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Finite additive cellular automata with fixed and periodic boundary con-
ditions are considered as endomorphisms over pattern spaces. A char-
acterization of the nilpotent and regular parts of these endomorphisms
is given in terms of their minimal polynomials. Generalized eigenspace
decomposition is determined and relevant cyclic subspaces are described
in terms of symmetries. As an application, the lengths and frequencies of
limit cycles in the transition diagram of the automaton are calculated.

1. Introduction

Questions relating to the evolution of variable size configurations on
a finite cellular automaton (CA) are in general PSPACE-hard. Some
classification problems, such as the question of whether all configura-
tions evolve to a fixed point, are even undecidable. Here we refer to the
uniform version of the problem, where the local rule of the CA is fixed,
but one considers grids of all finite sizes. The root for all these compu-
tational hardness properties is, of course, the fact that one-dimensional
CAs are computationally universal, see [1–3]. At the other end of the
spectrum lie additive CAs. Here the evolution of a configuration is pre-
dictable in the sense that it is not necessary to explicitly compute t steps
in the evolution of a pattern X under some global rule Ρ to determine
Ρt(X). For example, if the global rule of the automaton is expressed
by matrix multiplication, Ρt(X) can be computed in time polynomial
in the size of the grid and log t. Typical examples of such rules in the
one-dimensional case are elementary rules 90 and 150, corresponding
to the exclusive or of the two neighbors of a cell, and the exclusive or of
the neighbors plus the center cell. Another minor variation concerns the
type of boundary conditions. We will refer to all such rules generically
as rule Σ when details are irrelevant.
Σ-automata were studied in great detail in [4] using binary polyno-

mials as the main algebraic tool. The authors represent both the linear
operator and the configurations as binary polynomials in some suitable
quotient ring !2[x]/(Τ). For example, rule 90 with cyclic boundary con-
ditions on a grid of length n can be represented by multiplication with
x$1 % x modulo Τ & xn % 1. A wealth of structural information about
the transition diagram of the rule can then be obtained via the theory of
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finite fields. As it turns out, the properties of Σ on a finite grid of size
n depend strongly on number theoretic properties of n. For example,
reversibility; and in fact the corank of Σ, can be determined from simple
divisibility properties of n. All these calculations can be carried out
in time polynomial in log n. The question arises: Which properties of
the transition diagram can be determined efficiently, and in particular,
without recourse to matrix algebra? Note that since the number of
configurations is 2n one cannot hope for time complexity polynomial
in log n in general. As we will see, determining the cycle structure of
the diagram involves the factorization of n, the factorization of certain
binary polynomials of degree n, and the computation of the period of
their irreducible factors. Möbius inversion can be used to avoid part
of the factorization of polynomials, but it seems unlikely that one can
dispense with any of these computational tools.

In this paper we construeΣ as an endomorphism on an n-dimensional
vector space 2n over !2, that is, the Galois field with two elements. We
refer to these vector spaces as pattern spaces. This allows us to exploit
the self-adjointness of the global rule, viewed as an endomorphism. For
example, the patterns that appear on limit cycles are precisely those
that are orthogonal to the kernel of the endomorphism, which produces
a decomposition of pattern space into invariant, orthogonal subspaces
V & K(E, see [5]. Since the minimal polynomials of theΣ operators are
known, see [6], we can push this decomposition further to obtain a de-
tailed description of the elementary divisor spaces. As we will see, there
are chains of natural subspaces in the elementary divisor spaces that
correspond to the symmetries of the CA. Given the factorization of the
minimal polynomial and the periods of the irreducible factors, one can
easily determine the complete structure of the transition diagram. Using
only polynomial arithmetic one can determine bases for the elementary
divisor subspaces, as well as the relevant Σ-cyclic subspaces, and the or-
der of Σ when restricted to these spaces. Thus, given a pattern X we can
calculate the transient length and the length of the limit cycle in the orbit
of X by calculating the representation of X with respect to these bases.

As one might suspect, the answers vary slightly depending on whether
the center cell is included or excluded, corresponding to rules 150 and
90, respectively. There are also slight differences depending on whether
cyclic or fixed boundary conditions are used. The common tool used
to handle these four types of systems is a version of binary Fibonacci
or Chebyshev polynomials, first introduced in [5] for the purpose of
analyzing two-dimensional Σ-automata. Define the Π-polynomials by
the following second order homogeneous recurrence over !2[x]:

Π0 & 0,
Π1 & 1, (1)
Πn & x * Πn$1 % Πn$2.
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The Π-polynomials can be computed easily either by using a logarithmic
depth recursion, much as for the Fibonacci numbers, or by exploiting
an explicit description of the coefficients of these polynomials. For
example,

Πn(x) &!
i
" n % i
2i % 1

#xi mod 2.

Using Lucas’ theorem, the computation of the binomial coefficients
modulo 2 can be handled by comparing the binary expansions of n % i
and 2i % 1.

The minimal polynomials of the Σ operators can be expressed eas-
ily in terms of these polynomials. Moreover, the Π-polynomials have a
relatively simple multiplicative structure, and there is a uniform descrip-
tion of the factorization of these polynomials. Hence we can determine
the elementary divisors of Σ, and the corresponding decomposition of
the pattern space. For the subspaces E so obtained, the order of the
restriction Σ E can be expressed as the period of the corresponding
irreducible polynomial, multiplied by a power of 2, which is determined
by the exponent of the corresponding irreducible factor of the minimal
polynomial in question.

A good part of the discussion below is just the study of linear op-
erators over pattern spaces, and uses only general tools from algebra;
see for example [7, 8]. Background material on finite fields, irreducible
binary polynomials, and shift-register sequences can be found in [9–11]
and will be used without further comment. In order to give a more
detailed analysis of Σ-automata, one also has to consider the geometry
of a pattern space together with Σ. More precisely, we consider simu-
lations based on monomorphisms of pattern spaces that commute with
Σ. In the case where the domain and codomain coincide we are dealing
with automorphisms that commute with the shift. Of particular interest
are geometric automorphisms: for fixed boundary conditions there is
only one such nontrivial automorphism, namely reflection. For cyclic
boundary conditions on the other hand, the geometric automorphism
group is the dihedral group, and is generated by reflection and rotation.
Invariance, or lack thereof, of various subspaces under these automor-
phisms is the key element in determining the structure of the transition
diagram of Σ in great detail.

We have limited our discussion here to the characteristic 2 case,
though the results can be carried over, mutatis mutandis, to other prime
fields. See [12] for a discussion of linear operators in this more general
context.

This paper is organized as follows. In section 2 we introduce termi-
nology and notation, and briefly recap some well-known results about
the transition diagram of Σ. We also provide the necessary background
knowledge about Π-polynomials. In section 3 we determine the elemen-
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tary divisor decomposition of a pattern space, and show how to compute
the order of the restriction of Σ to the generalized eigenspaces that make
up the decomposition. The next section discusses simulations and shows
how to exploit them to obtain a basis for the eigenspaces. The results
are then applied in section 5 to obtain a complete description of the
cycle lengths in the diagram. We will also describe the subspaces of the
divisor spaces in terms of symmetries. In the last section we conclude
by stating a few open problems relating to the analysis of Σ-automata.

