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Structural complexity emerges from all systems that display morpholog-
ical  organization.  Structural  complexity  for  an  intricate  tangle  of  fila-
ments is measured by the average crossing number of the tangle. Direct
relationships between total length, energy, and structural complexity of
a  tangle  are  established.  These  results  are  based on elementary consid-
erations that suggest a wide range of applications from magnetic energy
estimates to neural and social networks and financial markets analysis. 

1. Introduction

Structural organization is just one way to identify universal properties
and whatever hidden mechanisms lie under this organization. Uncov-
ering possible  relations  between generic  properties  of  structural  com-
plexity and physical information is clearly of great importance [1, 2].
Progress  in  this  direction  gives  us  new ways  to  correlate  localization
and  the  occurrence  of  apparently  distinct  physical  and  mathematical
properties  that  may  reveal  an  unexpected  new  order  of  things,  per-
haps  at  a  more  fundamental  level.  Indeed,  progress  in  understanding
and  detecting  levels  of  complexity  in  physical  or  biological  systems
may help us to uncover new paradigmatic orders of complexity in the
emerging mathematical structures.

Structural  complexity  [3]  emerges  from  all  systems  that  display
morphological organization. Filamentary structures are one important
example  of  coherent  structures  that  emerge,  interact,  and  evolve  in
many physical,  biological (and social) systems, such as mass distribu-
tion  in  the  universe,  vortex  filaments  in  turbulent  flows,  neural  net-
works in our brain, and genetic material  in a cell.  In many cases,  we
expect that information on the degree of morphological order (or dis-
order) present in the system might tell  us something important about
fundamental  physical  or  biological  processes.  It  is  well  known,  for
instance,  that  the  rate  of  energy  dissipation  in  the  bulk  of  a  fluid
depends  crucially  on  how  vorticity  is  distributed  in  that  fluid;  like-
wise, in  brain  research  a  high  degree  of  isotropic  intricacy  in  three-
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dimensional neural networks seems to guarantee high efficiency in the
elaboration of signals. 

For  an  intricate  tangle  of  filaments,  structural  complexity  is  mea-
sured  by  the  average  crossing  number  of  the  tangle  (see  Section  2).
Direct relationships between total length, energy, and structural com-
plexity of a tangle are established in Section 3. These results are based
on  elementary  expressions  that  suggest  a  wide  range  of  validity  and
applicability.  Immediate  applications  include  energy  estimates  for
magnetic  fields,  in  particular  solar  coronal  fields  (Section  4).  Future
applications may include neural networks, social networks, and finan-
cial markets analysis (Section!5). 

2. Extracting Information by Structural Complexity Methods

Structural  complexity  analysis  aims  at  relating  fundamental  physical
or  biological  aspects  of  a  complex  system with  the  mathematical  de-
scription of the morphological complexity that the system exhibits. In-
formation  on  structural  complexity  is  based  on  a  morphological  and
dynamical  study of  the  constituents,  utilizing applications  of  geomet-
ric, topological, and algebraic methods on one hand, and by dynami-
cal systems analysis on the other [2, 4].

For a tangle of filaments given by a network of space curves, geo-
metric  measures  of  structural  complexity  are  given,  for  example,  by
tropicity,  coiling  and  alignment  of  the  constituent  filaments,  and
signed  area  information  of  the  corresponding  projected  diagrams.
Algebraic measures are given by average crossing number information
of the apparent crossings present in the tangle.  Topological  measures
are  given  by  the  linking  numbers  associated  with  the  tangle  compo-
nents,  as  well  as  their  minimal  crossing  numbers  [5].  Dynamical  sys-
tem  analysis  provides  information  on  topological  entropy  and  eigen-
values  of  tensor  fields  that,  in  turn,  can  be  profitably  interpreted  in
terms of Minkowski functionals and shapefinders [6]. 

