
Reversibility in Asynchronous Cellular
Automata

Anindita Sarkar*

Anindita Mukherjee†
Sukanta Das‡
Department of Information Technology
Bengal Engineering and Science University, Shibpur
Howrah, West Bengal, India 711103
*anindita.sarkar10@gmail.com
†aninditait86@gmail.com
‡sukanta@it.becs.ac.in, Corresponding Author

The reversibility issue of one-dimensional asynchronous cellular
automata (ACAs) is addressed in this paper. The cells of ACAs are up-
dated independently. The cellular automata (CAs) rules are classified as
reversible and irreversible rules. The irreversible rules cannot configure
reversible ACAs. The reversible rules may configure reversible ACAs
depending upon the update of ACA cells. Finally, an algorithm is devel-
oped that outputs a sequence of ACA cells for a given CA rule to be up-
dated to generate a cycle for a reversible ACA.

1. Introduction

Cellular automata (CAs), proposed in the early 1950s on a two-dimen-
sional grid, are involved in a five-neighborhood interaction among the
cells with 29 states per cell [1]. Later, the CA structure was simplified
by a number of researchers and finally, a two-state three-neighbor-
hood CA structure was proposed on a one-dimensional lattice [2].
This simplest version of CAs attracted a large number of researchers
from various fields due to their simplicity and ability of modeling
physical systems successfully. However, all such CAs are synchronous
because all the cells of CAs update their states simultaneously.

The concept of asynchronous cellular automata (ACAs) was first
developed on a one-dimensional lattice [3]. A formal definition of
ACAs for the two-dimensional CA structure was provided in [4]. The
one-dimensional ACAs were further studied in [5, 6]. S. Wolfram [6]
refers to the ACAs as sequential cellular automata. The clocks of the
ACA cells are independent, so the cells are updated independently.

The reversibility of synchronous CAs has been studied extensively
for years [7–9]. However, reversibility of ACAs is an almost un-
touched issue. A very few papers on the issue of two-dimensional
ACAs are found in the literature [10]. However, the reversibility of

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

one-dimensional ACAs is an unexplored field. In this scenario, we tar-
get exploring the issue for one-dimensional two-state three-neighbor-
hood ACAs. We use the term reversibility in a classical sense—that is,
starting from a CA state, a reversible ACA can reach to that particu-
lar CA state uniquely after a number of steps. During their evolution,
unlike [3, 6], we consider that more than one ACA cell may be up-
dated simultaneously. Based on the update of ACA cells in subsequent
steps, we, as in [11], define an update pattern to know which cell is
updated when. While an update pattern along with an initial state is
given, the transition of CA states for an ACA can be observed. The up-
date patterns play a major role in the reversibility of ACAs.

We have also identified a number of CA “rules” [2] as irreversible
rules, which cannot configure reversible ACAs with any set of update
patterns. Only reversible rules can configure reversible ACAs with a
particular set of update patterns. An algorithm is also developed to
find an update pattern of a cycle for some reversible ACA.

The paper is organized as follows. The preliminaries of CAs are
provided in Section 2. Section 3 defines the reversibility of ACAs, and
identifies the reversible and irreversible CA rules. The method to find
an update pattern for a cycle of reversible ACAs is reported in Sec-
tion!4. Section 5 concludes the paper.

2. Cellular Automata

CAs are the discrete spatially extended dynamical systems that have
been studied extensively as models of physical systems. They evolve in
discrete space and time. In their simplest form, as proposed by Wol-
fram [2], CAs consist of a lattice of cells, each of which stores a dis-
crete variable at time t that refers to the present state of the CA cell.
The next state of a cell is affected by its present state and the present
states of its neighbors at time t. In one-dimensional two-state three-
neighborhood (self, left and right neighbors) CAs, the next state of
each cell is determined as

(1)Si
t+1 ! f ISi-1

t , Si
t, Si+1

t M
where f is the next state function and Si-1

t , Si
t, and Si+1

t are the present

states of the left neighbor, self, and right neighbor of the ith CA cell at
time t. The function f : 80, 1<3 # 80, 1< can be expressed as a look-up
table (see Table 1). The decimal equivalent of the eight next states
(NS) is called a rule [2]. There are 28 (256) CA rules in the two-state
three-neighborhood dependency. Two such rules are 60 and 51
(Table 1). From the viewpoint of switching theory, a combination of
the present states (PS in Table 1) can be viewed as the min term of a
three-variable (Si-1

t , Si
t, Si+1

t) switching function. So, each column of
the first row of Table 1 is referred to as rule min term (RMT).

