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During the past few years an area of active research in the field of complex
systems is that of their information storing and processing abilities. Com-
mon opinion has it that the most interesting behavior of these systems is
found “at the edge of chaos,” which would seem to suggest that complex
systems may have inherently nontrivial information processing abilities
in the vicinity of sharp phase transitions. A comprehensive, quantitative
understanding of why this is the case is however still lacking. Indeed,
even “experimental” (i.e., often numerical) evidence that this is so has
been questioned for a number of systems. In this paper we will investi-
gate, both numerically and analytically, the behavior of random boolean
networks (RBNs) as they undergo their order–disorder phase transition.
We will use a simple mean field approximation to treat the problem, and
without lack of generality we will concentrate on a particular value for the
connectivity of the system. In spite of the simplicity of our arguments, we
will be able to reproduce analytically the amount of mutual information
contained in the system as measured from numerical simulations.

1. Introduction

The amount of information that a system is able to process (and/or
store) plays an essential role when one tries to quantify the level of
“complexity” [1] of a system, and indeed often the mutual information
[2] stored in the system (or a concept derived from it, such as past–future
mutual information) is used as a measure of its statistical complexity [3].

Over the past decade a number of authors have carried out work to-
wards understanding under what conditions can we expect to maximize
the information processing capabilities of different types of complex sys-
tems. For instance, Langton and others [4, 5] investigated the behavior
of cellular automata (CA), while Crutchfield, Young, and others [6] have
been concerned mainly with iterated function systems and computa-
tional complexity in this area. The definitions used for complexity were
rather problem dependent, and not surprisingly two main approaches
to measuring statistical complexity have been developed over the years,
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as well as a large number of other ad hoc methods for describing struc-
ture. The first line of work uses information theory [7–10], whereas the
second approach defines complexity using computation theoretic tools
[6, 11].

In spite of this model dependence, the common picture that seemed
to emerge from this work was that complex systems were able to show a
maximally varied and self-organized behavior (i.e., maximally complex
behavior) in the vicinity of sharp phase transitions [12]. Since these tran-
sitions often belonged to the class commonly known in statistical me-
chanics as order–disorder phase transitions, this naturally led to the no-
tion that maximally interesting behavior of complex systems takes place
“at the edge of chaos,” in an expression first coined by Packard [13].
(Note however that the disordered phase does not necessarily need to be
chaotic in the strict sense of the word, i.e., ergodic.) The underlying rea-
son was simple and appealing enough, neither very ordered systems with
static structures, nor disordered systems in which information cannot be
persistently stored are capable of complex information processing tasks.

The actual verification of the fact that the mutual information (or
definitions of statistical complexity based on other approaches) had a
maximum in the vicinity of the relevant phase transitions were a trickier
business though. Early results by Langton for CAs [4, 5] and by Crutch-
field [6, 11] for iterated dynamics showing sharp peaks in complexity
as a function of the degree of order in the system at what appeared to
be phase transitions were subsequently shown to be critically dependent
on the particular measure of order chosen [3]. After this, Arnold [14]
showed numerically that the two-dimensional Ising model indeed had a
maximum of statistical complexity (defined through past–future mutual
information) at its order–disorder transition.

Without wanting to go into the debate of what exactly constitutes a
good measure of complexity—a debate often riddled with the specifics
of the particular problem at hand—it would seem clear though that
complexity and information must bear a close relationship. We will
thus concern ourselves in this paper with the mutual information con-
tained in random boolean networks (RBNs) [15] and its behavior as
the networks undergo their order–disorder phase transition (for a com-
putational viewpoint see [16]). By using a mean field approximation
and assuming markovian behavior of the automata, we will show both
numerically and analytically that the mutual information stored in the
network indeed has a maximum at the transition point.

2. Random boolean networks

RBNs [15] are systems composed of a number N of automata (i "
1, . . . , N) with only two states available (say, 0 and 1, for instance),
each having associated with it a boolean function fi of K boolean argu-
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ments that will be used to update the automaton state at each time step.
Each automaton i will then have associated with it K other automata
i1, i2, . . . , ik (the inputs or vicinity of i), whose states (xi1

, xi2
, . . . , xik

) will
be the entries of fi. That is, the automaton i will change its state xi at
each time step according to the rule

xi(t # 1) " fi(xi1
(t), xi2

(t), . . . , xik
(t)). (1)

Both fi and the identity of its K inputs are initially assigned to the
automaton i at random. (In particular, the N f s are created by ran-
domly generating outputs of value 1 with a probability p, and of value
0 with a probability 1 $ p, where p is called the bias of the network.)
This initial random assignment of neighbors and functions will be main-
tained through the evolution of the system, so we will be dealing with
a quenched system. Even keeping this assignation fixed, the number of
possible networks that we can form for given values of N and K is ex-
traordinarily high (a total of (22KNK)N possible networks). Thus, if we
want to study general characteristics of RBN systems we are inevitably
led to a statistical approach.

