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A  connectionist  system  of  a  finite  set  of  autonomous  agents  evolving
independently  over  a  common  centralized  environment  of  scarce  re-
sources is discussed and connected with the results of the agents’ inter-
actions  by  the  connection  operator,  also  evolving  independently.  The
system forms a dynamical network. 

The  network  is  viable  if  a  joint  evolution  satisfies  the  centralized
scarcity  constraints  set  by  the  environment.  The  focus  of  this  paper  is
on the problem of restoring the network’s viability, which is intrinsic as
the decentralized behaviors (dynamics) of the agents and of the connec-
tion  operator  are  not  necessarily  consistent  with  the  centralized  con-
straints.  For restoring the viability, the decentralized dynamics are cor-
rected  using  viability  multipliers,  which  are  regarded  as  correction
prices.  The correction prices  provide  the  information about  changes  in
the dynamics, necessary to govern evolutions satisfying the constraints.
In this aspect, the viability of the network is restored by the mechanism
of decentralization by price. 

1. Introduction

In this paper, we address systems consisting of a fixed number of indi-
vidual  agents,  each  of  which  is  characterized  by  his  behavioral  posi-
tion in a space at  a  time.  Agents’  behavior is  modeled by the agents’
states,  which  evolve  within  a  common environment  according  to  the
specified rule of state dynamics. The agents are connected by a linear
connection operator that also evolves. This connection operator maps
the  agents’  states  into  their  collective  results.  Since  the  agents’  states
evolve in a common environment, the agents’ collective results neces-
sarily  face  constraints  which,  if  satisfied,  ensure  viability  of  the  envi-
ronment.  For simplicity,  we assume the constraints  to be unchanging
and we refer to them as the viability constraints of the system.  

We  assume  the  agents  behave  according  to  their  individual  pur-
poses, independently of others, since their knowledge about the whole
system  is  limited  or  due  to  their  own  objectives  and  attitudes.  The
connection  operator,  in  turn,  behaves  independently  of  the  agents,
therefore representing an autonomous connecting unit. Thus, the net-
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work’s  dynamics  are  decentralized,  while  the  collective  viability  con-
straints are centralized. 

The  network  is  described  as  follows.  Consider  finite-dimensional
vector  spaces  X1, X2, … , Xn,  Y,  and  Z,  and  the  product
X ! X1ä!äXn.  Denote by "HX, YL  the space of all  linear operators
from  X  to  Y.  Introduce  a  linear  operator  V œ "HX, YL,  n  maps
fi : Xi # Xi, a map b : "HX, YL # "HX, YL, and a map g : Y # Z. 

The network’s agents 1, … , n are connected by the connection op-
erator  V  through  the  agents’  states  x ! Hx1, … , xnL œ X  with  the
agents’ collective result V x. The agents’ state evolutions are governed
by  the  dynamics  generated  by  the  equations  xi

£HtL ! fiHxiHtLL  and  the
evolution  of  the  network’s  connection  operator  is  governed  by
V£HtL ! bHVHtLL. The evolutions set by the network’s data must be sub-
ject to viability constraints set by the environment and require that at
any  time  t ¥ 0,  the  consequence  of  agents’  actions  and  their  connec-
tions,  that  is,  the  map  g  applied  to  the  agents’  collective  result
VHtL xHtL, be restricted to remain in a subset # of Z.

The network is described by the dynamics 

(1)
" i ! 1 … n, xi

£HtL ! fiHxiHtLL
V£HtL ! bHVHtLL

and its viability constraints are given by  

(2)" t ¥ 0, gHVHtL xHtLL œ #.

To  illustrate,  consider  the  network  of  four  agents  1, 2, 3, 4  with
the corresponding states x1HtL, x2HtL, x3HtL, x4HtL connected by the con-
nection operator 

VHtL !

v11HtL v12HtL
v21HtL 0

0 v32HtL
v41HtL v42HtL

to  their  collective  results  y1HtL, y2HtL  (see  Figure  1).  The  results  are
connected  with  the  constrained  results  z1HtL, z2HtL, z3HtL  (marked
by  the  gray  nodes  in  Figure  1)  by  map  gHy1HtL, y2HtLL !Hy1HtL, y1HtL + y2HtL, y2HtLL.  

The  scheme  of  the  network  is  similar  to  the  simplified  view  of  a
neural  network  with  the  input  layer  consisting  of  the  agents’  states,
the hidden layer comprising the agents’ collective results, and the out-
put layer consisting of the constrained results [1]. 
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Figure 1. Scheme of the network of agents’ states and their collective results. 

By the environment of the network, we understand the set of all ini-
tial  states  Hx, VL œ Xä"HX, YL  satisfying the viability  constraints.  We
say that the environment of the network is viable under the network’s
dynamics  if  from any  of  the  initial  states  at  least  one  evolution  gov-
erned by the dynamics that satisfies the viability constraints is started.
The network is said to be viable if the environment of the network is
viable under the network’s dynamics.

The  network  most  likely  does  not  remain  viable  forever  when  the
dynamics of the agents and that of the connection operator are left to
evolve by themselves. This is due to the absence of mutual dependen-
cies  between the dynamics that  are required to satisfy the centralized
viability constraints. 