72 A. Sarkar, A. Mukherjee, and S. Das

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

PS: 111 110 101 100 011 010 001 000 Rule

HRMTL H7L H6L H5L H4L H3L H2L H1L H0L
HiLNS: 0 0 1 1 1 1 0 0 60

HiiLNS: 0 0 1 1 0 0 1 1 51

Table 1. Look-up table for rules 60 and 51.

The collection of states of all cells (S1
t , S2

t , … , Sn
t) at time t is called

a CA state on that time. If the leftmost and rightmost cells are the
neighbors of each other (i.e., S0

t ! Sn
t and Sn+1

t ! S1
t for CAs with n

cells), the CAs are periodic boundary CAs. On the other hand, in null
boundary CAs, S0

t ! Sn+1
t ! 0 (null).

If all of the CA cells update their states simultaneously they are syn-
chronous CAs. In asynchronous CAs, the cells are updated indepen-
dently. Therefore, ACAs have decentralized control structure, and as
a result, any number of ACA cells may be updated in a single time
step. So, we consider, unlike [3, 6], that more than one—even all the
ACA cells—may update their states simultaneously.

Figure 1. Partial state transition diagram of rule 60 ACA. The cells updated
during state transition are noted over the arrows.

During their evolution with time, CAs (synchronous and asyn-
chronous) generate a sequence of states. The next state of a CA can
be determined in a synchronous CA configured with a particular rule.
However, the next state of ACAs depends not only on the rule, but
also on the cells that are updated at that time. We denote the set of
cells, updated at time t, as ut. Therefore, an update pattern
U ! Xu1, u2, … , ut, …\ is used to observe which cells are updated
when. If the CA rule and an update pattern with an initial state is
given, the state transitions for the ACA can be identified. A partial
state transition diagram of four-cell rule 60 ACA with a null bound-
ary condition is shown in Figure 1. The states are noted in circles,
whereas the cells updated during state transitions are noted over the
arrows. The update pattern for this transition U ! X82<, 81, 4<,82, 4<, 83<, 82, 4<, 83, 4<, 82<, …\ is associated with CA state 15. The
output of the first cell is considered as the least significant bit (LSB) of
the CA state. It is, therefore, obvious that the state transition of ACAs
depends on both the CA rule and the update pattern. However, a sin-
gle state transition diagram may not cover all the CA states. To ob-
serve the transitions of other CA states, another one or more update

Reversibility in Asynchronous Cellular Automata 73

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

patterns may be needed. A set of update patterns can actually illus-
trate the transition of all states.

We address the reversibility issue for such ACAs in Section 3.

3. The Reversibility of Asynchronous Cellular Automata

The state transition diagram classifies the CA states as cyclic and
acyclic. If a CA state lies on some cycle in the state transition diagram
of the CA, the state is cyclic; otherwise, it is acyclic. The CAs are re-
versible if all the CA states are cyclic; otherwise, they are irreversible.
The reversibility, explored in synchronous domain, guarantees that
each CA state has a unique predecessor and successor.

Definition 1. The ACAs are reversible if each CA state can uniquely be
reached starting from that particular state with an update pattern.
Otherwise, they are irreversible.

Figure 2. Four-cell rule 60 reversible ACAs in null boundary condition. The
cells updated are noted on the edges.

Figure 2 depicts the state transition diagram of four-cell rule 60 re-
versible ACAs with null boundary condition. There are eight update
patterns, one for each cycle, in the ACAs. The update patterns (with
corresponding initial states) are X81<\ (0), X82<, 84<, 82<, 84<\ (15), X83<\
(8), X83<, 83<\ (6), X82<, 82<\ (9), X84<, 84<\ (4), X83<, 83<\ (14), and X82<,82<\ (1). The CA rules, building blocks of reversible and irreversible
ACAs, are classified as the reversible and irreversible rules.