2. Minimal polynomials and the transition diagram

Whenever necessary, we will indicate the boundary conditions by a sub-
script, and distinguish between rule 90 and 150 by a superscript. Thus,
Σ$c refers to rule 90 with cyclic boundary conditions and Σ%z refers to
rule 150 with fixed boundary conditions. For emphasis we may indi-
cate the size of the grid as in Σ$c (n). Correspondingly the pattern spaces
together with the linear operators will be denoted by "$c (n) & $2n,Σ$c %
and so forth. In order to apply the elementary divisor decomposition
machinery to pattern spaces we need an explicit description of the mini-
mal polynomials of the Σ-operators. The following result is established
in [6].

Theorem 1. The minimal polynomial of Σ$z (n) is Πn%1, and the minimal
polynomial of Σ$c (n) is

&
x Πn for n even, and x

&
Πn for odd n.

Thus, the minimal polynomial forΣ$z (n) has degree n, but the minimal
polynomial of Σ$c (n) has degree 'n/2(. The minimal polynomials for
the associated maps Σ%z and Σ%c are obtained simply by applying the
involution x ! x%1 to these polynomials. We will denote the involution
x ! x % 1 on !2[x] by a superscript %. Hence the minimal polynomial
for Σ%z (n) is Π%n%1(x) & Πn%1(x% 1) and the minimal polynomial for Σ%c (n)

is (x % 1)Π%n/2(x) or (x % 1)
)
Π%n , depending on the parity of n.

It is also shown in [6] that the Π-polynomials admit a decomposition
into critical factors Ρd as follows:

Πn(x) & x2k$1*
d +m

Ρ2k

d (x) & x2k$1*
d +m

Ρd(x2k
) (2)

where n & 2k * m, m odd. One can show that the degree of Ρd is
,(d) where , denotes Euler’s totient function. The polynomials Ρd are
products of squares of certain irreducible polynomials. In many cases,
Ρd & Τ2 where Τ is irreducible, but there are critical factors that are
comprised of several irreducible polynomials. The first example is Ρ17 &+1 % x % x4,2 +1 % x % x2 % x3 % x4,2. This will be a minor obstruction in
our decomposition of pattern spaces later.

Complex Systems, 13 (2001) 245–270



Decomposition of Additive Cellular Automata 249

For our purposes here, it is more convenient to write theΠ-polynomials as

Πn(x) & xa (x % 1)b
r*

i&1

Τc
i (x). (3)

The second linear irreducible polynomial x % 1 is due to the critical
factor Ρ3 and only appears when n is a multiple of 3. The exponents
are determined as follows. We write D2(n) for the largest power of 2
which divides n. To simplify the expressions below, let us adopt Knuth’s
convention to write [,] for the boolean value, interpreted as 0 or 1, of
any unary predicate ,, see [13]. Then

a & D2(n) $ 1
b & [3 + n] * 2 D2(n)

c & [n - 2k, 3 * 2k] * 2 D2(n).

The minimal polynomials for Σ% are obtained simply by switching
a and b, and applying the involution to the irreducible factors. While
the exponents are easily determined from n, the irreducible factors Τ%i
are somewhat more difficult to describe. Indeed, it is shown in [6] that
every irreducible polynomial occurs as a factor of some Π-polynomial.
However, there appears to be no easy way to determine the least n
for which a given irreducible polynomial Τ divides Πn. Nonetheless,
equation (2) in conjunction with Möbius inversion can be used to obtain
the critical factors by plain polynomial arithmetic. More precisely,
Ρm & .d +m Π

Μ(d)
m/d , where m is odd and Μ denotes the Möbius function.

However, as already pointed out, a critical factor may be the product of
the squares of two or more irreducible polynomials, so we still need a
factoring algorithm to determine the elementary divisors of Σ.

We will refer to the functional digraph of the global map of a Σ-
automaton as the transition diagram of the automaton. Thus, the vertex
set of the diagram is a pattern space V & 2n, and there is an edge from
vertex v to vertex u if Σ(v) & u. It is clear from the definition that the
components of the transition diagram of Σ are unicyclic. In particular,
the co-orbit of 0 is a tree rooted at the fixed point 0, see [4, 5]. We
denote this component K. It follows from the linearity of Σ that the
branching factor in K is the corank of Σ. Moreover, from the results in
[14] and [6], it follows that the tree is completely balanced (i.e., all leaves
occur at the same level). The height of the tree is plainly the nilpotency
index of Σ, that is, the least number k such that corkΣk & corkΣk%1.
All the other trees in the diagram are isomorphic copies of the co-orbit
of 0.

One can think of the whole diagram as a deterministic product au-
tomaton over a one-letter alphabet. The two factor machines are the
co-orbit of 0, and the limit cycles. In terms of the linear operators,
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this corresponds to the standard decomposition of a pattern space as
V & K ( E where Σ K is nilpotent and Σ E is an automorphism,
see [8]. The two subspaces are sometimes referred to as the Fitting-null
and Fitting-one component, respectively. We will further decompose
the regular part into natural subspaces E & E1 ( E2. For our purposes
only those decompositions are of interest where the subspaces are Σ-
invariant. Recall that a subspace U of V is Σ-invariant if, and only if,
Σ(U) 0 U, and Σ-cyclic if, and only if, U is generated as a !2-vector
space by the Σ-orbit of some u 1 U. In other words, U is spanned
by -Σi(u) .... 0 2 i < d / for some d. A better way of expressing these
two conditions is to think of V as a !2[x]-module: the module oper-
ation is f * u & f (Σ)(u). A Σ-invariant !2-subspace is none other than
a !2[x]-submodule. Likewise, a Σ-cyclic !2-subspace is a !2[x]-cyclic
submodule. A function f 3 V 4 V is polynomially representable in Σ if
there is a polynomial r such that f (u) & r * u for all u 1 V.

We show in section 3 how to decompose the pattern space into a
direct sum of Σ-cyclic submodules. The dimension of a Σ-cyclic sub-
module E is the degree of Σ E. Likewise, since these submodules are
isomorphic as !2[x]-modules to a quotient module of !2[x] itself, we
will be able to determine the order of the restriction of Σ to these sub-
modules. The geometric automorphisms of reflection and rotation turn
out to be polynomially representable, and will be helpful in analyzing
the structure of the decomposition spaces.

3. The elementary divisor decomposition

Since !2[x] is a principal ideal domain, we can define the order of a
pattern u 1 V to be the necessarily monic polynomial Τ that generates
the ideal of all annihilators of u: (Τ) & - r 1 !2[x] .... r * u & 0 /. Clearly,
the order of any pattern divides the minimal polynomial of Σ. For Τ
irreducible let VΤ be the subspace of all patterns whose order is a power
of Τ. Note that for two distinct irreducible polynomials Τ and Ρ we have
VΤ 5VΡ & 0, so we can obtain a decomposition as a direct sum. Hence,
if Τ1, Τ2, . . . , Τk are all the irreducible divisors of the minimal polynomial
of Σ, we have the natural decomposition

V & VΤ1
( VΤ2

("( VΤk

where all the summands are in fact orthogonal due to the self-adjointness
of Σ.

