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We introduce the notion of apparent entropy on cellular automata that
points out how complex some configurations of the space-time diagram
may appear to the human eye. We then study, theoretically, if possible, but
mainly experimentally through natural examples, the relations between
this notion, Wolfram’s intuition, and almost everywhere sensitivity to
initial conditions.

Introduction

A radius-r one-dimensional cellular automaton (CA) is an infinite se-
quence of identical finite-state machines (indexed by Ÿ) called cells.
Each finite-state machine is in a state and these states change simultane-
ously according to a local transition function: the following state of the
machine is related to its own state as well as the states of its 2r neigh-
bors. A configuration of an automaton is the function which associates
to each cell a state. We can thus define a global transition function from
the set of all the configurations to itself which associates the following
configuration after one step of computation.

Recently, a lot of articles proposed classifications of CAs [5, 8, 13]
but the canonical reference is still Wolfram’s empirical classification [14]
which has resisted numerous attempts of formalization. Among the lat-
est attempts, some are based on the mathematical definitions of chaos
for dynamical systems adapted to CAs thanks to Besicovitch topol-
ogy [2, 6] and [11] introduces the almost everywhere sensitivity to initial
conditions for this topology and compares this notion with information
propagation formalization. As in [8], this notion does not really classify
the CA but the CA for a measure. This gives, for instance, a tool to
understand fluid flow phenomenon modeled by CA: we can now say
that the CA is not almost everywhere sensitive to initial conditions (and
thus almost everywhere not sensitive) for small fluid speed and almost
everywhere sensitive for high fluid speed.

It appears that almost everywhere sensitivity, although close to, does
not really match Wolfram’s intuitive idea of chaos. To better understand
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why, we will here introduce a new notion that points out how complex
some configurations of the space-time diagram may appear to the hu-
man eye. This notion is based on information theory, the idea is to take
into account the fact that the human eye cannot detect correlations in
very big patterns. We then study, theoretically, if possible, but mainly
experimentally, the relations between this notion, Wolfram’s intuition,
and almost everywhere sensitivity. As we will see, this study is based
on Besicovitch topology, Bernoulli measure, and apparent entropy. For
simplicity, we only consider one-dimensional CA. However, all the con-
cepts we introduce are topological and they could easily be extended to
higher-dimensional CA.

1. Definitions

1.1 Cellular automata

A radius-r one-dimensional cellular automaton is a couple (Q, ∆) where
Q is a finite set of states and ∆ # Q2r$1 % Q is a transition function.
A configuration c & QŸ of (Q, ∆) is a function from Ÿ into Q and
its global transition function G∆ # QŸ % QŸ is such that G∆(c)(i) '
∆(c(i ( r), ..., c(i), ..., c(i $ r)). An elementary cellular automaton (ECA)
is a radius-1 two states (usually 0 and 1) one-dimensional CA.

For ECA, we will use Wolfram’s notation: they are represented by an
integer between 0 and 255 such that the transition function of the CA
number i whose writing in base 2 is i ' a7a6a5a4a3a2a1a0

2 satisfies:

∆i(0, 0, 0) = a0 ∆i(1, 0, 0) = a4
∆i(0, 0, 1) = a1 ∆i(1, 0, 1) = a5
∆i(0, 1, 0) = a2 ∆i(1, 1, 0) = a6
∆i(0, 1, 1) = a3 ∆i(1, 1, 1) = a7.

Let us remark that CA with different numbers may have the same be-
havior by exchanging the states 0 and 1; for instance, 184 ' 10111000

2

and 226 ' 11100010
2
. If r is a rule number, we will denote r the

rule after exchanging the states and
)
r the rule which has a symmetric

behavior (see [4] for more details).
We will discuss the CA 120 ' (*0, 1+, ∆120), or equivalently, of the rule

120.
In the general definition of additive CA due to Wolfram, an additive

CA is a CA that satisfies the superposition principle (∆(x$ x,, y $ y,, z $
z,) ' ∆(x, y, z) $ ∆(x,, y,, z,)). These CA are very interesting to choose
examples from, because their behaviors obey algebraic rules adapted to
a formal study while their space-time diagrams appear complicated. We
will here, as in [9, 13], use a strictly more restrictive definition.
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Definition 1. We call additive CA a one-dimensional CA whose state
set is Ÿ/nŸ and whose transition function is of the form:

∆(x(1, x0, x1) ' x0 $ x1(mod n).