HaL HbL
Figure 1. (a)  Extracting  information  from  experimental  or  numerical  do-
mains.  (b)  Structural  complexity  measures  are  obtained  by  diagram  analysis
on projected graphs from data produced by experimental or numerical work.
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Given  a  tangle  ! " ‹i ci  of  n  filaments  ci,  we  consider  the  in-
dented diagram !p  obtained by projecting !  onto a  plane of  projec-
tion  along  a  given  direction  p.  For  a  single  component  c  (dropping
the index), we consider the indented curve cp, resulting from the pro-
jection  of  c  (its  geometric  support)  along  p,  keeping  track  of  its
topology by assigning er " !1 to each underpass or overpass, at each
apparent  crossing  site  r,  according  to  standard  convention  (see  Fig-
ure!1). Evidently, this can be extended to any pair of curves by consid-
ering  r œ ci û cj  for  any  pair  8i, j<,  and  then  to  the  whole  tangle.
Crossing counts on the indented diagrams prove useful for extracting
geometric,  algebraic,  and topological  information of the original  tan-
gle. In particular, we have the following definition.

Definition 1.  The  degree  of  structural  complexity  of  a  given  tangle
! " ‹i ci  of n  filaments ci  Hi " 1, … , nL  is  measured by the average
crossing number C of the tangle, given by 

(1)C ª ‚
i,j

‡
ci
‡
cj

°IXi - XjM ÿ dXiädXj•
°Xi - Xj•3 " ‚

rœT

[ ‚
rœciûcj

†er§_.
The  definition  of  average  crossing  number  was  introduced  by

Freedman and He [7] and its interpretation in terms of average cross-
ing  count  was  proven  by  Ricca  and  Nipoti  [8,  9].  The  definition  of
structural complexity in terms of average crossing number was intro-
duced by Ricca in 2005 [3].

As  Moffatt  and  Ricca  [10]  demonstrated,  the  integral  of  equation
(1) admits interpretation in terms of solid angle. To see this, consider
the  projection along p  of  a  pair  of  curves  ci,  cj  (the  same argument
applies  to  any  pair  of  arcs  of  the  same  curve  ci).  Apparent  intersec-
tions are counted by a number r+ HpL  and r- HpL  of positive and nega-
tive crossings, respectively. The elements dXi, dXj  intersect in projec-
tion  if  and  only  if  the  p-direction  is  parallel  to  ! Ir + adXi - bdXjM
where  r " Xi - Xj  (see  Figure  2),  0 < a < 1,  and  0 < b < 1,  that  is,
only if the p-direction lies within the elementary solid angle 

(2)dw " 2 IdXiädXjM ÿ r

4 pr3
,

where r " †r§ (the factor 2 allows for the ! possibilities). Thus, when
we average over all  directions of  projections,  taking into account the
absolute  value  and  then  integrating  over  all  pairs  of  elements  dXi,
dXj, we obtain 

(3)Ci j "
1

4 p
‡
ci
‡
cj

°r• ÿ °dXiädXj•
r3

" Xr+ HpL + r- HpL\,
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that is, 

(4)
Ci j " [ ‚

rœciûcj

†er§_,
where  the  angular  brackets  denote  averaging  over  all  directions  p  of
projection. This gives an interpretation of equation (1) in terms of the
average number of apparent (and unsigned) crossings. 

Figure 2. Solid  angle  interpretation  of  an  apparent  crossing.  Two  arcs  of
curve may be seen to cross each other when they are viewed along a direction
of  sight  p.  The  apparent  crossing  is  captured  by  the  elementary  solid  angle
contribution  d wi j,  given  by  the  relative  position  of  the  elementary  vectors
dXi and dXj in space. 

This measure can be naturally extended to the whole tangle ! , that
is, 

(5)
C " ‚

ci,cjœ!
Ci j.

Equation (5) provides the most natural measure of structural complex-
ity of ! , since it relates the degree of entanglement to an apparent lo-
calization of the number of crossings. 

