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A two-dimensional cellular automaton consists of a two-dimensional lat-
tice of sites, each of which takes on a finite number of values, and a
cellular automaton map. The cellular automaton map updates the value
at each site @ € Z? using a translation invariant rule that only depends
on the values at the sites in some finite neighborhood of a. A num-
ber of global properties of a two-dimensional cellular automata, such as
the directional entropies introduced by Milnor, can be studied using the
methods of dynamical systems. In this work we consider E, the expansive
one-dimensional subspaces of R? as defined by Boyle and Lind. Various
properties of cellular automata, including Milnor’s directional entropies,
vary nicely within connected components of E so it is natural to ask what
subsets of R? may occur as expansive one-dimensional subspaces. Boyle
and Lind give an almost complete answer, the single unresolved case being
when E is the complement of a line with irrational slope. In this work
we construct a related example with the potential to shed light on the
unresolved case.

| 1. Introduction

Let A be a fixed finite alphabet with 7 = 2 elements. We consider the
infinite two-dimensional arrays from A. Denote by AL the space of
all such arrays. Two arrays in this space are “close” if they coincide
on some large finite set in Z2 and A%’ is a compact metric space with
respect to this topology. We note that Z2 acts via translation on A%’
as a group of commuting homeomorphisms. The compact space AL
together with the group Z? of commuting homeomorphisms is called
the full two-dimensional m-shift.

A cellular automaton map updates the value at each site a in an array
in A% and depends only on the values of the sites in the array in a
finite neighborhood of 4. In [1] the typical behavior of two-dimensional
cellular automata evolving from specific choices of the initial array are
studied by empirical means. One might also consider the global proper-
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ties of a cellular automaton, that is, those determined by evolution of all
possible arrays. Because most cellular automata maps are irreversible
and multiple initial arrays may evolve to the same final array, only a
subset X of AZ" will be generated with time. The properties of this set
X can then be used to describe the asymptotic behavior of the cellular
automaton. Unfortunately, the set of arrays that can be generated by a
two-dimensional cellular automaton can be difficult to specify and the
determination of many global properties is undecidable [1].

One way around these difficulties it to consider global properties in
various directions, or one-dimensional subspaces, of R2. Milnor [2]
defined one-dimensional topological and measure theoretic directional
entropy functions which can be used to characterize cellular automata.
The work of Boyle and Lind [3] complements and expands on Milnor’s
work. Boyle and Lind define expansiveness along one-dimensional sub-
spaces in R? and show that various dynamical properties, such as direc-
tional entropy as defined by Milnor, vary continuously within connected
components of expansive directions. They provide a nearly complete
description of the possible one-dimensional entropy functions that can
occur on expansive components of Z2 actions.

A direction, or one dimensional subspace S, will be called expansive
for X ¢ A% roughly when any two distinct arrays in X differ on the sites
in a “thickened” version of S. Otherwise, S is said to be nonexpansive.
If we denote by E the collection of all expansive directions, it is natural
to ask which collections of subspaces of R? may occur as E for some
X c A%, Boyle and Lind provide an answer with the single unresolved
case being when E is the complement of a single line with irrational slope.
If E is the complement of a single line with rational slope, examples exist
of X ¢ AL for which the expansive directions are E, but in all these
examples the arrays are periodic in the direction of the slope of the
rational line. Boyle and Lind ask the question of whether there exists
an example of a single, nonexpansive, nonperiodic rational direction; in
this work we construct such an example.

| 2. Definitions

A homeomorphism T of a compact metric space (X,p) is said to be
expansive if every pair of distinct points in X is “separated” by some
iterate of T. That is, there exists an € > 0 such that p(T"x, T"y) < €
for all n € Z implies x = y. In one-dimensional dynamical systems
theory the expansive homeomorphisms are an important class of trans-
formations; they play a role in the study of topological entropy and in
the exploitation of hyperbolicity in smooth dynamical systems. See, for
example, [4] or [5].

In higher dimensions, the notion of expansiveness can be generalized
in the obvious way to the case of # commuting homeomorphisms acting

Complex Systems, 12 (2000) 253-260



A Single Nonexpansive, Nonperiodic Rational Direction 255

on a compact metric space (X,p) [3]. We may also consider whether
the continuous Z* actions on X that we obtain by restricting ourselves
to k-dimensional subspaces of Z¢ are expansive. In fact, as discussed
in [3], given a general subspace F C R, it is useful to restrict ourselves
to elements of Z? within a bounded distance of F and investigate the
“expansiveness” of this set of homeomorphisms. We will say that the
subspace F is expansive roughly if there exists £ > 0 so that the lattice
points in F thickened by ¢ separate elements of X. The following formal
definitions can be found in [3].