74 A. Sarkar, A. Mukherjee, and S. Das

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

Definition 2. A CA rule R is an irreversible rule if there is a CA state
that can never be cyclic for any update pattern, while the ACAs are
configured with R. Otherwise, R is a reversible rule.

For example, rule 77 (01001101) in null-boundary condition is an
irreversible rule. Starting from the all-0 CA state, returning back to
the 00 … 0 state in rule 77 ACAs cannot be done with any update pat-
tern. On the other hand, rule 60 is a reversible rule in null and peri-
odic boundary conditions. Each state can be uniquely reached for
some update pattern (Figure 2).

Now we characterize the irreversible rules that can never configure
reversible ACAs. Theorem 1 characterizes the irreversible rules in peri-
odic boundary condition.

Theorem 1. A rule R is irreversible if and only if the all-0 or all-1 state
of the ACA, configured with R in periodic boundary condition, is
acyclic for all possible update patterns.

Proof. If the all-0 or all-1 state of the ACA, configured with R, can-
not be returned back with any update pattern, then obviously the
ACA and hence the R are irreversible. Now, we shall show that R is
irreversible only if the all-0 or all-1 state is acyclic.

A CA state can be viewed as a sequence of RMTs. For example,
the state 1100 in periodic boundary condition can be viewed as 3641,
where 3, 6, 4, and 1 are corresponding RMTs on which the state can
be changed. Combine the eight RMTs into four sets: 80, 2<, 81, 3<,84, 6<, and 85, 7<. The three-bit binary representation of the RMTs
shows that the middle bit of each set is the complement of each other.
We next show that if a sequence of RMTs of an arbitrary rule, corre-
sponding to some CA state, contains both the elements of any one of
the above sets, the state is cyclic.

Consider that RMTs 0 and 2 are simultaneously present in a se-
quence of RMTs, corresponding to some CA state, ". If RMT 0 is 0
or RMT 2 is 1, " can be updated properly to get a single-length cycle.
If RMT 0 is 1 and RMT 2 is 0, then a two-length cycle can be de-
signed by updating a single cell. Therefore, " is cyclic for any value of
RMT 0 and RMT 2. If " contains the RMTs 1 and 3, 4 and 6, or 5
and 7 simultaneously, then it can also be shown with similar logic
that " is cyclic.

The rest of the states whose corresponding RMTs are from differ-
ent sets may form single-length cycles depending on the RMT values
by updating a single cell. The states that are not in some cycle can
form two-length cycles by updating two or more consecutive cells.
Hence, these states are also cyclic.

Therefore, all the states other than all-0 and all-1 of any ACA can
be cyclic for some update patterns. Hence, if all-0 and all-1 states are
cyclic, the rule R that configures ACAs is reversible; otherwise, R is ir-
reversible. ·

Reversibility in Asynchronous Cellular Automata 75

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

Corollary 1. A rule R is irreversible if (i) the RMTs 0, 2, 7, and either
RMT 3 or 6 of R are 1, or (ii) the RMTs 0, 5, 7, and either RMT 1 or
4 are 0 in periodic boundary condition.

Proof. We shall prove the corollary by identifying the RMTs of R
for which the all-0 or all-1 state cannot be returned back
(Theorem!1).

If RMT 0 is 1, the ACA, configured with R in periodic boundary
condition, cannot form a single-length cycle with an all-0 state be-
cause the next state contains at least one 1 while the ACAs are up-
dated. To form a cycle, these 1s are to be 0 in subsequent steps. How-
ever, these 1s cannot be 0 if RMTs 2 and 7, and any one of RMTs 3
and 6 of R, are 1. Therefore, the all-0 state cannot be returned back if
the RMTs 0, 2, 7, and either RMTs 3 or 6 of R are 1.