If present, the subspace associated with Τ & x represents the nilpotent
part, and all the others represent the limit cycles, that is, the digraph
of the regular part. To get an actual count of the cycles of various
lengths we need to consider subspaces of VΤ arising from the elementary
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divisors of Σ. To this end, define the generalized eigenspace of f , for
any polynomial f 1 !2[x], by

A(f ) & - u 1 V .... f * u & 0 / .
It is easy to see that A(f ) & 0 if, and only if, f and the minimal poly-
nomial of Σ are coprime. On the other hand, for coprime f and g we
have A(fg) & A(f ) ( A(g), hence we will focus on eigenspaces of the
form A(Τe) 0 VΤ where Τe is a factor of the minimal polynomial of Σ,
Τ irreducible. The dimension of A(Τi) is i * deg Τ for all i 2 e. The
eigenspaces A(Τe) may fail to be irreducible in the sense that they may
admit further decomposition into Σ-invariant components, see the dis-
cussion for cyclic boundary conditions below. However, the Σ-cyclic
subspaces determined there are themselves irreducible.

As a first step towards the elementary divisors decomposition, let
us dispense with the nilpotent part K in V & K ( E. The nilpotency
index is the maximum k such that xk divides the minimal polynomial.
Hence, the dimension of K as a !2 vector space is the corank of Σk. The
other summand has the form E &

⊕
Ei,j where each of the subspaces

is Σ-cyclic and the minimal polynomials of Σ Ei,j have the form Τei,j
i ,

i & 1, . . . , s and j & 1, . . . , ki . Here Τi is a sequence of distinct irreducible
polynomials. We may safely assume ei,j 6 ei,j%1, in which case the
minimal polynomial of Σ is the product Τe1,1

1 Τe2,1
2 . . . Τes,1

s . As we will see,
there is a slight difference between the decompositions for fixed and
periodic boundary conditions.

3.1 Operator Σ"

For fixed boundary conditions there is exactly one irreducible eigenspace
for each one of the factors of the minimal polynomial.

Theorem 2. Let Πn%1 & xa.
r
i&1 Τb

i be the minimal polynomial of Σ$z (n).
Then the elementary divisor decomposition of V is K(E1("(Er where
K has dimension a and Ei has dimension b deg Τi. All the summands
are pairwise orthogonal. Moreover, the summands are irreducible, and
there are no other irreducible subspaces.

Proof. The minimal polynomial of the nilpotent part of any linear op-
erator is of the form xe. Since the minimal polynomial of Σ$z & Ν % Α is
the product of the respective minimal polynomials, it must be xa.

Now consider one of the prime powers Τb in the factorization of
the minimal polynomial where Τ is an irreducible polynomial and b &
2 * Η2(n % 1).

There is an associated elementary divisor E such that the minimal
polynomial of Σ E is Τb. E can be generated by choosing an arbitrary
element g of V of order Τb, and letting E & !2[x] * g as a cyclic !2[x]-
module. From the preceding remarks, E is Σ-cyclic. Furthermore, the
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natural map from!2[x] to E as a !2[x]-module homomorphism has as its
kernel the ideal (Τb). Note that the !2-dimension of E is none other than
the least d such that there are coefficients ci such that 002i2d ciΣ

i(g) & 0.
This is the same as asserting that Τb must divide 0 cix

i.
Now note that V has dimension n, which is a % b0 deg Τi. It follows

that there is exactly one elementary divisor for each irreducible factor
of the minimal polynomial. Orthogonality follows from the fact that Σ
is self-adjoint. Lastly, irreducibility is equivalent to being Σ-cyclic for
eigenspaces. It can be shown that the number Ij of irreducible subspaces
of dimension j *d of an eigenspace E & A(Τe), d & deg Τ, is determined by

Ij & 1/d+rk Τj%1(Α) % rk Τj$1(Α) $ 2 rk Τj(Α),, (4)

where Α & Σ E, see [7]. Hence Ne & 1, but Nj & 0 for all j < e.

From the argument in the proof we can see that E is isomorphic to
!2[x]/(Τb) as a !2[x]-module. Note that in the theorem, a & Η2(n%1)$1
and b & Η2(n % 1) % 1. Hence, given the factorization of Πn%1, we can
easily compute the dimensions of the Σ-cyclic subspaces. Also note
that a is the nilpotency index of the linear map Σ$z , it coincides with
the dimension of the co-orbit of 0 since the corank of Σ is 1 in the
irreversible case.

The argument for cyclic boundary conditions is similar, but now the
minimal polynomial is of lower degree. Using again equation (4), it
turns out that there are two irreducible subspaces of A(Τe) of dimension
e*deg Τ, and no irreducible spaces of smaller dimension. The relationship
between the two irreducible spaces can be described in terms of the
actual geometry of the pattern space. To this end consider the two
rotations R, L 3 V 4 V and the reflection S 3 V 4 V. More precisely,
S(ei) & en$i%1 where e1, . . . , en is the standard basis, R(u)(i) & u(i % 1)
where index n % 1 is interpreted as 1, and L & R$1 & Rn$1. The
maps are clearly linear; as a matter of fact, Σ$c & R % L. All three maps
commute with Σ$c , they are examples of autosimulations, see section 4.2
below. Since R and S do not commute, it follows by the theorem on
bicommutants that neither S nor R are polynomially representable, see
[7]. Hence, irreducible subspaces may well fail to be invariant under
S and R. Indeed, we will show that for A(Τe) & E1 ( E2 we have
E2 & R(E1).

Theorem 3. Let xa .
r
i&1 Τb

i be the minimal polynomial of Σ$c (n). Then
the elementary divisor decomposition of V is K ( E1 ( E:1 ( E2" (
Er ( E:r where K has dimension a and Ei and E:i both have dimension
b deg Τi. The summands are pairwise orthogonal, except for Ei and
E:i . Moreover, the summands are irreducible, and there are no other
irreducible subspaces.
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Proof. It only remains to verify that indeed for any generator u0 of Ei
we have R(u0) 1 E:i , for all i & 1, . . . , r. Since A(Τb

i ) & Ei(E:i is invariant
under R it suffices to show that R(u0) is not in Ei.

Assume for the sake of a contradiction that R(u0) 1 Ei, whence
R(u0) & r *u0 for some r 1 !2[x]. But then R(u) & r *u for all u 1 Ei. The
linear map r(Σ) & r(L %R) is symmetric in R and L, so that R(u) & L(u)
for all u 1 Ei. But the only patterns satisfying this equation lie in the
kernel of Σ, and we have the desired contradiction.

We can obtain a basis for the whole eigenspace by rotations of the
generator rather than by applications of Σ$c .

Corollary 1. Assume the notation from Theorem 3. The generalized
eigenspace A(Τb) has a basis of the form -Ri(g) .... i < 2b deg Τ /.
Proof. As in the previous proof, let g be any element of order Τb. Since
A(Τb) is closed under R, the set B & -Ri(g) .... i < 2d /, d & b deg Τ, is
certainly contained in the space, and it suffices to show that B is !2-
linearly independent. An easy induction shows that as !2 spaces

span(Σi(g),Σi(R(g)) .... i < k) & span(Li(g), Rj(g) .... i < k, j 2 k).