Definition 1.

1. Let FCR9 and let ¢ > 0. By F* we will mean the set of lattice points in F
thickened by ¢. That is,

F={nez:dnF) <t

where as usual d(n, F) = inf{ln — w| : w € F}.

2. Forasubset SC Z%and x,y € X, let
p*(x,y) = suplp(ax,ay) : a € S).
If S = @, let p5(x,y) = 0.

We will say that a subspace F ¢ R is expansive if there exists € > 0 and
a t > 0 such that p”(x,y) < € implies that x = y. If F is not expansive,
we will say it is nonexpansive.

We will restrict our attention to the case when X is a closed, trans-
lation invariant subset of AZ" with Z?2 acting on X via translation: for
n=(n;,n,) €Z*and x € X, nx(i,j) = x(i+n,,j+n,). The metric giving
the topology on X is as follows: For a,a’ € A we let v(a,a’) = 1 when
a # @’ and 0 otherwise and set

ply) = D7 27 Wy, ), (i, ).

(i)ez?

Because p(x,y) < 1 only if x(0,0) = y(0,0), it follows easily from
the definitions that a subspace F of R? is expansive if it has one of the
following equivalent properties.

1. There exists a ¢ > 0 so that if x, y € X agree on F, then x = y.

2. There exists t > 0 such that restricting x € X to F' completely deter-
mines x.
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If X = A%, then Z?2 is expansive but all proper subspaces of R2 are non-
expansive. The interested reader is directed to [3] for further examples.

The collection of expansive (or nonexpansive) subspaces of R? can
be used to characterize X. In addition, Boyle and Lind show that other
global properties, such as Milnor’s directional entropies, vary nicely
over connected components of expansive subspaces. Thus, it is natural
to ask which collections of subspaces of R? can occur as the expansive
directions for some X ¢ AL,

If we let G denote the Grassman manifold of all one-dimensional
subspaces of R with the distance between two subspaces determined by
the Hausdorff metric distance between the intersections of the subspaces
with the unit ball in R?, then the collection of nonexpansive subspaces
of R? is a nonempty compact set in G [3]. Furthermore, we have the
following theorem.

Theorem 1. [3] Let £ be a compact set in G that is not a singleton
containing just one irrational line. Then there exists a closed, invari-
ant subset of AZ" whose collection of one-dimensional nonexpansive
subspaces is L.

Boyle and Lind use this result to, among other things, provide an
almost complete description of the possible one-dimensional entropy
functions that can occur when the expansive components are proper
cones or have a single rational line as their complement. Despite a great
deal of effort, whether or not there exists a X ¢ A% with a single
irrational nonexpansive direction remains an open question. Boyle and
Lind raise a related question: Suppose L is a line with rational slope
passing through # € Z2. Theorem 1 guarantees the existence of X ¢ AL
whose only nonexpansive direction is L, however all previously known
such examples are “periodic in the n direction.” That is, there exists
p € O for which pn € Z? is the identity homeomorphism on X. The
fact that there can be no such periodicity in an irrational direction is a
fundamental difference between rational and irrational directions. In
the hope of gaining insight into the unresolved case of the theorem,
Boyle and Lind ask whether there exists an example of a X ¢ A%’
without periodic directions whose only nonexpansive subspace is a line
with rational slope. In the next section we construct such an example.

I 3. The example

Let A ={0,1,2,3}. In this section we will construct a closed, invariant
subset X of AZ* which has the following properties. (1) It is expansive in
every direction except the rational direction 7/2. That is, given any line
L, with slope 6 other than 71/2, there exists a £ > 0 such that restricting
an array x € X to Ly completely determines x. (2) It is nonexpansive
in the rational direction ni/2; for any ¢ > 0, there are distinct arrays x,
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y € X that agree on Lyp. (3) The arrays in X need not be periodic in
the 7/2 direction.