The  main  question  we  deal  with  in  this  paper  is  that  of  restoring
the  viability  of  the  network  representing  a  decentralized  model.  We
control the network’s viability by modifying the decentralized settings
in order to transfer to the centralized ones, satisfying the viability con-
straints. 

The recent literature on the control of network viability [2, 3] con-
cerns the systems of individual agents whose states’ evolutions are re-
stricted by viability constraints, and handles the question of restoring
the  viability  assuming  that  the  agents’  connection  operator  is  not
changing [4] or providing only a general control frame for multilinear
connection operators [3]. In practical applications, some of which are
listed below, there is an interaction between the agents and their con-
nection operator, and it is reasonable to correct the dynamics of both
collectively. Therefore, in this paper, we bring into the model the con-
nection  operator  that  changes  dynamically  and  treat  the  problem  of
restoring the viability as a problem of regulation of dynamics of both
the  agents’  states  and  the  connection  operator.  We use  the  approach
to restore the viability provided in viability theory. 

Fields  where  the  problem  of  our  interests  is  at  their  heart  include
economics, where evolving economic systems faced with scarcity con-
straints are studied. The fundamental model of resource allocations is

!
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replaced by a decentralized dynamic framework where the prices fol-
low  the  regulation  law  represented  as  a  function  of  the  allocations
[2,!5].  Other  recent  researches  that  study  evolving  economic  systems
are [6] and [7], where prices are used in the adjustment processes. 

Another  field  which  is  of  great  interest  is  that  of  neural  networks
and cognitive sciences. In this case, the neural networks and cognitive
systems are regarded as dynamical systems controlled by synaptic ma-
trices [8]. 

Dynamical  connectionist  networks  and  dynamical  cooperative
games are also the fields where the problem has a central role.  Here,
the  authors  of  [3]  provide  a  class  of  control  systems  able  to  govern
the evolution of actions, coalitions, and multilinear connection opera-
tors  under  which  the  architecture  of  a  network  remains  viable.  The
controls  are  tensor  products  of  the  coalitions’  actions  and  of  multi-
pliers  of  the  viability  constraints  space,  which  allows  the  concept  of
Hebbian  learning  rules  in  neural  networks  to  be  encapsulated  in  the
dynamical  framework.  They  also  use  the  viability  and  capturability
approach to study the problem of characterizing the dynamic core of
a dynamic cooperative game defined in a characteristic function form.
Another recent work is [9],  where the control of dynamics of a com-
munication network was realized using a stochastic approach. 

Recently,  a lot of research attention has been given to sociological
sciences.  There,  a  society  can  be  interpreted  as  a  set  of  individuals
that are subjected to survival or social constraints. Laws and cultural
codes can be devised to provide each individual with psychological or
economical means and guidelines that play the role of regulation con-
trols [10, 11]. 

In  this  paper,  we  tackle  the  problem  of  restoring  the  viability  by
correcting  the  network’s  dynamics  using  regulatory  parameters,
which  introduce  the  missing  mutual  dependencies.  The  parameters
represent control units regulating the dynamics of the network’s com-
ponents—the  agents  and  their  connection  operator.  We  denote  the
regulatory parameters by pHtL and PHtL, where pHtL is a vector and PHtL
is a linear mapping. The viable corrected network has the form of 

(3)
x£HtL ! f HxHtLL - pHtL
V£HtL ! bHVHtLL - PHtL

where pHtL ! 0 and PHtL ! O, the zero vector and the zero linear oper-
ator, which cover the initial decentralized dynamics.  

Parameter  pHtL  is  called  the  viability  multiplier  and  parameter  PHtL
is called the viability connection operator. 

We prove that there is a common regulatory parameter qHtL, called
a correction price, such that the viability multiplier pHtL and the viabil-
ity connection operator PHtL are derived through another linear opera-
tor applied to qHtL. 
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We show that, under adequate assumptions, a parameter qoHtL that
minimizes the norm !qHtL¥ of the correction price can be selected from
the  correction  prices  regulating  the  network’s  viability.  In  this  sense
qoHtL defines optimal poHtL and PoHtL. 

The correction price provides the information about the changes in
the  network’s  decentralized  dynamics  necessary  to  govern  evolutions
satisfying the centralized constraints. This is the meaning of restoring
the  viability  of  decentralized  dynamics  of  the  network  by  the  decen-
tralization  by  price.  The  corrected  network  shown  in  equation  (3)  is
said to be decentralized by price. 

2. Prerequisites from Viability Theory

Consider a model that consists of n agents, each of which is character-
ized by its state. An ith agent’s state xiHtL ranges over a vector space Xi
with  time  t.  The  vector  space  Xi  is  referred  to  as  the  agent  i’s  state
space,  and  the  finite  dimensional  vector  space  X ! Pi!1

n Xi  of  ele-
ments 8x ! Hx1, … , xnL< is referred to as a collective state space.

Each  agent’s  state  evolves  independently  from  other  agents.  The
evolution of the state of an agent i is governed by the dynamics of the
state:  xi

£HtL ! fiHxiHtLL.  The  map  fi : Xi # Xi  depends  on  the  state  xi
and not on the other agents’ states, which reflects the independence of
the agents’ dynamics. 

