definition 5).

We now list some properties of the operators of Definition 11 which are used
in the proof of Theorem 13. Given an operator op and one of the above abbre-
viations abbr , with abbr we indicate that the property of the iEPC abbr refers
to, remains unchanged after applying op. For example, given an ff iEPC, af-
ter applying op, with ff we indicate that the iEPC produced by op does not
generate new consecutive functions.

Proposition 14 (Operator Properties) Let iΥ be a syntactically correct
ee-ff -ss(c) iEPC and let X ⊂ N

CF
be a set of control-flow nodes. The following

properties hold for the operators in Definition 11:

(a) if X ⊂ F , then %(iΥ, X) is a syntactically correct ee-ff -ss(c) iEPC. 6

(b) if X = {n ∈ N
CF
| @φ∈N+

CF ,es∈Es,ee∈Ee,φ:es↪→ee [n ∈ α(φ)]}, i.e. if X is the

set of all control-flow nodes not on a path from a start event to an end
event, then:
(i) %(iΥ, X) is a syntactically correct ee-ff -ss(c)-dc iEPC.

(ii) %(iΥ, X) = δ(iΥ, X).
(c) if X ⊂ F , then ϕ(iΥ, X) is a syntactically correct ee-ff -ss(c) iEPC.
(d) Λ

E
(iΥ) is a syntactically correct ff -ss(c) iEPC.

(e) Λ
C

(iΥ) is a syntactically correct ee-ff iEPC.
(f) Λ

F
(iΥ) is a syntactically correct ee-ss(c) iEPC.

(g) let iΥ′ = δ(Λ
E
(%(iΥ, X)),Ω(iΥ, X)):

(i) if X ⊂ F , then iΥ′ is a syntactically correct ff -ss(c) iEPC.
(ii) if iΥ is also nmr and X = {f ∈ F | @

r∈R•f
[lM

R
(r) = MND ] ∧

@
c∈R•f

[lM
C

(c) = MND ]}, i.e. if X is the set of all functions with-

out mandatory role assignment, then iΥ′ is a syntactically correct
ff -ss(c) iEPC.

(iii) if iΥ is also dn and X is the set of all control-flow nodes not on some
path from a start event to an end event, then iΥ′ is a syntactically
correct ff -ss(c) iEPC.

PROOF.

(a) New consecutive functions can only be generated by removing an event or

6 New sese control-flow connectors may be generated after merging sibling branches,
i.e. branches sharing the starting split and the completing join, if these branches
consist of removed functions only.

45



a control-flow connector between two functions. However X contains func-
tions only. Proving that the requirements of Definition 5 are not violated,
apart from creating new sese control-flow connectors, is straightforward.

(b.i) New consecutive functions can only be generated by removing an event or
control-flow connector that is between two functions. We show that such
a node cannot be removed. Let f1, f2 ∈ F be two functions such that f1 is
on a path from a start event es, f2 is on a path to an end event ee, and
there exists a node n ∈ N

CF
\F such that f1 ∈

CF• n and f2 ∈ n
CF• . Assume

n ∈ X. Then n is on a path from es to ee (Contradiction). Hence, n 6∈ X.
The case of consecutive events is similar. Proving that the requirements
of Definition 5 are not violated, apart from creating new sese control-flow
connectors and disconnected coronas, is straightforward.

(b.ii) Let AX = {(a, b) ∈ N
CF
\X ×N

CF
\X | ∃

x,y∈X,φ∈X+,φ:x
∗
↪→y [a ∈CF• x ∧ b ∈

y
CF• ]} be the set of arcs added by %. Assume AX 6= ∅. Let (α, β) ∈ AX ,

then for some x, y ∈ X with x
∗
↪→ y, α ∈CF• x and β ∈ y CF• . As α, β 6∈ X,

α is on a path from a start event es and β is on a path to an end event ee.
So x and y are on a path from es to ee (Contradiction). Hence, AX = ∅.

(c) ϕ(iΥ, X) does not remove nodes and does not add events or functions.
Hence, new consecutive events and new consecutive functions cannot be
generated. Also, ϕ(iΥ, X) does not remove arcs. Hence, new sese control-
flow connectors cannot be generated. Proving that the remaining require-
ments of Definition 5 are not violated is straightforward.