Similarly, the ACA cannot form a single-length cycle with an all-1
state if RMT 7 is 0. Moreover, the ACA with the state can never form
a cycle of any length in periodic boundary condition if RMTs 0 and
5, and any one of RMTs 1 and 4 of R, are 0. Hence, an all-1 state can-
not be returned back if the RMTs 0, 5, 7, and either RMT 1 or 4
are!0. ·

There are (i) 24 rules where RMTs 0, 2, 7, and either RMT 3 or 6
are 1, and (ii) another 24 rules where RMTs 0, 5, 7, and either
RMT!1 or 4 are 0. The list of 48 such irreversible rules are noted in
Table 2. The rest are reversible rules, each of which can configure re-
versible ACAs in periodic boundary condition for some update pat-
terns. Now, we present Theorem 2 to characterize the irreversible
rules in null boundary condition.

0 2 4 6 8 10 12 14
16 20 24 28 64 66 68 70
72 74 76 78 80 84 88 92
141 143 157 159 173 175 189 191
197 199 205 207 213 215 221 223
229 231 237 239 245 247 253 255

Table 2. Irreversible rules in periodic boundary condition.

Theorem 2. A rule R is irreversible if and only if the all-0, all-1, or
10101…1 state of ACAs, configured with R in null boundary condi-
tion, is acyclic for all possible update patterns.

Proof. The proof is similar to that of Theorem 1 with an exception
that the 10101…1 state is to be considered in case of null boundary
condition. Irrespective of R, this state cannot be cyclic in null
boundary condition. ·

76 A. Sarkar, A. Mukherjee, and S. Das

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

Corollary 2. A rule R is irreversible if (i) the RMTs 0 and 2, and either
RMT 3 or 6 of R, are 1, or (ii) the RMTs 0, 1, 3, 4, 5, 6, and 7 are 0,
or (iii) the RMTs 0 and 2 are 0, RMTs 5 and 7 are 1, and if RMT 1 is
0 or RMT 3 is 1, then either RMT 4 is 0 or RMT 6 is 1, while R con-
figures an ACA in null boundary condition.

Proof. We shall prove the corollary by identifying the RMTs of R
for which the all-0, all-1, or 10101…1 state cannot be returned back
(Theorem 2).

If RMT 0 is 1, the ACA, configured with R in null boundary condi-
tion, cannot form a single-length cycle with the all-0 state, as the next
state always contains at least one 1. To form a cycle, these 1s are to
be 0 in subsequent steps. However, these 1s cannot be 0 if RMTs 2
and any one of RMTs 3 and 6 of R are 1. Therefore, the all-0 state
cannot be returned back if the RMTs 0, 2, and either RMT 3 or 6 of
R are 1.

In null boundary condition, the state of the left (right) neighbor of
the leftmost (rightmost) cell is always 0. So, RMT 3 and RMT 7
(RMT 6 and RMT 7) of R are equivalent for the leftmost (rightmost)
cell. Therefore, the ACA with all-1 state can form a single-length cy-
cle for some update pattern if RMT 3, RMT 6, or RMT 7 is 1. To re-
strict such a cycle, the RMTs 3, 6, and 7 of R are 0. While these
RMTs are 0, the ACA with all-1 state, due to the update of cells,
reaches to another state that contains at least one 0. However, the
all-1 state cannot be returned back if RMTs 0, 1, 4, and 5 are 0. So,
the all-1 state is acyclic if the RMTs 0, 1, 3, 4, 5, 6, and 7 are 0.

To form a single-length cycle with the 10101…1 state, RMT 2 is to
be 1 or RMT 5 is to be 0. If RMT 2 is 0 and RMT 5 is 1, a single-
length cycle in null boundary condition cannot be formed with the
10101… 1 state. However, two or more consecutive bits of the de-
rived state may be 0 or 1; even all-0 or all-1 states may be reached.
The 10101… 1 state cannot be returned back from the all-1 state in
null boundary condition if RMT 3 and 6 are 1, and from the all-0
state if RMT 0 is 0. For any combination of 0s and 1s in the derived
state, if any of the following RMT values are found in R, the
10101… 1 state cannot be returned back.