Now assume that B is linearly dependent. Since generators are invariant
under rotations, we have 0$d<i2d ciR

i(g) for some coefficients ci. This
contradicts the independence of -Σi(g),Σi(R(g)) .... i < d /.

By a similar argument, -Ri(g) .... i 2 2d / is linearly dependent. Using
equation (1) it is easy to see that

Ri(u) & Πi$1 * u % Πi * R(u)

for any u in the pattern space and any integer i (assuming the obvious
extension of the recurrence for the Π-polynomials to all integers). For
u 1 A(Τb) the Π-polynomials are effectively computed modulo Τb, which
produces the appropriate values for d.

Note that since Τc is the minimal polynomial of Α & Σ E, we can
find a basis for E for which Α is represented by the companion matrix
of Τc:

;<<<<<<<<<<<<<<<
=

0 1 0 . . . 0
0 0 1 . . . 0
# #
0 0 0 . . . 1
a0 a1 a2 . . . ad$1

>???????????????
@

where Τc & 0i<d aix
i % xd. Thus, iterations of Α can be expressed as a

shift-register sequence. The characteristic and minimal polynomial of
this matrix is easily seen to be Τc. Of course, the natural geometry of
the pattern space is destroyed by the necessary base transformations.
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Figure 1. Bases for decomposition spaces of $269,Σ$c %.
Example. As an example, consider $269,Σ$c %. The minimal polynomial
here has the form

x A1 % xB +1 % x2 % x3 % x4 % x8 % x10 % x11,+1 % x5 % x6 % x9 % x10 % x11 % x12 % x13 % x14 % x15 % x16 % x21 % x22, .
Correspondingly, there are 1 % 2 * 3 & 7 spaces in the elementary

divisor decomposition. The first is the kernel of Σ$z and has dimension
1. Omitting the isomorphic copies obtained by rotation, the spaces have
dimensions 1, 11, and 22, respectively. As we see shortly, the order of
Σ on these spaces is 1, 2047, and 4,194,303. Figure 1 shows bases for
the decomposition spaces, again with the isomorphic copies omitted.
For the sake of clarity, we have inserted blank rows between the basis
vectors for each subspace.

The picture was generated by performing row reduction on a basis
obtained from a generator by iteratingΣ. Note that the basis for the 11-
dimensional space is obtained by embedding reflections of the identity
matrix. We will return to this issue shortly.

3.2 Operator Σ#

It is clear that the arguments from section 3.1 carry over, mutatis mu-
tandis, to Σ%. Indeed, since Σ%(u) & Σ$(u) % u, the Σ%-cyclic spaces are
precisely the Σ$-cyclic spaces and have the same generators. However,
the minimal polynomials for Σ% are slightly more complicated, and one
has to be careful to account properly for irreducible factors of the form
x % 1. For fixed boundary conditions the minimal polynomial of Σ%z on
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a grid of size n is

Π%n%1(x) & Πn%1(x % 1) & xb (x % 1)a
r*

i&1

Τc
i (5)

where the Τi are irreducible polynomials of degree at least 2, and the
exponents a, b, c 6 0 are as in equation (3). As corollaries to Theorems 2
and 3 we obtain eigenspace decompositions for Σ%.

Corollary 2. Consider the minimal polynomial of Σ%z (n) as in equa-
tion (5). Then the elementary divisor decomposition of V is K ( E0 (
E1"( Er where K has dimension b, E0 has dimension a, and Ei, i > 0,
has dimension b deg Τi. All the summands are pairwise orthogonal.
They are also irreducible, and there are no other irreducible subspaces.

Corollary 3. As in equation (5), let xb (x % 1)a .
r
i&1 Τc

i be the minimal
polynomial of Σ%c (n). The elementary divisor decomposition of V is
E0 ( E1 ( E:1 ( E2"( Er ( E:r where E0 has dimension b, and Ei and
E:i both have dimensions a for the spaces associated with x % 1, and
c deg Τi otherwise. The summands are pairwise orthogonal, except for
Ei and E:i . They are also irreducible, and there are no other irreducible
subspaces.

3.3 The order of Σ

We can now calculate the order of Σ E for a generalized eigenspace
E in the decomposition. For any element u in the regular part of the
decomposition, define the period of u, in symbols peru, to be the least
i > 0 such that Σi(u) & u. Recall that the period of an irreducible
polynomial Τ is the least p > 0 such that xp%1 & 0 (mod Τ). Thus, the
period of a polynomial is the order of any of its roots in the multiplicative
subgroup of a splitting field, and in particular divides 2d$1 where d is the
degree of Τ. The period can be calculated by factoring 2d$1 & pe1

1 . . .pek
k

and then finding the least exponents ci such that p & pc1
1 . . .pck

k satisfies
xp % 1 & 0 (mod Τ). This requires essentially only a fast polynomial
exponentiation algorithm with a fixed modulus Τ; see, for example,
[9]. Incidentally, for small-degree polynomials a brute force calculation
based on shift-register sequences seems to be more efficient. We write
Cm 1 !2[x] for the mth cyclotomic polynomial.

Lemma 1. Consider a generalized eigenspace E & A(Τe) where Τ - x
is irreducible. Let e: be the least power of 2 larger or equal to e and
let Α & Σ E. Then the order of Α is e: * p where p is the period of Τ.
Moreover, the period is determined by the condition Τ +Cp.

Proof. Recall that E & !2[x] *u0 where u0 is some generator of order Τe.
Hence, as an !2[x]-module, E is isomorphic to the quotient !2[x]/(Τe).
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The endomorphism Σ here corresponds to multiplication by x, so we
need to determine the least j such that xj & 1 mod Τe. In other words,
we need to find the period of Τ.

In the special case e & 1 we are dealing with a Galois field, and
it is clear that the order of x in the multiplicative subgroup is just
m where Τ +Cm. For the general case, first note that x indeed lies in
the multiplicative subgroup: since b is a power of 2 we can apply the
Frobenius homomorphism to obtain xe:m%1 & (xe: )m%1 & 0 mod Τ(xe: ).
By the same argument, C2kr & Cr. But then the order of x cannot be less
than e: *m, for xr % 1 can be divisible by Τ only if m & r.

The exponents of the irreducible terms in the minimal polynomials
of our Σ-operators are all powers of 2, with the exception of x % 1 for
Σ%z . All the generators of E have as their period the order of Σ E.
However, there are nongenerators that also have the maximal period.

Lemma 2. Let E & A(Τ2k ) be a generalized eigenspace and let p &
2k per Τ be the order of Σ on E, where k > 0. Then for all u 1 E,
u 1 A(Τ2k$1 ) if, and only if, peru < p.

Proof. The period of any element in A(Τ2i ) is at most 2i per Τ, so the
implication from left to right is obvious. Now suppose q & peru < p.
Since q must divide p, we have q & 2jr where j 2 k and r is odd. Now let
f & gcd(xq % 1, Τ2k ). Then f * u & 0. To see this, note f & a(xq % 1)% bΤ2k

for some cofactors a, b 1 !2[x]. But for r < p the greatest common
denominator is 1, and for r & p it is Τ2i for some i < k. Hence u 1 A(Τ2i )
for some i < k, and we are done.