(d-f) Straightforward.
(g.i) %(iΥ, X) is a syntactically correct ee-ff -ss(c) iEPC (Proposition 14a).

Hence, Λ
E
(%(iΥ, X)) is a syntactically correct ff -ss(c) iEPC (Proposi-

tion 14d). Removing the corona of functions that are also removed does
not affect syntactic correctness. Thus, δ(Λ

E
(%(iΥ, X)),Ω(iΥ, X)) is a

syntactically correct ff -ss(c) iEPC.
(g.ii) Similar to g.i but all functions without mandatory role assignment are

removed.
(g.iii) %(iΥ, X) is a syntactically correct ee-ff -ss(c)-dc iEPC (Proposi-

tion 14b.i). Hence, Λ
E
(%(iΥ, X)) is a syntactically correct ff -ss(c)-

dc iEPC (Proposition 14d). Removing the corona of functions
that are also removed does not affect syntactic correctness. Thus,
δ(Λ

E
(%(iΥ, X)),Ω(iΥ, X)) is a syntactically correct ff -ss(c) iEPC.

We recall Theorem 13 and prove it.

Theorem 13 Let iΓ be a syntactically correct C-iEPC and CiΓ be one of its
configurations. Then βiΓ(iΓ, CiΓ) is a syntactically correct (C-)iEPC.

PROOF. We show that the properties of Definition 5 hold for βiΓ(iΓ, CiΓ) by
discussing the different steps of the algorithm.

46



(1) iΨ1 is a syntactically correct (C-)iEPC.
(2) Changing connector labels does not affect syntactic correctness. Removing

non-SEQn arcs may result in nodes that are no longer on a path from an
original start event to an original end event, and in sese control-flow
connectors. Hence, iΨ2 is a syntactically correct dn-ss(c) (C-)iEPC.

(3) Observe iΨ3 = δ(δ(iΨ2, NX
),Ω(iΨ2, NX

)) = δ(%(iΨ2, NX
),Ω(iΨ2, NX

))
(Proposition 14b.ii) = δ(Λ

E
(%(iΨ2, NX

)),Ω(iΨ2, NX
)) as %(iΨ2, NX

)
does not have consecutive events. Hence, as iΨ2 does not have
consecutive functions, iΨ3 is a syntactically correct ss(c) (C-)iEPC
(Proposition 14g.iii).

(4) iΨ4 is still a syntactically correct ss(c) (C-)iEPC (Proposition 14g.i).
(5) This step may create functions without any mandatory role assignment.

Thus iΨ5 is a syntactically correct ss(c)-nmr (C-)iEPC.
(6) This step may create syntactic issues with range connector cardinality,

mandatory role assignment of functions, and range connector bounds.
Hence, iΨ6 is a syntactically correct ss(c, r, i, o)-nmr-mrb (C-)iEPC.

(7-8) Step 7 resolves those cases related to ss(r, i, o) where the degree of the
range connector is zero, while step 8 resolves those cases where the degree
is one. Hence, iΨ8 is a syntactically correct ss(c)-nmr-mrb (C-)iEPC.

(9) Misalignment issues with upper bounds are resolved if, after the decre-
ment, the new upper bound is equal to or below the degree of a range con-
nector. However, misalignments of lower bounds are not resolved. Hence,
iΨ9 is still a syntactically correct ss(c)-nmr-mrb (C-)iEPC.

(10) All range bound misalignments are resolved. Hence, iΨ10 is a syntactically
correct ss(c)-nmr (C-)iEPC.

(11) Changing role, object and range connector labels does not lead to new syn-
tactic violations. However, some functions that did not have a mandatory
role assignment before, may now have at least one. Hence, iΨ10 is still a
syntactically correct ss(c)-nmr (C-)iEPC.

(12) iΨ12 is a syntactically correct ss(c) (C-)iEPC (Proposition 14g.ii).
(13) Λ

C
(iΨ12) is a syntactically correct ee-ff (C-)iEPC (Proposition 14e).

Hence, Λ
F
(Λ

C
(iΨ12)) is a syntactically correct ee (C-)iEPC (Proposi-

tion 14f). Thus, Λ
E
(Λ

F
(Λ

C
(iΨ12))) is a syntactically correct (C-)iEPC

(Proposition 14d).
(14) iΨ14 is a syntactically correct (C-)iEPC (Proposition 14c).

47