Construct the two-dimensional arrays in X ¢ A% as follows. The
symbols 2 and 3 occur in complete vertical sequences in the sense that
x(4,j) = 2 (or 3) if and only if x(i,k) = 2 (or 3) for all k € Z. These
vertical sequences of 2s and 3s alternate and are found in every fifth
vertical column. Thatis, if x(i,7) = 2 then x(i+5,/) = 3 and x(i=10,j) = 2
and so on. We call the vertical sequences of 2s and 3s of an array its
2-3 skeleton. Note that for any 0 < 6 < n, for ¢ large enough, Lg will
determine the 2-3 skeleton of any array x.

The remaining vertical columns consist of Os and 1s satisfying the
following rules. If the configuration

x(i,/ + 1)
x(i,/)  x(i+1,j)

lies with a vertical sequence of 3s to the left and a vertical sequence of
2s to the right, then it sums to zero mod 2. For the strips bounded
on the left by 2s and on the right by 3s, we change the shape. There
configurations of the form

x(i,/)  x(i+1,j)
x(i,7 = 1)

sum to zero. We refer to these configurations as T, and T, respectively.
If the configurations below span a vertical sequence of 3s, or 2s
respectively, then they sum to zero mod 2:

x(i,/ + 1) x(iy/)  x(i+2,])
x(i,)  x(i+2,]) (1,7 = 1).

Theorem 2. Let X ¢ A% be all two-dimensional arrays as described
and let Z? act on X by translation. Then the only nonexpansive subspace
of R? is L, and the Z? action is not periodic in the 7/2 direction.

Proof. Clearly X is a closed, shift invariant subset of AZ* and Z2 is an
expansive action on the space X.

In constructing a two-dimensional array x € X, each vertical 0-1 line
Z determines a vertical 0-1 line on its right, by one of two coding rules,
depending on the location of Z relative to the 2s and 3s. These two
coding rules are two-to-one. Given a 2-3 skeleton, we can arbitrarily fill
in a 0-1 line Z with any vertical sequence z of Os and 1s and apply the
coding rules to legally fill in to the right. Choosing inverse images going
to the left gives us an uncountable number of legal points compatible
with that choice for Z; thus for any ¢ > 0, there are infinitely many
points in X that agree on Ly and the vertical direction dynamics are
nonexpansive. Because the vertical 0-1 line Z can be filled in arbitrarily,
the vertical direction dynamics are nonperiodic.
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The following three Lemmas show that all other directions are ex-
pansive. ®

Lemma 1. Let 0 < 6 < n with 6 ¢ {0,7/4,7/2,37/4}. Then L, is an
expansive subspace of R?.

Proof. Notice that our exceptions for # come from lines that are parallel
to sides of the configurations T, and T, used in defining our coding rules.
The argument we will use is similar to the one used in Example 2.8 of [3]
where it is shown that the Leddrapier three dot example is expansive in
all directions 8 except {0,7/2,3n/4}. (The Leddrapier example consists
of all arrays in {0, 1}2 for which any configuration of the form T, sums
to zero.) We will show that for any 6 as described, there exists a # > 0
such that Ly completely determines any array in X.

Consider configurations §; and S, determined by vertices {0, e, e,,
2ei,e; + e,y and {0, ey, e,, ¢, + €,,2¢; + e,} respectively.

There is an s > 0 with the following property: For large enough ¢,
each lattice point x(4,/) in L6™\ L§ is in a translate of S, whose other
vertices lie in Ly and in a translate of S, whose other vertices lie in
L. Either the translate of S; or the translate of S, (depending on the
location of x(i,j) relative to the 2-3 skeleton) determines x(z, ).

Restricting x € X to Lg determines the 2-3 skeleton of x and deter-
mines x restricted to L5 which in turn determines L5 and so on, and
thus, L, is an expansive subspace of R>. m

It remains to show that the directions 0, 7/4, and 37/4 are expansive
directions.

Lemma 2. The horizontal direction is expansive for (X, Z?).

Proof. In this proof we will show that for any ¢ > 0, if arrays x, y € X
agree on Lo, then they are identical.

Suppose that x(i,j) = x’(i,j) for all i € Z. (Note that x and x’
must have the same 2-3 skeleton.) We will show that this implies that
x(i,j+1)=x'(i,j+ 1) foralli € Z.

Cuase 1. It is clear that if the ith vertical column of x lies with vertical
sequences of 3s to the left and 2s at least two columns to the right, then
x(i,j+ 1) = x’(i,j + 1) since
x(i,7+ 1)+ x(,7) + x(i + 1,7)
=x'(i,j+ 1)+ x"(4,7) +x'(i + 1,7) mod 2.

Case 2. A similar argument holds if the ith vertical column of x lies with

a vertical sequence of 3s directly to the right.