Note that the generators of smaller eigenspaces may well have the
same period as the generators of the larger space, it is only when the ex-
ponent of the corresponding irreducible term reaches a smaller power of
2 that the periods decrease. The number of generators in A(Τe) is easy to
determine since, as a !2[x]-module, the space is isomorphic to!2[x]/(Τe).
Thus, there are (2d $ 1)2(e$1)d generators in A(Τe), corresponding to the
units in !2[x]/(Τe).

Combining Lemma 2 with the results from section 2, we can now
give a uniform description of the transient length and the period of all
four Σ operations.

Theorem 4. Let p & xa(x % 1)b.Τc
i be the minimal polynomial of Σ.

Then the nilpotent part of Σ has nilpotency index a, and the order of the
regular part is the least common multiple of the periods of Τi, multiplied
by c.

Example. As an example consider Σ$z on a grid of size n & 50. Since
n is even, Σ$z is reversible. Π51 factors as the square of the following
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irreducible terms:

1 % x, 1 % x % x4, 1 % x % x2 % x3 % x4,
1 % x2 % x3 % x4 % x8, 1 % x2 % x3 % x7 % x8.

Thus, there are five subspaces in the decomposition, with dimensions
2, 8, 8, 16, and 16, respectively. The restrictions of Σ$z to these spaces
have orders 2, 30, 10, 510, and 510. Hence, the order of Σ$z is 510.

A table of the periods of the irreducible factors of the Ρi polynomials
up to i & 69 can be found in the appendix on page 269.

4. Symmetries and eigenspaces

Assume the eigenspace decomposition V & K (
⊕

Ei from section 3.
Given a pattern u on a cycle in the diagram, the cycle is contained
in the Σ-cyclic subspace U & !2[x] * u. The decomposition has the
property that any Σ-invariant subspace U can be recovered from the
components in the various eigenspaces: U &

⊕
(U 5 Ei). Hence it

suffices to analyze the Σ-invariant subspaces of the eigenspaces A(Τe)
where e is the appropriate power of 2. In the fixed boundary case, the
eigenspaces are irreducible, hence the only Σ-invariant subspaces are of
the form A(Τj) where 0 2 j 2 e. In the cyclic case we have to consider
two such chains of subspaces. Now let Pi 3 V 4 Ei be the canonical
projection. As far as the length of the cycle generated by ui & Pi(u) is
concerned, it follows from Lemma 2 that only exponents of Τ that are
powers of 2 are relevant. Hence, for fixed boundary conditions, we
have to study the chain

Ei,k 0 Ei,k$1 0"Ei,1 0 Ei,0 & Ei (6)

where Ej,i & Az(Τ
2k$j%1

i , n). By Lemma 2, the orbit of ui is a cycle of
length 2k$j%1 per Τi where j is maximal such that ui 1 Ei,j. The length of
the orbit of u & 0 ui is thus the least common multiple of these local
periods. Likewise, one can easily count the number of cycles of any
given length. We will return to this topic in section 5.

The purpose of this section is to show that the subspaces Ei,j are
closely connected to the geometry of the pattern spaces. Moreover, we
will give efficient methods for generating bases for all these spaces.

4.1 Simulations

To describe the symmetries of pattern spaces, and to obtain generators
for eigenspaces, it is convenient to consider structural maps between
pattern spaces. To this end, consider two automata $2m,Σ% and $2n,Σ:%,
not necessarily of the same type. A monomorphism f 3 2m 4 2n that
commutes with theΣ operators, f !Σ & Σ: !f , will be called a simulation.
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There are several natural simulations between Σ-automata based on
symmetries and repetition of patterns:$2m,Σ$z %C $2r(m%1)$1,Σ$z %$2m,Σ$z %C $2r(m%1),Σ$c %$2m,Σ$c %C $2r m,Σ$c %.
By abuse of notation, we will refer to all these maps as rep for repetition.
It will always be clear from the domain and codomain which simulation
we are referring to. For example, for r & 2, the first embedding is
rep(u) & (u, 0, S(u)), the second rep(u) & (u, 0, S(u), 0), and the last
is duplication rep(u) & (u, u). The images of these embeddings have
rotational or reflectional symmetries in the target spaces. Simulations
are obviously closed under composition, and we have, for example, the
commutative diagram

"$z (n)
rep

$$$$$$4 "$z (2n % 1)
DDDD$

rep
DDDD$

rep

"$c (2n % 2)
rep

$$$$$$4 "$c (4n % 4).

The translation from fixed to cyclic boundary conditions will be used
later. Note that in any simulation, the minimal polynomial of the simu-
lated automaton divides the minimal polynomial of the simulating one.
As a matter of fact, for the first two simulations above, the irreducible
factors in both polynomials are the same, only the exponents change.
Since the repetition maps preserve eigenspaces they can be used to trans-
fer these spaces to higher dimensional pattern spaces:

Az(Τ
e, m)

rep
$$$$$$4 Az(Τ

e, r(m % 1) $ 1)

Ac(Τ
e, m)

rep
$$$$$$4 Ac(Τ

e, r m)

where r 6 1 is arbitrary. Since the dimension of the eigenspaces de-
pends only on the degree of Τ and e, these maps are isomorphisms. In
particular, the maps preserve the order of a pattern. To obtain patterns
with higher order we need one other type of simulation, squaring. As
the name indicates, this simulation is motivated by the fact that pat-
terns can be construed as polynomials, a technique used frequently in
[4]. To be more explicit, there is a natural !2-vector space isomorphism
tp 3 2m 4 ! (m)

2 [x] , with inverse fp, from an m-dimensional pattern space
to the set of polynomials of degree less than m. The action of Σ$c on this
space can be expressed by multiplication with x$1 % x & xn$1 % x in the
quotient ring !2[x]/(xn % 1).

Now define the squaring operation sq 3 2n 4 22n by sq(u) &
fp(tp(u)2). In terms of the standard basis, this means sq(ei) & e2(i$1)%1.
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By abuse of notation, we write sq 3 2n 4 22n%1 , sq(ei) & e2i, also for the
fixed boundary case. In either case, sq is a monomorphism, and indeed
a simulation. By iteration we obtain embeddings

$2m,Σ$z % sq
$$$$$$4 $22k(m%1)$1, (Σ$z )2k%$2m,Σ$c % sq
$$$$$$4 $22km, (Σ$c )2k%.

Hence we have the following proposition.

Proposition 1. Let g be a generator for the eigenspace Az(Τ
e, m). Then

sq(u) generates Az(Τ
2e, 2m % 1). Likewise, for any generator g of

Ac(Τ
e, m), sq(u) generates Ac(Τ

2e, 2m).

The next two sections explain how to obtain the initial generator.

4.2 Symmetries

Simulations from a Σ-automaton to itself will be referred to as autosim-
ulations. The autosimulations naturally form a group that acts on the
pattern space. Those autosimulations for which the subspaces in our
decomposition are invariant can already be expressed as a polynomial
in Σ.

Lemma 3. Let F be an autosimulation of a Σ-automaton such that
all the eigenspaces E in the decomposition are F-invariant. Then F is
polynomially representable.