A  subset  K  of  the  state  space  X  is  regarded  as  an  environment
of  viability  of  the  system,  in  which  the  agents’  state
x HtL ! Hx1HtL, … , xnHtLL  must remain at any time t ¥ 0. In our frame-
work,  the  environment  of  viability  is  described  through  the  viability
constraints as follows. Given a finite dimensional vector space Z  and
a subset # of Z, the viability constraints defined by a map h : X # Z
are 

hHxL œ #.

Then,  the  environment  of  viability  K  can  be  written  explicitly  as
K ! 8x hHxL œ #<.

Thus, the system of the dynamics of the agents’ states and the via-
bility constraints is written as 

(4)" i ! 1 … n, xi
£HtL ! fiHxiHtLL

(5)" t ¥ 0, hHxHtLL œ #.

Definition 1. (Viable Environment) The environment K defined by the via-
bility constraints in equation (5) is viable under the dynamics in equa-
tion  (4)  if  from  any  initial  state  Hx1, … , xnL œ K  starts  at  least  one
evolution governed by the dynamics that is viable in K. 
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Since  there  is  no  reason  why  the  system,  left  to  evolve  by  itself,
shall  always  remain  viable,  the  question  of  restoring  the  viability  of
the system arises. The question is resolved using the method of the via-
bility multipliers as we describe in Section 2.1. 

2.1 The Viability Theorem and Viability Multipliers  
Let X be a finite dimensional vector space. We denote by P a cone, by
P  its closure, and by co P  its closed convex hull. The polar cone of P
is denoted by P- ! 8p œ X* " x œ P, Xp, x\ § 0<.  
Definition 2.  (Tangent  Cone) Consider a subset K  of a finite dimensional
vector space X  and a vector x  in K.  The tangent cone  (or the contin-
gent cone of Bouligand) TKHxL to set K at x is the closed cone 

(6)TKHxL ! u œ X lim
hØ0+

inf
dHx + hu, KL

h
! 0 ,

which  coincides  with  the  whole  space  X  if  x  belongs  to  the  interior
of!K.  

For  a  convex  set  K,  the  tangent  cone  coincides  with  the  tangent
cone  of  convex  analysis,  which  is  the  closed  cone  spanned  by  K - x:

TKHxL ! ‹h>0
K-x

h
. 

Thus,  set  co HTKHxLL  is  the  closed  convex  hull  of  the  tangent  cone
TKHxL. 
Definition 3. (Normal Cone) The normal cone to a subset K of the vector
space X at a point x œ X, denoted by NKHxL, is defined to be 

(7)NKHxL := TKHxL- ! Hco HTK HxLLL-.

Definition 4.  (Sleekness) A subset  K  of  the  vector  space  X  is  said  to  be
sleek if the graph of the mapping x Ø NKHxL is closed. 

Let the vector space X be supplied with a scalar product l with the
norm  l,  lHxL ! !x¥,  and  let  L  be  the  duality  map  on  X  associated
with the scalar product. 

Definition 5.  (Marchaud  Set-Valued  Map) A  set-valued  map  F : X Ø Y  is
called Marchaud  if  it  has a closed graph, convex values,  and a linear
growth defined by 

lHFHxLL := sup
vœFHxL lHvL § cHlHxL + 1L for some constant c.

We  denote  the  agents’  dynamics  as  a  whole  by  x£HtL ! f HxHtLL,
where xHtL ! Hx1HtL, x2HtL… , xnHtLL is the collective state of agents and
f HxL ! Hf1Hx1L, … , fnHxnLL. 
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Theorem 1. (Nagumo Viability Theorem) Let K be a closed subset of vector
space  X  and  f : X # X  be  a  continuous  map  with  a  linear  growth.
Then, K is viable under the differential equation x£ ! f HxL if and only
if  for  any  x œ K,  the  dynamics  and  the  constraints  are  linked  by  the
following relation:

(8)" x œ K, f HxL œ co HTKHxLL.
The general approach to restoring viability is to replace function f

in the differential equation x£ ! f HxL by a correction map f
è
 that satis-

fies the requirements of the Nagumo viability theorem. 
We define a viability discrepancy to be the distance between the ini-

tial  and  the  corrected  dynamics  and  we  denote  it  by
cHxL ! lJf HxL - f

èHxLN.  Obviously,  the  minimal  viability  discrepancy

coHxL is achieved for the best approximation projection of f HxL on the

closed convex hull of the tangent cone, f
èHxL ! Pco HTKHxLL f HxL, since 

coHxL ! lIf HxL -Pco HTKHxLL f HxLM ! inf
uœco HTKHxLL lHf HxL - uL.

Because  co HTKHxLL  is  a  closed  convex  cone  and  NKHxL  is  its  polar
cone, then the Moreau projection theorem (see [12]) implies that f HxL
can be written as f HxL ! Pco HTKHxLL f HxL + L-1 PNKHxL Lf HxL. If we set 

(9)po ! PNKHxL Lf HxL,
the  correction  function  can  be  represented  as  f

èHxL ! f HxL - L-1 poHxL,
where poHxL is considered as a regulatory parameter.  