3. Energy–Complexity Relations for Filament Tangles 
and Networks 

3.1 A Test Case: Superfluid Vortex Tangles 
Work on superfluid vortex tangles has provided reliable test cases for
investigating  generic  relationships  between  structural  complexity  and
physical  information. Complex  tangles  of  vortex  filaments  have  been
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produced  by  direct  numerical  simulation  methods  (e.g.,  by  superim-
posing  an  ABC  flow  on  an  initial  vorticity  distribution  [11],  or  by
spontaneous  generation  of  a  turbulent  state  [12]).  Figure  3  shows  a
snapshot  of  a  superfluid  vortex  tangle  produced  under  an  ABC-type
flow action, as in [11].

Figure 3. A superfluid vortex tangle  produced by direct  numerical  simulation
under an ABC-type flow action [11].

Results  obtained  by  different  methods  and  in  different  contexts
have  consistently  indicated  that  structural  complexity  C,  total  length
L, and total kinetic energy E of filaments relate according to 

(6)C ~ L2 and C ~ E2,

where  L " L ê L0  and E " E ê E0  are  nondimensional  length  and en-
ergy, respectively; L0  and E0  denote some reference values, for exam-
ple, initial values. In what follows, we provide an elementary proof of
the  two  relationships  in  equation  (6).  To  this  end,  we  consider  the
case of polygonal curves, since these are the real objects in numerical
simulations.

3.2 Polygonal (Piecewise Linear) Space Curves
Consider the following experiment:  take a number N  of sticks of the
same  length  and  drop  one  stick  at  a  time  from  some  height  onto  a
table top (see Figure 4(a)). Some sticks will pile up and some will in-
evitably fall away. We may ask: what is the maximum number of ap-
parent  crossings  that  can  result  from  the  piling  process?  The  first
three columns of  Table 1 indicate the number of  sticks/segments,  the
largest possible increase in the number of crossings D c, and the maxi-
mum number  of  apparent  crossings  c  obtained  from  each  additional
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stick dropped. As we see,

(7)c "
N

2
HN - 1L fl c ~ N2 as N Ø ¶.

Now,  instead  of  a  single-plane  projection,  extend  this  experiment  to
all directions of projection and average out this measure with respect
to the whole solid angle. The maximum number of crossings can now
be replaced with its average value. Some of the sticks that do not con-
tribute to the crossing count under a particular direction of projection
might  contribute  when  seen  under  a  different  direction  of  sight.
Hence, by taking the average over all directions p, we have 

(8)C " Xc\ ~ N2 as N Ø ¶.

HaL HbL
Figure 4. (a)  Stick  experiment:  by  dropping  one  stick  at  a  time  onto  a  table
top,  we  can  count  the  number  of  apparent  crossings.  (b)  Polygonal  curve  in
space. 

Table 1. Crossing  counts  by  stick  experiment  and  by  polygonal  curve
construction.  The  increase  in  the  maximum  number  of  apparent  crossings  c
obtained by dropping sticks or adding segments follows the same law. 
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Number of Sticks Stick Experiment Polygonal Curve
or Segments max. D c max. c max. c

1 0 0 0
2 1 1 0
3 2 3 1
4 3 6 3
5 4 10 6
6 5 15 10
… … … …

N + 1 N NHN - 1L ê 2 NHN - 1L ê 2
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Now, consider the case of polygonal curves constructed by placing
at random a segment in space and by adding consecutive, contiguous
segments,  as  in  Figure  4(b).  We  assume  that  all  segments  have  the
same  length  and  each  segment  has  its  direction  chosen  at  random in
space  or  prescribed  by  some  dynamical  process.  In  doing  this,  we
must  ensure  that  the  generating  algorithm  forbids  complete  overlap-
ping of segments by prescribing a minimum angle between contiguous
segments  to  avoid  complete  superimposition.  Additional  require-
ments, such as random spatial sampling, would enforce homogeneous
isotropicity of the disordered tangle. 