Proof. First consider a Σ-cyclic decomposition space E 0 A(Τe) and let
U be the set of generators of E. Fix a generator u0 1 U and, for any
u 1 U, let ru 1 !2[x] such that u & ru * u0. Clearly, the map v ! ru * v is
an autosimulation, and any autosimulation on E can be represented in
this form. It follows that the number of autosimulations is +U+.

For an autosimulation F 3 V 4 V on the whole space, note that the
projections Pi 3 V 4 Ei are polynomially representable, Pi(u) & ri * u.
We have just seen that the restrictions Fi & F Ei are polynomially
representable. But then F & 0 Fi!Pi is also polynomially representable.

Thus, for fixed boundary conditions all autosimulations are polyno-
mially representable. As we will see shortly, the reflection S E can even
be represented by a polynomial of the form xt, that is, by iteration of Σ.
However, for cyclic boundary conditions the reflection S and rotation R
fail to be polynomially representable.

A symmetry is an autosimulation that respects the geometry of the
automaton. For fixed boundary conditions there is only one symme-
try, namely reflection. For cyclic boundary conditions we also have
rotations. Given a group G of symmetries and a pattern u, we write
Gx & - f 1 G .... f (u) & u / for the stabilizer of u. Gx is a subgroup of G,
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and we can measure the degree of symmetry of a pattern by the size of
this subgroup. We will see that the eigenspaces in the elementary divisor
decomposition have important subspaces determined by higher degrees
of symmetry.

The next two lemmata describe the relationship between cyclic sub-
spaces of the eigenspaces A(Τe) and A(Τ2e) in terms of involutions on the
space. The first one makes use of the self-adjointness of Σ.

Lemma 4. Let E be a subspace of V, F 3 E 4 E a linear self-adjoint
map of nilpotency index 2. Let E1 0 E be the kernel of f . Then
2 dim E1 & dim E and E1 is self-orthogonal: EE1 & E1.

Proof. Let n be the dimension of the pattern space V. Since f 2(E) & 0
and since f is self-adjoint we must have im f 0 ker f & (im f )E. But then
dim E & dim im f % dim(im f )E & 2 dim im f , and our first claim follows.
Also note that n must be even. But then im f & ker f , and the second
claim follows.

Lemma 5. Let E 0 A(p2) be a Σ-cyclic subspace where p & Τe, Τ - x,
is a power of an irreducible factor of the minimal polynomial. Let
E1 & E 5 A(p) and denote the order of Σ E1 by t. Consider an
involution F 3 E 4 E that commutes with Σ.

Then F is polynomially representable, F(u) & f * u. Moreover, f & xt

(mod Τ). If F is not the identity, then E1 is the set of fixed points of F.

Proof. Let u0 be a generator of E. Then there is a f 1 !2[x] such that
F(u0) & f * u. Then F(u) & F(h * u0) & h * F(u0) & hf * u0 & f * u.

By the definition of p, xt % 1 & 0 (mod p). Since F is an involution,
we have f 2 % 1 & 0 (mod p2). But p is a power of an irreducible, so
f % 1 & 0 (mod p) and our claim follows.

Note that we must have f % 1 & gp where g 1 !2[x]. Since F is not
the identity, g and p are coprime. Now consider u 1 E1. Then p * u & 0
and therefore 0 & gp * u & (f % 1) * u & F(u) % u, and u is a fixed point.

On the other hand, let u be a fixed point. Then again 0 & gp * u.
Consider cofactors a, b 1 !2[x] such that ag % bp & 1. Then 0 &
agp * u & (1 % bp)p * u & p * u % bp2 * u & pu. Thus, u 1 E1, and we are
done.

As an application of these lemmata consider the eigenspace E &
Az(Τ

2k%1 , n). The order of Σ$z on E is t & 2k%1 per Τ, and for all u 1 E
we have Σt/2

z (u) & S(u). The subspace E1 & Az(Τ
2k , n) is clearly self-

orthogonal and consists of the fixed points of E under S. We will see
shortly that this is no coincidence.

4.3 Fixed boundary conditions

While S is the only symmetry of the whole space, for n%1 & 2k *m there
are other symmetries on subspaces that are relevant to our analysis.
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To be more precise, for any function f 3 2m 4 2m define an exten-
sion rep(f ) 3 22m%1 4 22m%1 by rep(f )(u) & (f (u13m), um%1, f (um%232m%1)).
Here ui3j denotes the projection of u to the space spanned by ei, ei%1, . . . , ej.
Given n%1 & 2k *(m%1) where m%1 is odd, let Si & rep(S(2k$i(m%1)$1))
where S(r) 3 2r 4 2r is plain reflection. This leads to the following de-
scription of the eigenspaces.

Theorem 5. Let n % 1 & 2k * (m % 1) where m % 1 is odd, and consider
an irreducible factor Τ of the minimal polynomial of Σz(n). There is a
strictly increasing chain of Σ-cyclic subspaces

Ek%1 0 Ek 0"E1 0 E0 & Az(Τ
2k%1

, n)

where Ei & Az(Τ
2k$i%1 , n), i & 0, . . . , k % 1 . The dimension of Ei is

2k$i%1 deg Τ. Moreover, Ei%1 is the set of fixed points of Si in Ei.

Proof. The proof is a straightforward induction on i, using Lemma 5.

Generators for the Σ-cyclic spaces in the chain can be found by
determining the null spaces of the matrices Τe(Σ). However, we can use
simulations to bypass linear algebra. Suppose n%1 & 2k * (m%1) where
m % 1 is odd. The minimal polynomials for m and n have the form

Τ2
1 Τ

2
2 . . . Τ

2
r and x2k$1 Τ2k%1

1 Τ2k%1

2 . . . Τ2k%1

r .

Hence, Σ$z is reversible on 2m, but has a nilpotent part of dimension
2k $1 on 2n. A natural basis is obtained by applying the repetition map
to the identity matrix of size 2k $ 1.

For the regular part of Σz we proceed as follows. By embedding
a smaller pattern space via a repetition map, we can obtain patterns
with nested symmetry in the eigenspaces: Ei,j & Ei 5 rep(22k$j(m%1)$1).
Computationally it is more efficient to construct a generator for Ei,j
directly. To this end, let m: & 2e(m % 1) $ 1, and consider the following
diagram:

Az(Τ
2, m)

sq
$$$$$$4 Az(Τ

2k%1 , n)

sq
DDDD$

%DDDD
Az(Τ

2i%1 , m:)
rep

$$$$$$4 Az(Τ
2i%1 , n).

(7)

Hence, we only need a generator for Az(Τ
2, m), all others can be

obtained by squaring and repetition. To obtain the first generator, we
can exploit the simulation from "z(m) to "c(2m % 2). We will see in
section 4.4 below how to determine a generator for cyclic boundary
conditions, using cyclotomic polynomials. Note that the minimal poly-
nomial of Σ$c (m:) is the minimal polynomial of Σ$z (m) multiplied by x,
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so we have precisely the same irreducible factors other than x. Now
consider the following diagram:

"$z (m)
rep

$$$$$$4 "$c (2m % 2)
%DDDD

%DDDD
Az(Τ

2, m)
rep

$$$$$$4 Ac(Τ
2, n).