Motivated by this representation, we consider a general  correction
in the form of 

(10)x£HtL ! f HxHtLL - L-1 pHtL,
where  pHtL œ X*  is  a  regulatory  parameter  belonging  to  the  set  of
all  the  regulatory  parameters  providing  the  viability  corrections—the
regulation map:

(11)RKHxHtLL ! 9p œ X* f HxHtLL - L-1 p œ co HTKHxHtLLL=.
Such regulatory parameters are referred to as viability multipliers.  

Clearly,  the  viability  multiplier  poHxL ! PNKHxL Lf HxL  corresponds
to  the  minimal  viability  discrepancy  and  belongs  to  the  regulation
map,  poHxL œ RKHxL.  However,  using  only  the  Nagumo  theorem,  we
cannot prove the viability of the correction since,  though the tangen-
tial  conditions are satisfied,  the continuity properties are lost  by pro-
jecting the map f HxL onto the tangent cone. 
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In order to prove the viability of  the correction for equations (10)
and (11), we are helped by the following fundamental theorem.  

Theorem 2.  (Fundamental  Viability  Theorem) Consider  the  differential  in-
clusion  x£ œ FHxL,  where  F  is  a  set-valued  map.  If  FHxL  is  Marchaud,
then K is viable under F if and only if " x œ K, 0 œ FHxL - co HTKHxLL. 

In the following theorem we present the requirements under which
the correction for equations (10) and (11) restores the viability. 

Theorem 3. (Restoring Viability) Denote by B a unit ball in X*. Assume f
to be continuous with linear growth and K to be sleek. Then, the envi-
ronment  K  of  the  system  from  equations  (4)  and  (5)  is  viable  under
the new dynamics in equations (10) and (11). Furthermore, it is viable
under the correction with minimal viability discrepancy:

x£HtL ! f HxHtLL - L-1 poHxHtLL.
Proof.  Since  the  map  x # f HxL  is  continuous  and  x Ø coHTKHxLL  is
lower semi-continuous,  we infer  that  the set-valued map x Ø coHxLB,
where  coHxL ! dHf HxL, coHTKHxLLLB,  is  upper  semi-continuous  thanks
to  the  maximum theorem.  The  set-valued map G : X Ø X  defined  by
GHxL := f HxL - L-1HcoHxLB › NKHxLL  is  Marchaud  because  its  graph  is
closed, its images are convex, and it has linear growth since 

" x œ K, dHf HxL, coHTKHxLLL § lHf HxLL § cHlHxL + 1L.
It remains to be proved that GHxL › coHTKHxLL ! «.  

Indeed,  the  Moreau  theorem  implies  that  the  viability  multiplier
poHxL  minimizing  the  viability  discrepancy  is  the  projection
poHxL ! PNKHxLHLf HxLL  onto  the  normal  cone  NKHxL  of  f HxL,  and

uoHxL ! f HxL - L-1 poHxL  is  equal  to  Pco HTKHxLL f HxL.  So  the  viability

multiplier  poHxL  satisfies  poHxL œ coHxLB › NKHxL,  and  hence
uoHxL ! f HxL - L-1 poHxL  belongs  to  GHxL › co HTKHxLL.  Thus,  the  as-
sumptions of  the fundamental  viability  theorem (Theorem 2) are sat-
isfied, and we have proved that K is viable under the corrected differ-
ential inclusion x£HtL œ GHxHtLL. ·

Motivated  by  the  economic  interpretation  [5],  the  correction  in
equations (10) and (11) is called viability correction by the decentral-
ization by price. 

2.2 Restoring Viability  
The  correction  results  described  above  deal  with  viability  constraints
written  as  x œ K.  In  the  case  of  the  explicit  constraints  hHxL œ #,
where h : X # Z and # Õ Z, the environment K can be defined in the
form K := 8x œ X hHxL œ #<.  
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Then, under the assumption that the function h : X # Z is a contin-
uously  differentiable  map  such  that  its  derivative  h£ HxL  is  surjective
and  the  set  #  is  sleek,  the  tangent  and  the  normal  cones  TKHxL  and
NKHxL can be described in terms of the tangent and the normal cones
T"HhHxLL and N"HhHxLL by the formula 

TKHxL ! h£ HxL-1 T"HhHxLL and NKHxL ! h£ HxL* N"HhHxLL.
Hence,  with  additional  assumptions  on  h  and  #,  the  correction

that restores the viability is defined in the following theorem. 

Theorem 4.  (Restoring  Viability  for  Explicit  Constraints) If  # Õ Z  is  sleek,
function  f : X # X  is  continuous  with  linear  growth,  and  function
h : X # Z  is  a  continuously  differentiable  map  such  that  its  differen-
tial h£HxL is surjective, then # is a viability domain of 

x£ ! f HxL - L-1 h£ HxL* qHxL
where qHxL ranges over  

(12)
R"HxL ! 9q HxL œ Y*

h£HxL f HxL - h£HxLL-1 h£ HxL* qHxL œ co T" Hh HxLL=.
Particularly, taking qoHxL œ R"HxL can minimize the viability discrep-
ancy  

(13)qoHxL ! PN! Hh HxLLKIh£HxLL-1 h£ HxL* M-1 h£HxL f HxL O œ R"HxL.
Here,  the  viability  multiplier  p œ X*  is  equal  to  h£HxL* qHxL,  where

qHxL œ Z*  and the particular case when the minimal viability discrep-
ancy is achieved corresponds to poHxL ! h£HxL* qoHxL. 