One fact that can be observed for all RBN is that although the number
of available states for a network of size N grows by 2N, the dynamics of
the net separates the possible states into disjoint sets, or attractor basins.
Each basin will lead the system to a different attractor. However, since
the number of states available is finite and the quenched system is fully
deterministic, we can be sure that the system will at some point retrace
its steps in the form of periodic cycles. Thus attractors will necessarily
be periodic sets of states. Since after a transient any initial state will
end up in one attractor or another, their period (or rather their average
period) will set the typical time scale characterizing an RBN.

It has been known for some time now [15] that RBNs show two
different phases separated, for a given value of p, by a critical value of
K, Kc.

1. An ordered phase for K < Kc in which the networks freeze in a pattern
after a short transient. In this phase almost all of the automata remain in
a completely frozen state and the median period T of the attractors scale
with N as a power law.

2. A disordered phase for K > Kc. All patterns are lost and the automata
appear to be in a completely disordered state, switching from one state to
another seemingly at random. The period of the attractors become un-
observable in practice because the median period T grows exponentially
with N, thereby rendering the system free of any time scale [14].

This behavior naturally induced the conjecture that at Kc the RBNs
undergo a second order phase transition. This conjecture has been
proven correct and some more information about the transition has
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Figure 1. The boundary between the chaotic and the ordered phase is shown in
a K-p phase diagram. For a constant value of K, K " 3, three set examples of a
N " 50 network are shown for p " 0.60 (disordered phase), p " 0.79 (over the
critical line), and p " 0.90 (ordered phase). Each run contains 50 consecutive
states, time increasing upwards along the vertical axis.

been gained [18]. For instance, as we change the value of p the critical
value Kc at which the transition takes place also changes and a “critical
line” appears, as shown in Figure 1. As was shown in [19] this line
corresponds to

K "
1

2p(1 $ p)
. (2)

In the insets of Figure 1, three sets of states of a network with N " 50
and K " 3 are also shown as we move from the disordered state to the
ordered one by changing p, showing a typical order–disorder transition.
Each set of states contains 50 consecutive states, time running upwards
along the vertical axis.

3. Self-overlap in random boolean networks

Since RBNs appear to undergo an order–disorder phase transition, a
useful way to characterize the state of the system will be its self-overlap,
a. This is simply defined to be one minus the Hamming distance between
an automaton at time t and itself at time t#1, averaged over all automata
and times. Let us expand on this.
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Suppose that we generate an RBN with bias p, and a random initial
condition. We let the system evolve until the transient dies out and we
are inside an attractor cycle, and then compute the states of the system
for a number of time steps equal to the number of automata in the
system (That is, from t " 1 to t " 10,000 for the N " 10,000 network
that we have used. Each experimental computer point in all figures is
the average of 100 different networks with random initial conditions.)
Let us suppose that we count the number of times that an automata is
in the state 1 both at time t and t # 1, and average over all automata
and time steps. This will give us the 1 state self-overlap, a11. Repeating
this procedure with the 0 state will then obviously give us the 0 state
self-overlap, a00. Then, a will simply be given by

a " a11 # a00. (3)

On the other hand, we can analogously define a10 and a01. Note
that by symmetry we have to have a10 " a01 even with p % 1/2, since
a10 and a01 are the joint probability distributions, not the conditional
probabilities of transitioning from 1 to 0 or vice versa.

It is then fairly easy to find the equation that describes the evolution
of a. If we define P to be

P " p2 # (1 $ p)2, (4)

then it is not difficult to convince oneself that in a mean field approxi-
mation we must have

at#1 " aK
t # P(1 $ aK

t ), (5)

where K is the connectivity of the net. This equation forces a to evolve
towards fixed points at & a' that will depend on K and p. The stability
analysis of equation (5) for a' " 1 gives the critical line (equation (2))
separating the ordered phase (a' " 1) from the disordered phase (a' < 1).
This is shown in Figure 2, where the evolution of a given by equation (5)
(solid line) is plotted against the results of the numerical simulations
(dots). The evolution lasts for as long as it takes the transient to die out,
and once the system is in the attractor cycle a takes on its fixed point
value (from now on we drop the star and designate the fixed point value
simply by a).