Cuase 3. If the ith vertical column of x lies with vertical sequences of 2s to
the left and 3s at least two columns to the right then x(i,j+1) # x'(i,7+1)
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implies x(i + 1,7+ 1) £ x’(i + 1,7 + 1) since
x(i,7) +x(,7+ 1) +x(i+ 1,7+ 1)
= %' (i, )% (i, j+ 1)+ x'(i + 1,j+ 1) mod 2.

If column (i + 1) falls into Case 2 we have a contradiction. Otherwise,
x(i+1,7+1) £ x'(i+1,j+ 1) implies x( + 2,7 + 1) # x’(i + 2,j + 1) and
so on until we have a contradiction.

Case 4. If the ith vertical column of x lies with a vertical sequence of 2s
directly to the right, then x(i,j + 1) # x’(4,j + 1) implies x(i + 2,j + 1) #
x'(i + 2,7 + 1) and the (i + 2) vertical column falls into Case 3 giving us
a contradiction.

A similar argument shows that if x(i,j) = x’(i,j) for all i € Z then
x(i,j—1) = x'(4,j — 1) for all i € Z. Thus, if x(i,j) = x’(i,j) for all
(i,7) € Lo N Z2, then x(4,7) = x'(i,7) for all (i,7) € L5 N 72 and so on,

givingx =x’. ®
Lemma 3. The direction @ = n/4 is expansive for (X, Z?).

Proof. We show that if for all i € Z, x(i,j) = x'(i,j) forj=i—-1,4i,i+ 1
then x(i,1 +2) = x’(i,i + 2).

Case 1. Suppose that the ith vertical column of x lies with vertical
sequences of 3s to the left and 2s at least two columns to the right.
Then x(i,i+2) = x'(i,i+2) since x(, i +2) +x(i,i+ 1) +x(i+ 1,7+ 1) and
X' (6,i+2)+x"(i,i+1)+x'(i + 1,i + 1) are equivalent mod 2.

Case 2. A similar argument holds if the ith vertical column of x lies with
a vertical sequence of 3s directly to the right since x(i,i +2) + x(i,i + 1) +
x(i+2,i+ 1) and x'(4,i +2) + x'(i,i + 1) + x’(i + 2,7 + 1) are equivalent
mod 2.

Case 3. If the ith vertical column of x lies with vertical sequences of 2s
to the left and 3s at least two columns to the right. Then x(i,i + 2) =
x'(i,i + 2) since x(i,7 +2) + x(4,i + 1) + x(i + 1,7 + 2) and x’(4,i + 2) +
x'(4,i+ 1)+ x’(i+ 1,i+ 2) are equivalent mod 2.

Case 4. Suppose that the ith vertical column of x lies with a vertical
sequence of 2s directly to the right. Then x(i,7 + 2) = x’(i,7 + 2) since
xliy i42)+5x(iy i+ 1) +x(i+2,i+2) and & (i, i+2)+x" (i, i+ 1)+ (i +2, i+2)
are equivalent mod 2.

Similarly if for all i € Z, x(i,j) = x’(i,j) for j = i—1, 4, i+ 1 then
x(iyi—2) = x'(i,i — 2). Thus, if x(,/) = x'(i,j) for all (i,j) € Lh N Z2
and ¢ > V2/2, then x(i,7) = x’(i, ) for all (i,7) € Lz(f;r\/z/2 N Z? and so on,
givingx =x’. |

An argument similar to the one used in Lemma 3 shows that 6 = 37/4
is an expansive direction for (X, Z?) as well.
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| 4. Conclusion

The hope for the example constructed in this work was that it would
yield new insights into the following open question.

. 2 . .
Question 1. Does there exist X € A%” whose only nonexpansive direc-
tion is irrational?

Unfortunately, the fact that the nonexpansive direction in our exam-
ple was rational figured heavily in its construction and the answer to
Question 1 will have to come from other methods.

The resolution of Question 1 will lead to a complete understanding of
the possible sets of nonexpansive subspaces for two-dimensional cellular
automata. This understanding is a worthy goal in its own right and it
is also necessary to extend the theory to higher dimensions. We can
ask which collections of R” can occur as the expansive subspaces for
some X € A?" for m > 2. The answer to this question is still quite
incomplete, see [3] for what is known. Question 1 has fairly complicated
implications for higher dimensions and until it is resolved, the theory
cannot advance effectively.
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