3. Network  

We define the network as follows.  

Definition 6.  (Network) Given  a  linear  operator  V œ "HX, YL,  maps
f : X # X, b : "HX, YL # "HX, YL. Consider a system of n agents with
the states x ! Hx1, … , xnL œ X that are governed by the decentralized
dynamics  xi

£HtL ! fiHxi HtLL  and  connected  by  the  connection  operator
V  governed  by  the  decentralized  dynamics  V£HtL ! bHVHtLL.  The  sys-
tem  defines  a  network  of  the  agents’  states  connected  to  the  agents’
common results with the pattern of the connection V x. 

We write the network as in equation (1):

x£HtL ! f HxHtLL
V£HtL ! bHVHtLL.
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3.1 Network’s Viability  
When the agents’ collective result VHtL x HtL is restricted by the viability
constraints in equation (2),

" t ¥ 0, gHVHtL xHtLL œ #,

the question of the network’s viability is raised.  
By the environment of the network, we understand the set of pairs

of agents’ states and connection operators Hx, VL  that satisfy the con-
straints. Evolutions governed by the network in equation (1)’s dynam-
ics and satisfying viability constraints in equation (2) are called viable
evolutions. 

The environment of the network is said to be viable under the net-
work’s dynamics if for any initial state in the environment, there is at
least  one  viable  evolution  starting  from  it.  Then,  we  define  a  viable
network as follows. 

Definition 7.  (Viable  Network) The  network  is  viable  if  the  environment
of the network is viable under the network’s dynamics. 

The  network  (equation  (1))  with  the  viability  constraints
(equation!(2))  that  we  study  in  this  work  represents  a  decentralized
model that is characterized by the absence of mutual dependencies be-
tween  the  network’s  data—the  agents  and  the  connection  operator.
Therefore, there is nothing guaranteeing that the agents’ states or the
connection  operator  do  not  violate  the  centralized  viability  con-
straints. Hence, nothing guarantees the network’s viability. 

The main problem we relate in the present paper is the problem of
viability  of  the  network  with  decentralized  dynamics  evolving  under
the  given  (centralized)  constraints.  We  solve  the  problem by  correct-
ing the network using the method of correction by decentralization by
price. 

3.2 Restoring the Network’s Viability  
We assume the spaces X  and Y  are supplied with the scalar products
that  define  the  duality  maps  L : X # X*  and  M : Y # Y*.  Note  that
the duality map H on "HX, YL is equal to H := L-1 " M.  

Analogously  to  the  correction  by  decentralization  by  price  dis-
played  in  the  formula  in  equations  (10)  and  (11),  we  choose  the  pa-
rameters  pHtL œ X*  and  PHtL œ "HY*, X*L  and  write  the  correction  of
the  network  (equation  (1))  with  constraints  (equation  (2))  as  the
following:

(14)
x£HtL ! f HxHtLL - L-1 pHtL
V£HtL ! bHVHtLL - H-1 PHtL.
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Theorem 5.  (Restoring  the  Network’s  Viability) Consider  the  map
JgHx, VL œ "HZ, Z*L, 

JgHx, VL ! Ag£HVxLAl2HxLM-1 + V L-1 V*E g£HVxL*E-1,

the regulation map R" : Xä"HX, YL # Z*, such that   

R"Hx, VL ! 9q œ Z*

g£HVxL HbHVL x + Vf HxLL - Jg Ix, VM-1 q œ co T"HgHVxLL=,
the element qo œ Z*,   

qoHx, VL ! PN!HgHVxLLIJgHx, VL g£HVxL@bHVL x + Vf HxLD M.
Assume  maps  f  and  b  are  continuous  with  linear  growth,  set

# Õ Z  is  sleek,  and  map  g  is  continuously  differentiable  such  that
derivative  g£  is  surjective.  Then,  the  network is  viable  under  the  cor-
rected system 

x£HtL ! f HxHtLL - L-1 V* g£ HVxL* qHtL
V£HtL ! bHVHtLL - L x " M-1 g£ HVxL* qHtL

where the prices qHx, VL œ R"Hx, VL. Particularly, the minimal correc-
tion price qoHx, VL belongs to R"Hx, VL.  

Note that  operator  JgHx, VL  is  a  duality  map on Z  induced by the
duality map on Xä"HX, YL. 

As can be observed from these results, the centralized constraints in
the network bring into the viable correction a factor of mutual depen-
dencies between the agents’ states and the connection operator. These
mutual  dependencies  are  encapsulated  in  the  viability  multiplier
pHtL œ X*  and the viability connection operator PHtL œ "HX, YL, which
are defined by 

(15)
pHtL ! V* g£HVxL* qHtL
PHtL ! x " g£HVxL* qHtL.

3.3 Example: Network of Agents Forming Coalitions  
We now show the network’s viability correction with the example of
a network of agents (actors) forming coalitions. We refer to the model
based  on  statistical  physics  allowing  the  reproduction  of  the  interac-
tions  in  formation  of  coalitions  among  agents.  The  detailed  model
and its social and political applications are described in [13].  