Let us now obtain analytical expressions for the aΑΒ from our knowl-
edge of a, the normalization conditions, and the fact that a10 " a01. By
equation (3) and by normalization

a00 # a01 # a10 # a11 " 1, (6)

so that

a01 # a10 " 1 $ a. (7)
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Figure 2. Plot of a(t) versus t showing the numerical results from the simulations
(dots) and the values predicted by the mean field approximation (equation (5)),
for K " 3. Different values of the bias p, from p " 0.5 to p " 0.9 with pc " 0.79
are shown.

But then, by symmetry,

a10 " a01 "
1 $ a

2
. (8)

We still have two more normalization conditions, derived from the fact
that the probability of finding a mean field automaton in the state 1 is
p, and 1 $ p for the state 0

a11 # a10 " p, (9)
a00 # a01 " 1 $ p, (10)

whence

a00 "
a
2
$
*++++
,
p $

1
2
-....
/
, (11)

a11 "
a
2
#
*++++
,
p $

1
2
-....
/
, (12)

which satisfy equation (3). Figure 3 shows the analytical expressions
for the aΑΒ (solid lines) together with the results from the numerical
simulations (dots).

So far we have simply approximated the whole network by a set of
mean field automata. However, since the aΑΒ are equivalent to pΑ0Β we
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Figure 3. Analytical (continuous line) and numerical results (dots) for the aΑΒ as
p ranges from 0.5 to 1.

can now calculate the conditional probabilities

pΑ1Β "
aΑΒ
pΒ

. (13)

If we now assume that our mean field automata are markovian these
conditional probabilities will completely characterize their transition
probabilities [2]. Therefore, the transition matrix for the mean field
markovian automaton is:

T " ! p010 p110
p011 p111

" " *++++
,

a#1$2p
2(1$p)

1$a
2(1$p)

1$a
2p

a$1#2p
2p

-....
/

(14)

which satisfy

1#
Α"0

pΑ10 " 1, (15)

1#
Α"0

pΑ11 " 1, (16)

where pΑ10, pΑ11 are the probabilities of transitioning from the states 0, 1
to the state Α.

Thus, we have now reduced the whole network to a set of mean field
automata evolving independently under markovian conditions, all the
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effects of their interactions being encoded in a. To compute the past–
future mutual information stored in the system we only have to apply
information theory [3, 20]. The one-automaton entropy is simply

H(xt#1) " $p log p $ (1 $ p) log (1 $ p), (17)

whereas the Shannon uncertainty associated to the markovian evolution
of this automaton will be

H(xt#1 1 xt) " pH(xt#1 1 xt " 1) # (1 $ p)H(xt#1 1 xt " 0), (18)

with

H(xt#1 1 xt " 1) " $
a $ 1 # 2p

2p
log
*++++
,

a $ 1 # 2p
2p

-....
/

$
1 $ a
2p

log
*++++
,

1 $ a
2p
-....
/
, (19)

and

H(xt#1 1 xt " 0) " $
a # 1 $ 2p
2(1 $ p)

log
*++++
,

a # 1 $ 2p
2(1 $ p)

-....
/

$
1 $ a

2(1 $ p)
log
*++++
,

1 $ a
2(1 $ p)

-....
/
. (20)

The uncertainty is thus,

H(xt#1 1 xt) " $
a $ 1 # 2p

2
log
*++++
,

a $ 1 # 2p
2p

-....
/
$

1 $ a
p

log
*++++
,

1 $ a
2p
-....
/

$
a # 1 $ 2p

2
log
*++++
,

a # 1 $ 2p
2(1 $ p)

-....
/
$

1 $ a
2

log
*++++
,

1 $ a
2(1 $ p)

-....
/
, (21)

whence the past–future mutual information will be:

I " H(xt#1) $H(xt#1 1 xt)

" $p log p $ (1 $ p) log (1 $ p) #
a $ 1 # 2p

2
log
*++++
,

a $ 1 # 2p
2p

-....
/

#
1 $ a

p
log
*++++
,

1 $ a
2p
-....
/
#

a # 1 $ 2p
2

log
*++++
,

a # 1 $ 2p
2(1 $ p)

-....
/

#
1 $ a

2
log
*++++
,

1 $ a
2(1 $ p)

-....
/
. (22)

Figure 4 shows the analytical expressions (solid lines) as well as the
experimental results from the simulations for both the one-automaton
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Figure 4. Numerical and analytical results for both H(xt#1) (filled dots for the
numerical results) and H(xt#1 1 xt) (filled triangles) are shown in the left-hand
side. Note how H(xt#1 1 xt) is always smaller and decays faster than H(xt#1),
becoming 0 in the ordered phase. In the right-hand side I versus p is plotted,
showing a peak at the critical value pc " 0.79 as expected.

entropy (dots) and the Shannon uncertainty (triangles). Note how the
uncertainty is always smaller and decays faster than the one-automaton
entropy. In particular, for p 2 pc (where pc " 0.79 for our net with
K " 3), we have a " 1 and H(xt#1 1 xt) " 0. Thus in the ordered phase
the mutual information becomes simply the one-automaton entropy.
Given this discussion, it is obvious that the mutual information that can
be stored in the system has to have a maximum precisely at pc. This is
shown in Figure 4, where the mutual information I is plotted against p
(again, both the analytical expression above as well as the experimental
results).