111 110 101 100 011 010 001 000

H7L H6L H5L H4L H3L H2L H1L H0L
1 * 1 0 1 0 * 0

1 1 1 * 1 0 * 0

1 * 1 0 * 0 0 0

1 1 1 * * 0 0 0

The RMTs that can take any value (0/1) are denoted with “*”. Hence,
the 10101… 1 state is acyclic if the RMTs 0 and 2 are 0, RMTs 5 and

Reversibility in Asynchronous Cellular Automata 77

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

7 are 1, and if RMT 1 is 0 or RMT 3 is 1, then either RMT 4 is 0 or
RMT 6 is 1. ·

In null boundary condition, there are (i) 48 irreversible rules while
RMTs 0, 2, and either 3 or 6 of R are 1, (ii) two irreversible rules
while RMTs 0, 1, 3, 4, 5, 6, and 7 are 0, and (iii) nine irreversible
rules while RMTs 0 and 2 are 0, RMTs 5 and 7 are 1, and if RMT 1
is 0 or RMT 3 is 1, then either RMT 4 is 0 or RMT 6 is 1. Such irre-
versible rules are listed in Table 3. The rest are reversible rules, which
can configure reversible ACAs in null boundary condition with some
update patterns.

0 4 13 15 29 31 45 47
61 63 69 71 77 79 85 87
93 95 101 103 109 111 117 119
125 127 141 143 157 159 160 168
170 173 175 189 191 197 199 205
207 213 215 221 223 224 229 231
232 234 237 239 240 245 247 248
250 253 255

Table 3. Irreversible rules in null boundary condition.

However, the reversibility of ACAs depends not only on the rule,
but also on update patterns. For example, rule 60 can configure irre-
versible ACAs (Figure 1) as well as reversible ACAs (Figure 2) depend-
ing upon the update patterns. Since the ACA cells are independent,
and so updated arbitrarily, it cannot be predicted in advance that
ACAs configured with a reversible rule are reversible. If a set of up-
date patterns received from ACAs configured with a reversible rule
during generation of all states are given, then only whether the ACAs
were reversible can be analyzed. This discussion leads to Theorem 3.

Theorem 3. It is hard to synthesize reversible one-dimensional ACAs.

However, the update patterns can be designed for the cycles of
some reversible ACAs. While the ACAs follow those update patterns,
cycles are formed. We identify such update patterns in Section 4.

4. Identifying the Update Pattern for a Cycle

The reversible rules require different sets of update patterns to get re-
versible ACAs. Even for a particular reversible rule, various sets of up-
date patterns may be identified that result in different reversible
ACAs. An update pattern can produce a cycle if the initial state and
the ACA are given. In this section, we identify such an update pattern
that forms a cycle for some reversible ACAs. We next present a theo-
rem that characterizes the states forming a cycle.

78 A. Sarkar, A. Mukherjee, and S. Das

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

Theorem 4. The sequence of unique states XS1, S2, … , Sl, S1\ of an n-
cell CA forms a cycle of length l ¥ 1 if the number of bits that flip at
the ith (1 § i § n) position of the states is either 0 or even.

Proof. Consider that the ith bit of the CA state S1 is d. Now, if the
ith bit position of the sequence is flipped to d£ in some Sj, then the bit

position is to be flipped in some Sj+k to get back d at the ith bit posi-
tion, where 1 < j < j + k § l + 1. So, two transitions are there. If an-
other such j exists, then corresponding k also exists. Hence, an even
number of bit flipping is required. ·

To get a cycle for some reversible ACAs, an update pattern along
with some initial state is required that generates l distinct CA states
for a cycle of length l. Since the states of a cycle are to be distinct, the
update pattern should be designed in such a way that at least one bit
of a state flips to get the next state. Moreover, in any subsequence of
states, the bits of states are not to be flipped an even number of times
(Theorem 4). If they flip, the l states cannot be distinct.