In  our  framework,  we consider  the  model  as  a  multi-agent  system
with n agents, where each agent i belongs to one of two coalitions $
or %, in such a way that the state of the agent is si ! 1 if the agent be-
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            i     
longs  to  $  and  si ! -1  if  it  belongs  to  %.  Interactions  between  any
two agents depend on their bilateral mutual propensity, which is sym-
metric  and can be positive or  negative.  The propensity of  two differ-
ent agents i and j is denoted by vi j. The gain of agent i from its inter-
actions with other agents is as follows: 

Hi ! ‚
i!j

si vi j.

The  requirement  of  stability  of  the  coalitions  is  satisfied  when  each
agent i’s gain is not less than its satisfactory minimum, Hi ¥ Hi

o.  
Stabilization of  the  coalitions  is  achieved due to  the  additional  bi-

lateral  propensities  pi j  between  agents  i  and  j,  produced  by  supple-
mentary  exchanges  between  the  agents.  The  additional  propensities
modify  the  overall  propensity  and  the  corrected  gain  becomes
Hi ! ⁄i!j siIvi j + pi jM, which for chosen values of pi j  reaches the nec-
essary satisfaction minimum. 

This is the principle of the coalitions forming model. To be an ex-
ample  of  our  problem,  the  model  must  be  a  dynamic  model  and  the
coalitions must be fuzzy. In order to extend the model to the dynamic
case,  we  assume  the  agents’  states  and  the  propensities  are  evolving
with time according to given dynamics,  and the coalitions formed by
the agents are fuzzy. Let xi œ @0, 1D be the value of the agent i’s fuzzy
belonging to the coalitions, that is i  is xi  in $  and 1 - xi  in %.  Then,
agent i’s  fuzzy state si  can be expressed in the terms of  the fuzzy be-
longing as si ! xi - H1 - xiL ! -1 + 2 xi. 

Thus,  we  obtain  a  dynamic  system  of  n  agents  with  states
sHtL ! Hs1HtL,  s2HtL, … , snHtLL  and  the  connection  operator
VHtL ! 9vi jHtL=i,j  connecting between the agents’ states and the agents’

gains HHtL ! HH1HtL, H2HtL, … , HnHtLL. Then, the network is 

(16)
s£HtL ! f HsHtLL
V£HtL ! bHVHtLL

and its  viability  constraints  standing for  constraint  of  stability  of  the
coalitions  

(17)" t ¥ 0, VHtL sHtL œ #.

For  set  #  to  be  sleek,  we  assume  each  agent’s  satisfactory  mini-
mum  to  be  Hi

o - qi  for  some  qi œ !,  qi > 0.  We  then  define
# ! 9HH1, H2, … , HnL œ !n " i ! 1 … n, Hi ¥ Hi

o - qi=. 
Assume maps f  and b are continuous with linear growth. Since, in

the  present  example,  the  spaces  X, Y, Z ! !n  are  Euclidean  spaces
supplied  with  the  canonical  basis,  the  duality  maps  L  and M  are  the
identity  maps, VHtL*  is  equal  to  the  transpose  matrix  VT ! V,  and
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map  g£ ! g£* ! I.  Then,  according  to  the  theorem  on  restoring  the
network’s viability, since map g ! I is continuously differentiable and
the  derivative  g£ ! I  is  surjective,  the  network  in  equation  (16)  cor-
rected by the viability multipliers pHtL  and viability connection opera-
tor PHtL from the formula in equation (15) is viable: 

(18)
s£HtL ! f HsHtLL - VHtL qHtL
V£HtL ! bHVHtLL - sHtL" qHtL.

Here, the correction price qHtL belongs to  

R"HsHtL, VHtLL !9qHtL œ !n HbHVHtLL sHtL + VHtL f HsHtLLL - JgHs HtL, V HtLL-1 qHtL œ
co T"HVHtL sHtLL=

and the minimal correction price qoHsHtL, VHtLL is equal to 

PN!HVHtL sHtLLIJgHsHtL, VHtLL@bHVHtLL sHtL + VHtL f HsHtLLDM.
Note that in the corrected network (equation (18)), the elements of

the viability connection operator PHtL ! sHtL" qHtL, which are equal to
sjHtL qiHtL,  play the  role  of  the  additional  bilateral  propensities  pi j  be-
tween agents i and j, which stabilize the coalitions. 

In order to give a schematic picture of the correction, consider the
particular case of three agents 1, 2, and 3 whose choices for the coali-
tions can be described by 

s1HtL ! -1 + 2 cos2HtL,
s2HtL ! -1 + 2 sin2HtL,
s3HtL ! -1 + 2 cos2HtL,

and whose bilateral propensities are  

v12HtL ! -cosHtL,
v13HtL ! cosHtL,
v23HtL ! -cosHtL.

The system is shown in Figure 2 at time t ! 0.  
The three agents with the states s1HtL,  s2HtL,  s3HtL  and their connec-

tion operator VHtL form the network as shown in Figure 3.
Assume  q1 ! q2 ! q3 ! q  for  some  q > 0,  then

# ! 9HH1, H2, H3L œ !3 H1 ¥ 2 - q, H3 ¥ 2 - q, H2 § -2 + q=.  De-
fine  zHtL ! VHtL sHtL.  At  the  initial  time  t0 ! 0,  the  agents’  gains
z0 ! HH1 H0L, H2 H0L, H3 H0LL ! H2, -2, 2L belong to the interior of #.
Over  time,  at  some  moment  t1  the  agents’  gains  reach  the  boundary
of  #  for  the  first  time,  z1 ! HH1 Ht1L, H2 Ht1L, H3 Ht1LL !H2 - q, -2 + q, 2 - qL, whereupon the network runs out of viability for
some time. 
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Figure 2. The model of three agents forming coalitions at t ! 0. 