(8)

The eigenspace on the left has dimension 2 deg Τ, the space on the
right 4 deg Τ. Hence, the image of the left eigenspace is one of the two
isomorphic spaces on the right, and we can retrieve a generator for the
first by applying the inverse of the simulation map, after an appropriate
rotation of the pattern.

In some simple cases one can describe generators more directly. For
example, consider n % 1 & 2k * m and let p be an odd prime dividing
m. Set l & op(m). Since Πpl & Ρ(p) Ρ(p2) . . . Ρ(pl) there is a chain of Σ-
cyclic subspaces in the decomposition corresponding to the irreducible
polynomials in these critical factors. The degree of Ρ(pi) is (p $ 1)pi$1,
and we have embeddings

2p$1 & Az(Ρ(p), p $ 1)
rep

$$$$$$4 Ac(Ρ(p
e), pe $ 1)

2p$1 & Az(Ρ(p), p $ 1)
sq

$$$$$$4 Ac(Ρ
2e (p), 2ep $ 1)

It is easy to see that Az(Ρ(p
i), pi $ 1) 0 2pi$1 is generated as a Σ-cyclic

module by the standard basis vector epi . Hence we have

Az(Πpk , 2k $ 1) &
⊕

rep(Az(Ρ(p
i), 2pi

$ 1)).

The last space can be embedded into 2n via the squaring map.

4.4 Cyclic boundary conditions

For cyclic boundary conditions the group of symmetries is the dihedral
group # & #n, generated by reflection S and rotation R. Thus, the
standard presentation for # is Rn & S2 & 1, RS & SR$1. We can
measure the degree of symmetry of a pattern u 1 2n by the stabilizer
#u. It will be convenient to identify # with the semidirect product
$n FΘ $2 where Θ(1)(x) & $x. Since the stabilizer is a subgroup of #
it has the form H FΘ 1 or H FΘ $2 where H is a cyclic subgroup H of
$n. As we will see, there always are generators whose stabilizer is of
the second form. Our goal is to establish the following theorem.

Theorem 6. Let n & 2k *m where m is odd, and consider an irreducible
factor Τ of the minimal polynomial ofΣc(n). There is a strictly increasing
chain of pairs of Σ-cylic subspaces

Ek ( E:k 0 Ek$1 ( E:k$1 0" 0 E0 ( E:0
Complex Systems, 13 (2001) 245–270



Decomposition of Additive Cellular Automata 263

where Ei ( E:i & Ac(Τ
2i , n), i & 0, . . . , k . Then there are generators in

u 1 Ei, and v 1 Ei%1 such that #v/#u H $2.

Suppose n & 2k *m where m is odd and k 6 0. The minimal polyno-
mials for Σ$c for m and n here have the forms

x Τ1 Τ2 . . . Τr and x2k$1
Τ2k

1 Τ
2k

2 . . . Τ2k

r ,

respectively. The nilpotent part for 2m is simply the kernel of Σ$c ,
which has dimension 1 and its only nontrivial member is 1. For 2n, the
nilpotent part K consists of two Σ-cyclic subspaces, generated by sq(1)
and R(sq(1)). Needless to say, sq(1) & 002i<m ei*2k%1. Since by Lemma 1
a basis can also be obtained by rotation, the natural basis for K is just
the Kronecker product of the identity matrix of size 2k, and the all-ones
vector.

For the regular part, we can construct a chain of pairs of Σ-cyclic
subspaces for each of the irreducible terms Τ as follows:

Ac(Τ, m)
sq

$$$$$$4 Ac(Τ
2k , n)

sq
DDDD$

%DDDD
Ac(Τ

2i , m)
rep

$$$$$$4 Ac(Τ
2i , n).

(9)

It remains to find a way to calculate generators for the first generalized
eigenspace Ac(Τ, m) where Ρm & Τ2. Using the translation to and from
polynomials of degree less than m, one can see that a generator for
Ac(Τ, m) can be obtained as

u & fp((xm % 1)/ gcd(xm % 1, Τ(xm%1 % x))).

We write Cd for the dth cyclotomic polynomial over !2. Thus, Cd &
(x$ a1)(x $ a2) . . . (x $ ak) where the ai are all the primitive dth roots of
unity in some suitable splitting field. In terms of these polynomials, the
generator has the form

u0 & fp
;<<<<<
=
*

e +n,e-n

Ce

>?????
@

.

For the sake of this argument, let us call a univariate polynomial of
degree d symmetric if its coefficient list is symmetric: ci & cd$i for all
i & 0, . . . , d . It follows from the definition that cyclotomic polynomials
are symmetric, and it is easy to see that products of symmetric poly-
nomials are again symmetric. In terms of the standard presentation of
the dihedral group, the stabilizer of u & fp(Cm) 1 2,(m) has the form
I1, SJ if m is composite, and is equal to # otherwise. It follows that the
stabilizer of generator u0 above is isomorphic to H FΘ $2.
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Proof. (Of Theorem 6). The proof is again by induction on i, us-
ing Lemma 5. As we have seen in Theorem 3 and Corollary 1, the
eigenspaces Ac(Τ

2i , n) are not Σ-cyclic, but consist of two isomorphic
copies, where the isomorphism is the rotation R.

Now consider an irreducible factor Τ in the minimal polynomial,
say, Τ + Ρd where d +m. We have just shown that there is a generator u
of Ac(Τ, d) whose stabilizer is of the form 1 FΘ $2. The image rep(u)
in Ac(Τ, m) has a stabilizer isomorphic to $m/d FΘ $2, and the image in
Ac(Τ, n) has a stabilizer isomorphic to$2km/dFΘ$2. Our claim follows.

On occasion, one can exploit properties of the cyclotomic polyno-
mials to streamline the polynomial arithmetic in the computation of a
generator. For any integer m 6 2 with prime decomposition m & .pei

i
let m: & p1p2 . . .pr. Then

Cm(x) &*
d +m

(xd % 1)Μ(m/d) (10)

Cm(x) & Cm: (xm/m:
) (11)

where Μ is again the Möbius function. It follows that for any prime
p, Cp(x) & 0i<p xi & (xp % 1)/(x % 1). Hence, if m & pk, we have a
generator fp(xpk$1 % 1). When m is the product of two distinct primes p
and q there is a generator

(xp % 1)(xq % 1)/(x % 1) & (xp % 1)!
iq

xi.

The second form shows how to determine the corresponding pattern
without polynomial arithmetic. Using equation (2) similar expressions
can be derived for other cases.

5. The cycle structure

Given the decomposition of a pattern space from section 4, we can
now determine the regular part of the diagram of Σ completely. More
precisely, we can determine all possible cycle lengths, as well as the total
number of cycles of each length. From the previous results, it is easy to
compute bases for the various cycle spaces.

Given the elementary divisor decomposition V & K(E0(E1"(Er
and the order ei ofΣ Ei for each component, it is now easy to determine
the cycle structure. A cycle that lies in one of the subspaces Ei will
be called pure, and compound otherwise. In section 5.1 we will see
how to determine the lengths and numbers of all pure cycles. All the
compound cycles have as their length the least common multiple of
the lengths of some of the pure cycles, and the count is determined by
the product of the counts of the corresponding pure cycles, and a nested
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gcd/lcm of the cycle lengths. For example, if we have three pure cycles in
separate subspaces of lengths c1, c2, c3 and counts b1, b2, b3, respectively,
they will contribute gcd(c1, lcm(c2, c3)) * b1b2b3 many cycles of length
lcm(c1, c2, c3).