Finally, in Figure 5 the mutual information is plotted against the
one-automaton entropy H. From H " 0, corresponding to p " 1; to
H 3 0.75, which corresponds to the critical value p " pc, we see that I
is just a straight line of slope 1. This is as it should be; since, as we just
saw, H(xt#1 1 xt) is 0 for p beyond pc, and I " H(xt#1) in this region.
Precisely at H(pc), I reaches a maximum, and beyond this point it starts
to decay nonlinearly as the Shannon uncertainty switches on.

4. Conclusions

By using a mean field approximation and a markovian ansatz for the
evolution of an RBN, we have been able to show with a few, back of the
envelope type of calculations, that the past–future mutual information
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Figure 5. The past–future mutual information I versus the one-automaton en-
tropy H(xt#1). From H " 0 (corresponding to p " 1) to H(pc) we have
I " H(xt#1) since H(xt#1 1 xt) " 0. Therefore, in this region the mutual in-
formation simply increases linearly with the one block entropy. Beyond this
point however we enter the disordered phase and H(xt#1 1 xt) switches on,
growing faster (in absolute value) than the one block entropy. Therefore, I
shows a peak exactly at the transition point.

contained in a RBN reaches a maximum at the point at which this
system undergoes its order–disorder phase transition. Also, in Figure 5
we can see how the mutual information as a function of the amount of
disorder present in the system (the one-automaton entropy) reaches a
maximum at the point that corresponds to the phase transition.

Similar results obtained in [4, 5] (for CAs) and in [6] (for symbolic
dynamics of the logistic map) were explained by Li [3] on the ground
that the peak was an artifact created by the particular quantity chosen
to measure the disorder of the system. Thus, for instance, Li criticizes
Langton arguing that since in the ordered phase we have I " H(xt), it is
only natural for him to find a straight line as the boundary of his plot
of complexity against disorder (as we do). Li surmises that if instead of
using H(xt) as a measure of the disorder of the system one chooses to use
the Shannon uncertainty of the source H(xt#1 1 xt) (Ht#11t for short) the
left side of the plot would no longer be a straight line, and the maximum
of I would not be reached for intermediate values of the disorder. Rather,
in the I versus Ht#11t plot the maximum of I falls over the y-axis since
I reaches a maximum at 0 (Ht#11t), and I monotonically decreases as
Ht#11t increases. Thus, the intuitive picture of the relationship between
complexity and disorder proposed by Langton and others (i.e., unimodal
relationship between complexity and disorder with complexity reaching
a maximum at intermediate values of the latter) would no longer seem to
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be correct. This Li takes as support of his conclusion that the dependence
of I on the amount of disorder in the system can take many varied forms.

We think that the argument just presented, although trivially correct,
fails to capture the essence behind the idea of unimodal dependence
between I and the amount of disorder in the system. We should first
note that I(Ht#11t " 0) is not a single-valued function. Rather, since
Ht#11t " 0 for pc 4 p 4 1, at Ht#11t " 0 I grows from 0 (corresponding
to p " 1) to its maximum value (corresponding to p " pc). That is, we
have not gotten rid of the straight line in the I versus Ht graph, we have
merely made it into a vertical line placed at Ht#11t " 0. Note however
that the maximum of I would still be reached at the transition point
between the two phases of the system. This is, in fact, the central point
of the issue at hand. The postulated unimodal dependence between I
(or complexity) and disorder rests under the assumption that, as we
vary the order parameter, the system goes from an ordered phase into a
disordered one with I attaining its maximum value neither at one phase
nor the other, but precisely at the transition point between them. If the
quantity chosen as the order parameter varies over both phases then I
will reach this maximum for intermediate values of the parameter. If,
on the other hand, a whole phase of the system is mapped into a single
value of the order parameter, then quite obviously the maximum will be
at one of the edges of the graph. Thus one could say that the essence
of unimodality relies not on I reaching its maximum for intermediate
values of the order parameter, but on such a maximum being at the
transition point between the ordered and the disordered phases.
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