Therefore, generation of distinct states depends not only on the up-
date pattern, but also on the initial state. This is because the initial
state may not allow an arbitrary bit to flip for an arbitrary reversible
rule that configures the ACA. However, rule 51 (Table 1) is the only
rule that always allows a cell to flip its state when updated. So,
rule!51 ACAs do not depend on the initial state to form a cycle. The
following rule is designed to generate an update pattern for a cycle of
length 2i (1 § i § n) by updating a single cell at a time, where n is the
number of ACA cells.

To get a cycle of length 2i (1 § i § n) of an n-cell rule 51 ACA, form a
sequence of i cells to be updated arbitrarily. Start with an arbitrary

state. Update the I2j-1Mth state by updating the jth cell (1 § j § i) of the

sequence to generate the next state. Repeat the update of the jth cell
after each 2j state, where j < i. However, update the ith cell again after
the 2i-1 state to get a cycle of length 2i.

Example 1. To design a full-length cycle for a four-cell rule 51 ACA
(length ! 24), all the cells are to be updated in some sequence. Con-
sider that the sequence of updating is SEQ ! X1, 2, 3, 4\ and the ini-
tial state is 0100. Each jth cell of SEQ is selected for the first time to

update the I2j-1Mth state. Hence, to get the second state, the first bit of

the initial state (I2j-1Mth state, where j ! 1) is updated. Similarly, the
second, third, and fourth cells are selected for the first time to update
the second, fourth, and eighth states, respectively. The first cell is
again selected to update the third, fifth, and all odd states (i.e., after
each 2j state where j ! 1). After the first time update, the second and

Reversibility in Asynchronous Cellular Automata 79

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

third cells are selected repeatedly to update after every 22 and 23

states, respectively. The last cell is updated for the second time after
23 states (2i-1 states where i ! 4) to complete the cycle. Therefore,
the sequence of states in the cycle is X0100, 1100, 1000, 0000, 0010,
1010, 1110, 0110, 0111, 1111, 1011, 0011, 0001, 1001, 1101, 0101,
0100\. The update pattern is X81<, 82<, 81<, 83<, 81<, 82<, 81<, 84<, 81<,82<, 81<, 83<, 81<, 82<, 81<, 84<\ (Figure 3(a)). Here, the update pattern is
independent of the initial state, but depends on SEQ (the update pat-
tern and the cycle of rule 51 ACA are the same for both the boundary
conditions). However, if the cells are updated randomly, the ACA
may not even be reversible. No cycle can be found in such a case
(Figure 3(b)).

Figure 3. State transition of four-cell rule 51 ACAs (updating a single cell in
each step). Here, the output of the first cell is considered as the LSB. (a) Full-
length cycle ACAs. (b) Random update of cells.

However, cycles can be formed by updating multiple cells simulta-
neously. An n-cell rule 51 ACA can form a cycle of maximum length
2n-m+1 while m cells (1 § m § n) are updated simultaneously. In such
a case, the same way of single-cell update to get a cycle can be fol-
lowed with an exception that each entry in the sequence of cells, to be
updated, is a set of m cells. Example 2 illustrates the cycle formation
by updating multiple cells.

Example 2. Let us consider that n ! 4 and m ! 2. To get an eight-
length (2n-m+1) cycle of the ACA, a sequence SEQ ! X81, 2<, 82, 3<,83, 4<\ of cells is formed arbitrarily. Consider that the initial state is
0100. The first and second bits are updated to generate the second
state (1000). Similarly, the cells of the second and third entries of
SEQ are selected to update the second and fourth states. As in Exam-
ple 1, the cells of the first set (81, 2<) are repeatedly selected to update
the odd states. The cells of the second set (82, 3<) are selected again to
update the sixth state. Therefore, a sequence X0100, 1000, 1110,

80 A. Sarkar, A. Mukherjee, and S. Das

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

0010, 0001, 1101, 1011, 0111, 0100\ of states is obtained and the up-
date pattern is X81, 2<, 82, 3<, 81, 2<, 83, 4<, 81, 2<, 82, 3<, 81, 2<, 83, 4<\
(Figure 4(a)). However, while two cells are arbitrarily updated
(violating the given rule), no such cycle is formed (Figure 4(b)).