Now consider an eigenspace E & A(Τe). Given the period p of Τ and d
the degree of Τ it is straightforward to calculate the number and lengths
of all pure cycles in E. More precisely, E contains one cycle of length 1,
p cycles of length (2d $ 1)/p, and

2d*2i $ 2d*2i$1

p * 2i

cycles of length p * 2i, up to length p * e. The number of pure cycles in a
subspace thus increases at a doubly exponential rate with the length of
the cycle.

5.1 Fixed boundary conditions

From section 4 we can now easily determine the complete cycle structure
of a Σ-automaton. For fixed boundary conditions, the subspaces with
higher degrees of symmetry produce shorter cycles in the diagram.

Example. Consider again the Σ$z -automaton on n & 50 cells. As
we have seen, the minimal polynomial has a factorization of the form
Τ2

1Τ
2
2 . . . Τ2

5. Correspondingly, there are five elementary divisor subspaces
E1, . . . , E5, each with a subspace of symmetric patterns. The last two
irreducible factors have the same period, the cycle structure of E4 and
E5 is therefore identical. The lengths and counts for the pure cycles are
shown in the following table.

E1 E2 E3 E4, E5

1 1 1 1 1 1 1 1
1 1 15 1 5 3 255 1
2 1 30 8 10 24 510 128

For all cycles we obtain the following count. Since Σ$z is reversible
for n & 50, the cycles account for the whole pattern space.

length count
1 2
2 1
5 6

10 99
15 32
30 8688

255 131584
510 2207646809856
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Thus, the probability for a randomly selected pattern to not lie on a
cycle of length 510 is about 3 * 10$8.

Recall that Τ%(Σ%) & Τ(Σ), so that the situation for Σ%z is strictly
analogous. However, there is a minor complication due to irreducible
factors of the form (x % 1)b. The period of x % 1 is trivially 1, so we are
dealing with cycles of length 2i. However, the exponent b here is of the
form 2k $ 1, so the largest of the subspaces does not have a dimension
that is a power of 2, and the calculation of the frequencies of pure cycles
has to be adjusted correspondingly.

Example. Consider the Σ%z -automaton on n & 39 cells. The minimal
polynomial is A1 % xB7 +1 % x % x2,16, and leads to the following frequen-
cies for pure cycles.

E1 E2

1 1 1 1
1 1 3 1
2 1 6 2
4 3 12 20
8 14 24 2720
– – 48 89477120

Note that a full-dimensional subspace would have (28 $ 24)/8 & 30
cycles of length 8. The frequencies for all cycles are as follows.

length count
1 2
2 1
3 2
4 3
6 9
8 14

12 335
24 349350
48 11453071360

5.2 Cyclic boundary conditions

For cyclic boundary conditions, we have to slightly adjust the arguments
from section 5.1. Since each eigenspace E & A(Τe) consists of a direct
sum of two Σ-cyclic spaces E1 ( E2, which are isomorphic as !2[x]-
modules, all the pure cycles now appear in two subspaces, and the
maximum cycle length in each is e * per(Τ).
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Recall that mp$c (n) & x Πn/2 or mp$c (n) & x
&
Πn depending on whether

n is even or odd, respectively. Consider an irreducible Τ - x dividing
the minimal polynomial, say mp$c (n) & Τ2k * q where Τ does not divide
q, and let E & A(Τ2k ) 0 2n. Since Τ2k%1 is a factor of Πn we have the
nullspace of Uk & ker Τ2k (Σ$z ) 0 2n$1, and this space consists precisely of
the symmetric patterns.

The natural embedding Η 3 2n$1 4 2n , u ! u0 (or any symmetry
thereof) is a partial simulation: Η fails to commute with the Σ operators
on the whole space, but for u 1 Uk we haveΣ$c (Η(u)) & Η(Σ$z (u)). Hence,
Η(Uk) is a d *e dimensional subspace of E, and indeed we can decompose
E as Η(Uk) ( R(Η(Uk)). Likewise, for each subspace Ui & ker Τ2i (Σ$z ),
i & 0, . . . , k , in 2n$1 we obtain two subspaces in 2n. Since only powers
of 2 can arise as the order of restrictions of Σ$c to Σ-cyclic subspaces,
this characterizes all such subspaces.

6. Conclusion

We have shown that the structure of the transition diagram of Σ is en-
tirely determined by the periods of the irreducible factors of the minimal
polynomial of Σ on the pattern space in question. The minimal poly-
nomial, in turn, can be described in terms of Π-polynomials, a binary
version of the Fibonacci polynomials. The factorization theorem for
these polynomials affords a uniform description in terms of certain ir-
reducible factors and determines the structure of the elementary divisor
decomposition.

For most values of n, the periods of the irreducible factors of Πn are
divisors of the period of the irreducible factor of highest degree. Hence,
in most transition diagrams, the maximal cycle length is attained by
a pure cycle. However, this is not always the case: for n 2 200 the
exceptions are 38, 54, 77, 109, 110, 155, 174, and 182. We do not
currently understand the nature of the exceptions to this rule. Likewise,
we do not know if the cycle structure can be determined using only
polynomial arithmetic but without recourse to factorization.

Another open problem concerns the relationship between the dia-
gram of Σ$z and Σ%z . Let us disregard irreducible factors of degree 1,
which contribute only to the nilpotent part, and to pure cycles of length
a power of 2, respectively. Then the irreducible factors of the corre-
sponding minimal polynomial for a grid of size n are simply obtained
by applying the involution x ! x % 1, which preserves the degree of the
irreducible factors, and thus the dimension of the associated subspaces.
However, the involution changes the period of an irreducible polyno-
mial in a rather complicated fashion. For example, there are irreducibles
of degree 10 and period 1023 whose images under the involution have
period 33, 93, 341, and 1023, respectively. Likewise there are degree
10 irreducibles with period 341 whose images have period 11, 93, 341,
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and 1023, respectively. We are not aware of a simple characterization
of the period of Τ(x % 1) given the period of Τ. This problem is similar
to the question of computing the Π-depth of an irreducible polynomial
Τ, that is, the least number n such that Τ divides Πn. It can be shown
that for any irreducible of depth d the degree must be the suborder of
2 in the multiplicative subgroup $Kd, but again the involution seems to
change the depth in a rather complicated fashion. For the relevance of
this problem to the study of two-dimensional Σ-automata see [6].

Given a specific pattern X one can use the elementary divisor de-
composition and the associated subspaces as in section 5 to determine
the transient length as well as the period of X by computing the rep-
resentation of X with respect to the bases of the subspaces. While one
can determine the bases using only polynomial arithmetic and factor-
ization, and the order of Σ on these spaces by computing the period of
an irreducible polynomial, the last step seems to require linear algebra.
Specifically, one has to solve a system of linear equations over !2. We
do not know whether one can avoid this last step.

Appendix
Table 1 shows the periods of the irreducible factors of the Ρi polynomials
up to i & 69.
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