Figure 3. Scheme of the connectionist network corresponding to the model of
three agents forming coalitions. 

The correction of the network’s viability in equation (18) at time t1
is shown schematically in Figure 4. 

In this example, we have seen the illustration of the practical appli-
cation of the theorem, in which the regulatory parameters control the
network’s dynamics to keep them inside the viability domain. 

Figure 4. The collective agents’ result VHtL sHtL corrected at z1 stays in the inte-
rior  of  set  "  (shown  with  the  normal  and  tangent  cones  of  the  set  at  the
point z1). 
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3.4 Proof of the Theorem on Restoring the Network’s Viability  
In order to obtain the network’s viability correction as in the form of
equation (14), we shall use the viability multipliers approach. To this
end,  we  consider  a  finite  dimensional  vector  space  Xä"HX, YL  of
pairs  Hx, VL  representing  the  states.  The  duality  map  T  on  the  state
space Xä"HX, YL is T := LäH ! LäL-1 " M. Then, we write the net-
work in equation (1) with the constraints in equation (2) in the form
of the viability system in equations (4) and (5): 

(19)Hx£HtL, V£HtLL ! Hf HxHtLL, bHVHtLLL
(20)" t ¥ 0, hHVHtL, x HtLL œ #,

where  hHx, VL := gHV xL  is  restricted  to  remain  in  a  subset  #  of  the
constrained results’ space Z.

According  to  Definition  7  of  the  viable  network  and  Definition  1
of  the  viable  environment,  the  network  (equation  (1))  with  the  con-
straints (equation (2)) is viable if  and only if  the environment #  is a
viability domain under the network’s dynamics. Hence, in order to re-
store  the  network’s  viability,  we  can  apply  the  results  of  Theorem 4
under the theorem’s assumptions. 

Since  # Õ Z  is  sleek,  the  map  f ä b : Xä"HX, YL # Xä"HX, YL  is
continuous  with  linear  growth,  and  h : Xä"HX, YL # Z  is  a  continu-
ously  differentiable  map  such  that  the  differentiation  operator
h£Hx, VL is surjective, then the assumptions of Theorem 4 are satisfied.
Substituting  the  term Ah£Hx, VLT-1 h£Hx, VL*E-1  in  the  correction  for-
mulas (equations (12) and (13)) of the theorem by JhHx, VL, we derive
the viability correction of the network 

(21)

Hx, VL£ ! Hf HxL, b HVLL - T-1 h£ Hx, VL* qHx, VL, where
qHx, VL œ R"Hx, VL

R" Hx, VL ! 9q œ Z* h£Hx, VL Hf HxL,
bHVLL - Jh Hx, VL-1 qHx, VL œ

co T"Hh Hx, VLL=
and particularly,  

qoHx, VL ! PN!HhHx,VLLHJhHx, VL h£Hx, VL Hf HxL, bHVLLL.
Note  that  since  h£Hx, VL  is  a  surjective  linear  operator  mapping  X

to  Z,  the  operator  JhHx, VL ! Ah£Hx, VLT-1 h£Hx, VL*E-1  is  a  duality
map on Z induced by the duality map T on Xä"HX, YL. 

In order to continue to the next step in the proof of Theorem 5, the
following lemmas are required. 

Lemma 1.  Give  a  function  of  two  variables  h : Xä"HX, YL # Z  that
maps  a  pair  of  a  vector  x  and  a  linear  operator  V  according  to
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hHx, VL ! gHV xL,  where  g : Y # Z  is  a  differentiable  function.  Then,
the  differential  h£Hx, VL  in  a  general  direction  Hu, UL œ Xä"HX, YL
complies with 

(22)h£Hx, VL Hu, UL ! g£HV xL HU x + V uL.
We then state and prove the following property. 

Lemma 2.  Define  a  linear  operator  B : XäX* " Y # Z  by
BHu, UL ! g£HV xL HU x + V uL  for  any  Hu, UL œ XäX* " Y.  Then,  the
transpose operator B*  maps Z*  to X* äY " X*  such that for any arbi-
trary q œ Z*, B* q ! HV* g£HV xL* q, x " g£HV xL* qL.
Proof. In order to prove the statement of the lemma, we apply proper-
ties of the transpose operation and the duality map. 

Given  an  arbitrary  q œ Z*  and  an  instance  Hu, UL  of  Xä"HX, YL,
consider  the  duality  product  XB* q, Hu, UL\,  where  B* q œHXä"HX, YLL*.  Recall  the  property  of  the  transpose  operation  stating
for  any  A œ "HX, YL,  x œ X  and  r œ Y*,  that  XA* r, x\X ! Xr, A x\Y
and Xr, A a\ ! Xa " r, A\, and obtain 

XB* q, Hu, UL\ ! Xq, BHu, UL\ ! Xq, g£HVxL HU x + V uL\ !
Xq, g£HVxL HV uL\ + Xq, g£HVxL HU xL\ !
XV* g£ HVxL* q, u\ + Xg£ HVxL* q, U x\ !
XV* g£ HVxL* q, u\ + Xx " g£ HVxL* q, U\.