Figure 4. State transition of four-cell rule 51 ACAs, updating two cells in each
step (the output of the first cell is considered as the LSB). (a) Eight-length cy-
cle of rule 51 ACAs. (b) Random update of cells.

The update method, designed for the rule 51 reversible ACA,
guides us to develop Algorithm 1, which finds the update pattern for
a cycle of some reversible ACAs. The algorithm is independent from
the boundary condition. It takes the CA rule, the cycle length to be de-
signed (2i), the initial state (S), and the number of cells updated in a
single step (m) as input. However, with arbitrary ACAs and an arbi-
trary initial state, a cycle of given length may not be designed. In such
cases, the algorithm finds a cycle that is close in length with the given
cycle length. It outputs the update pattern with the cycle length, if the
cycle can be designed.

The algorithm first forms a sequence of i unique sets arbitrarily.
The sets are also designed arbitrarily with m ACA cells per set. The
update style of rule 51 reversible ACAs is followed to generate the up-
date pattern. If no bit flips during the update of a set of m cells, an-
other set of m cells is searched so that at least one bit flips. If no such
set is found, then the algorithm reports that “Cycle is not possible”.
While 2i states are covered but no cycle is formed, the algorithm at-
tempts to form a cycle by generating a very few states.

Algorithm 1. FindACACycle

Input: R (rule), n (# cells), 2i (cycle length, 1 § i § n), S (initial state),
m (# cells updated in each step)

Output: Update pattern with the cycle length, if a cycle is possible

Step 1: Form a sequence SEQ of i unique sets of m ACA cells
arbitrarily.

Reversibility in Asynchronous Cellular Automata 81

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

Step 2: Load the ACA, configured with R, with S.

Step 3: For k ! 1 to 2i, repeat Step 4 to Step 9.

Step 4: If k ! 2j-1 (1 § j § i), select the jth set of SEQ.
If k ! 2i, select the ith set of SEQ.
If k ! 2j-1 + p * 2j (p is a positive integer and 1 § j < i),

select the jth set.

Step 5: Update ACA cells of the selected set.

Step 6: If no cell flips during the update, find a set of m cells so that

(a) at least one cell flips, and (b) the generated state is unique.

Otherwise, go to Step 9.

Step 7: If no such set is found in Step 6, go to Step 14.

Step 8: Update the ACA cells according to the set designed in Step 6.

Step 9: Print the ACA cells that are updated to generate the next
state of k.

Step 10: If no cycle is formed, identify the bits of the 2i + 1 state that
differ from the initial state, S. Otherwise, go to Step 15.

Step 11: Update the ACA cells to flip the identified bits.

Step 12: If few cells flip, print those cells. Update the nearest cells of
the remaining bits (one-by-one or more than one at a time) so that
the S is reached within a few steps.

Step 13: If a cycle is formed, go to Step 15.

Step 14: Print “Cycle is not possible” and exit.

Step 15: Print the length of the cycle and exit.

Example 3 illustrates the execution of Algorithm 1.

Example 3. Let us consider R ! 123, n ! 6, cycle length ! 8 (23), S !
011111, and m ! 2. The formation of the cycle following Algorithm
1 is shown in Figure 5. First, a sequence of three sets SEQ ! X81, 3<,81, 4<, 82, 4<\ is formed arbitrarily (Step 1). The ACA is configured
with rule 123 in null boundary condition. To get the next state of
011111 (initial state), the first and third cells are updated (Steps 4 and
5). In Figure 5, the update pattern of a rule 51 ACA is noted on the
left side of the states, and the update pattern generated by the algo-
rithm is shown on the right side. To update the second state (similar
to the sixth state) according to the update pattern of the rule 51 ACA,
the set 81, 4< is selected. Since no cell flips here, another set 81, 5<
is searched (Step 6). After the generation of eight states, a cycle is
not formed. Another four states are generated to form a cycle
(Steps!10–12). Therefore, the length of the cycle is 12.

82 A. Sarkar, A. Mukherjee, and S. Das

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

Figure 5. Generation of the cycle for the rule 123 ACA. At most, two cells are
updated simultaneously.