By  directly  inspecting  the  crossing  count,  the  last  column  of
Table!1 shows that for polygonal curves, the increase in the maximum
number  of  crossings  c  follows  the  same rule  as  the  stick  experiment.
Indeed, the first two segments just help to identify a plane of reference
for  the  crossing  count  of  all  subsequent  segments.  Hence,  by  averag-
ing crossings over all directions of sight, we again obtain the relation-
ship C ~ N2  as N Ø ¶. If all segments have the same length, and the
energy  per  unit  length  is  constant  (or  uniform  due  to  an  averaging
process over the whole tangle), then for large N we have 

(9)HiLC ~ L2, HiiLC ~ E2.

4. Topological Complexity and Magnetic Energy 

Foundational  aspects  in  topological  field  theory  call  for  more  work
on topological  complexity,  where  topological  properties  are  expected
to  play  an  important  role  at  a  fundamental  energy  level.  Indeed,  in
ideal  conditions  (i.e.,  ideal  magnetohydrodynamics)  the  magnetic  en-
ergy  M  of  (zero-framed)  knotted  flux tubes  #  of  equal  and constant
magnetic flux F and total volume V " VH#L is shown to be bounded
from below by knot complexity. In particular, if  the magnetic energy
is given by 

(10)M " ‡
VH" L!B¥2 d3 x,

where B is the magnetic field confined to the tube, then, by using pre-
vious  results  by  Arnold  (1974),  Moffatt  (1990),  and  Freedman  and
He (1991), one can prove [13] that 

(11)Mmin "
16

p

1ê3 F2

V1ê3 cmin,

that is, 

(12)Mmin " cmin,
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where cmin  is the minimum number of crossings of the knot (or link)
type  # ,  cmin  being  a  topological  invariant  of  # .  Another  important
quantity of topological character (related to the linking number) is the
magnetic helicity H [10], given by 

(13)H " ‡
VH" LA ÿ B d3 x,

where B " $ ÿ A (with $ ÿ A " 0). Then, we have 

(14)M ¥
16

pV

1ê3 †H§.
However,  in  the  presence  of  dissipation,  magnetic  fields  reconnect
and  the  change  in  topology  is  reflected  in  the  change  of  topological
complexity according to 

(15)HHtL § 2F2 CHtL,
where inequality provides an upper bound on the magnetic helicity by
the average crossing number of the magnetic system. 

5. Outlook: From Neural and Social Networks to Financial 
Markets Analysis 

The  relationships  in  equation  (9)  are  based  on  expressions  of  some
general validity and applicability that suggest possible applications in
different  contexts.  The  complexity  of  three-dimensional  networks  of
filamentary structures in biology provides an example as evidenced by
the  intricacy  of  embryonic  fibroblasts  or  retina  astrocytes  in  vivo.
Direct  imaging  analysis  based  on  digital  acquisition  of  the  morpho-
logical  complexity  in  such  networks  allows  extracting  the  average
crossing  number  information  rather  efficiently.  This  information  al-
lows for quantifying properties such as total length and length density
of  the  filament  network,  as  well  as  estimating  corresponding  energy
aspects (electric current or signal information) present in the network
or in particular subregions of it. The density and space localization of
the  apparent  crossings  also  allows  for  evaluating  the  efficiency  of
agents  (e.g.,  nerve  growth  factors  for  neural  networks)  and  signal
elaboration  on  local  or  global  scales,  possibly  identifying  critical
conditions. 

Similarly, analysis of information in social networks, financial mar-
kets,  and  insurance  products  can  be  facilitated  by  extracting  average
crossing  number  information  from  the  entanglement  of  links  or  ac-
tions in the appropriate phase portrait. For example, in the case of in-
surance analysis against rare catastrophic events, the crossing number
information can be  profitably  related  to  critical  properties  associated
with the high localization of apparent crossings at a given moment in
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time, a measure that, in turn, can be put in relation to capital or risk
investments. 
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