As a consequence,  

B* q ! HV* g£ HVxL* q, x " g£ HVxL* qL.
This concludes the proof. ·

Lemma 3.  The operator h£Hx, VL  applied to q  is  equal to h£Hx, VL* q !Hp, PL, where 

p ! V* g£HVxL* q and P ! x " g£ HVxL* q.

Proof.  By Lemma 1, the derivation operator h£Hx, VL  for an arbitrary
derivation  direction  Hu, UL  is  equal  to  h£Hx, VL Hu, UL !
g£HVxL HU x + V uL. Then, according to Lemma 2, 

h£Hx, VL* q ! HV* g£ HVxL* q, x " g£ HVxL* qL.
This implies that p ! V* g£HVxL* q and P ! x " g£HVxL* q. ·

Lemma 4.  Consider  the  linear  operator  B : XäX* " Y # Z  defined  by
BHu, UL ! g£HVxL HU x + V uL for any Hu, UL œ XäX* " Y. Then, 

(23)B T-1 B* ! g£HVxLAl2HxLM-1 + V L-1 V*E g£HVxL*.
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Proof.  As  it  is  shown  in  Lemma  2,  B*  maps  any  q œ Z*  to
B* q ! HV* g£HVxL* q, x " g£HVxL* qL. 

Applying T-1 ! L-1ä IL-1 " MM-1 to B* q, we obtain

T-1 B* q ! JL-1 V* g£ HVxL* q, IL-1 " MM-1 x " g£ HVxL* qN,
or equivalently,  

(24)T-1 B* q ! IL-1 V* g£ HVxL* q, L x " M-1 g£ HVxL* qM.
Then, by applying B to T-1 B* q, we infer that 

BIL-1 V* g£ HVxL* q, L x " M-1 g£ HVxL* qM !
g£HVxLAIL x " M-1 g£ HVxL* qM x + VIL-1 V* g£ HVxL* qME.

Since

IL x " M-1 g£HVxL* qM x !
XL x, x\M-1 g£HVxL* q ! l2HxLM-1 g£HVxL* q,

we derive that  

B T-1 B* q !
g£HVxLAl2HxLM-1 g£ HVxL* q + V L-1 V* g£ HVxL* qE !
g£HVxLAl2HxLM-1 + V L-1 V*E g£HVxL* q,

from which we deduce that 

(25)B T-1 B* ! g£HVxLAl2HxLM-1 + V L-1 V*E g£HVxL*.
This concludes the proof. ·

According to the correction formula in equation (21),  the viability
multiplier  p  and  the  viability  connection  operator  P  are  subjected  toHp, PL ! h£Hx, VL* q,  and  therefore  the  value  of  Hp, PL  follows  from
Lemma  3.  Hence,  the  correction  formula  follows  from  the  fact  that
the duality map T on Xä"HX, YL is equal to T ! XäL-1 " M. 

Using  the  notation  of  the  correction  formula,  we  obtain  the  net-
work’s regulation map 

R"Hx, VL ! 9q œ Z*

h£Hx, VL Hf HxL, bHVLL - Jh Hx, VL-1 q œ co T" Hh Hx, VLL=
where 

JhHx, VL ! Bh£Hx, VL ILäL-1 " MM-1 h£Hx, VL*F-1

and hHx, VL ! gHVHxLL. 
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Lemmas  1,  2,  and  4  imply  that  the  duality  map  JgHx, VL  on  Z  is
equal to

JgHx, VL ! Ag£HV xLAl2HxLM-1 + V L-1 V*E g£HVxL*E-1.

By  Lemma  1,  h£Hx, VL Hu, UL ! g£HV xL HU x + V uL  for  any  Hu, UL,
and then h£Hx, VL Hf HxL, bHVLL ! g£HV xL HbHVL x + Vf HxLL. Hence, 

R"Hx, VL ! 9q œ Z*

g£HVxL HbHVL x + Vf HxLL - Jg Ix, VM-1 q œ co T"HgHVxLL=.
In the same way, we calculate the viability multiplier of minimal cor-

rection price qoHx, VL. This concludes the proof of Theorem 5. 

4. Conclusion  

In this paper,  we have discussed the correction of viability of the dy-
namical  network  defined  over  a  finite  set  of  autonomous  agents
connected with the results of the agents’ interactions by a connection
operator.  The  network  represents  a  decentralized  model  where  both
agents and their connection operator evolve independently over a cen-
tralized  environment  of  scarce  resources  that  imposes  viability  con-
straints on the evolutions.  

Due to the absence of mutual dependencies necessary to satisfy the
centralized  viability  constraints,  the  network  most  likely  runs  out  of
viability for some time. We suggested restoring the network’s viability
in such a way that the decentralized nature of the system is kept. This
is realized by regulation of both the agents’ and the connection opera-
tor’s dynamics using regulatory parameters that depend on a common
value called correction price. The correction price provides all the in-
formation about the changes in the dynamics necessary to govern evo-
lutions satisfying the collective constraints. 
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