We have experimented with different reversible rules. It is found
that for a number of reversible rules, the update pattern can be de-
signed utilizing Algorithm 1 to get a full-length cycle (by updating a
single cell at a time). A few of such rules are: 3, 19, 35, 83, 115, 131,
147, 163, 179, 211, and 243.

5. Conclusion

The reversibility in one-dimensional asynchronous cellular automata
(ACAs) has been addressed in this paper. The ACA cells are updated
independently. Depending on their update during state transition, the
update pattern is defined. The paper has classified the cellular au-
tomata (CAs) rules as reversible and irreversible. The irreversible rules
cannot configure reversible ACAs with any set of update patterns.
The reversibility of ACAs depends on both the rule and update pat-
terns. Finally, the paper reports an algorithm to get an update pattern
for a cycle of ACAs.

Acknowledgment

This work is supported by AICTE Career Award Fund (F.No.
1-51/RID/CA/29/2009-10).

Reversibility in Asynchronous Cellular Automata 83

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

References

[1] J. von Neumann, The Theory of Self-Reproducing Automata
(A. W. Burks, ed.), Urbana, IL: University of Illinois Press, 1966.

[2] S. Wolfram, Theory and Applications of Cellular Automata, Singapore:
World Scientific, 1986.

[3] T. E. Ingerson and R. L. Buvel, “Structure in Asynchronous Cellular Au-
tomata,” Physica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 59–68.
doi:10.1016/0167-2789(84)90249-5.

[4] R. Cori, Y. Metivier, and W. Zielonka, “Asynchronous Mappings and
Asynchronous Cellular Automata,” Information and Computation,
106(2), 1993 pp. 159–202. doi:10.1006/inco.1993.1052.

[5] N. Fatès, E. Thierry, M. Morvan, and N. Schabanel, “Fully Asyn-
chronous Behavior of Double-Quiescent Elementary Cellular Au-
tomata,” Theoretical Computer Science, 362(1–3), 2006 pp. 1–16.
doi:10.1016/j.tcs.2006.05.036.

[6] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[7] S. Amoroso and Y. N. Patt, “Decision Procedures for Surjectivity and In-
jectivity of Parallel Maps for Tessellation Structures,” Journal of Com-
puter and System Sciences, 6(5), 1972 pp. 448–464.
doi:10.1016/S0022-0000(72)80013-8.

[8] S. Das and B. K Sikdar, “Classification of CA Rules Targeting Synthesis
of Reversible Cellular Automata,” in Proceedings of the 7th Interna-
tional Conference on Cellular Automata for Research and Industry
(ACRI06), Perpignan, France (S. El Yacoubi, B. Chopard, and S. Ban-
dini, eds.), Berlin: Springer-Verlag, 2006, pp. 68–77.
doi:10.1007/11861201_11.

[9] T. Toffoli, “Computation and Construction Universality of Reversible
Cellular Automata,” Journal of Computer and System Sciences, 15(2),
1977 pp. 213–231. doi:10.1016/S0022-0000(77)80007-X.

[10] J. Lee, F. Peper, S. Adachi, K. Morita, and S. Mashiko, “Reversible
Computation in Asynchronous Cellular Automata,” in Proceedings of
the 3rd International Conference on Unconventional Models of Compu-
tation (UMC02), Kobe, Japan (C. Calude, M. J. Dinneen, F. Peper,
eds.), London: Springer-Verlag, 2002, pp. 220–229.

[11] C. L. Nehaniv, “Asynchronous Automata Networks Can Emulate Any
Synchronous Automata Network,” International Journal of Algebra and
Computation, 14(5–6), 2004 pp. 719–739.
doi:10.1142/S0218196704002043.

84 A. Sarkar, A. Mukherjee, and S. Das

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.21.1.71

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /LeaveColorUnchanged

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 300

 /ColorSettingsFile ()

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>

 >>

 /DetectBlends true

 /DetectCurves 0

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 300

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /NoConversion

 /DestinationProfileName ()

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