1.2 Besicovitch topology

The most natural topology on CA configuration sets is Cantor topology.
The problem is that, even if the product topology is shift invariant, the
associated distance is not and it focuses on the neighborhood of an
(arbitrary) origin while in many applications of CA all the cells have
the same importance. This is the reason Formenti suggests Besicovitch
topology in the CA context. As noticed in [11], notions we will use
are not specific to Besicovitch topology, but are true for a wide class
of topologies including the Weyl one, and although there are many
ways to extend Besicovitch in higher dimensional grids, all of them are
equivalent for our purpose.

Let us define the Besicovitch pseudodistance, which induces a shift
invariant topology on the quotient space.

Definition 2. The Besicovitch pseudometric on QŸ is given by

d(c, c,) ' lim sup
l%$-

#*i & [(l, l].xj / yj+
2l $ 1

(# denotes the cardinality).

It is not a distance since obviously the distance between two config-
urations equal everywhere except on a finite number of cells is null. If
we consider two equal configurations except at the cells 2n, there is an
infinite number of differences, but the distance is still null.

Property 1. Supplied with the induced topology, the quotient of QŸ by
the relation x 0 y 1 d(x, y) ' 0 is metric, path-wise connected, in-
finite dimensional, complete, neither separable nor locally compact [2].
Furthermore, x 0 y 2 G∆(x) 0 G∆(y) and the transition function of a
CA is a continuous map from QŸ/ 0 to itself.

The last property of continuity justifies the attempt to use ergodic
theory in this context.

1.3 Measure on the configuration set

Intuitively, a measure describes what is a random element; that is, for
our purpose, what is a random configuration. Let Q be a finite alphabet
with at least two letters. Q3 ' 4n51Qn is the set of finite words on Q.
The ith coordinate x(i) of a point x & QŸ will also be denoted xi and
x[j,k] ' xj...xk & Qk$1(j is the segment of x between indices j and k. The
cylinder of u & Qp at position k & Ÿ is the set [u]k ' *x & QŸ.x[k,k$p(1] '
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u+. Let Σ be the shift toward the left: Σ(c)i ' ci$1 (i.e., the rule number
85).

A Borel probability measure is a nonnegative function Μ defined on
Borel sets. It is given by its values on cylinders, satisfies Μ(QŸ) ' 1, and
for every u & Q3, k & Ÿ,

!
q&Q

Μ[uq]k ' Μ[u]k and !
q&Q

Μ[qu]k ' Μ[u]k$1.

A measure Μ is Σ-invariant if Μ[u]k does not depend on k (and will
thus be denoted Μ[u]). A Σ-invariant measure is Σ-ergodic if for every
invariant measurable set Y (Σ(Y) ' Y), either Μ(Y) ' 0 or Μ(Y) ' 1.

Bernoulli measures are the simplest, the idea is that all the cells are
independent, and the probability of each state q is given by a constant
pq. Their simplicity is the reason why we will use them in all our
examples while the definitions remain true for otherΣ-ergodic measures;
for instance, Markov measures (with correlations over a finite number of
cells) or measures such that the correlation between two states decreases
exponentially with their distance.

A Bernoulli measure is defined by a strictly positive probability vector
(pq)q&Q with "q&Q pq ' 1 and if u ' u0...un(1 & Qn, Μ[u0...un(1] '
pu0

...pun(1
.

Let us note the following classical result: Bernoulli measures are
Σ-ergodic.

For 2-states CA, Bernoulli measures will be denoted ΜΡ where Ρ '
p1 ' 1 ( p0 is the probability that a state is 1.

To illustrate Bernoulli measure and introduce the almost everywhere
sensitivity to initial conditions, let us consider the example given in [11]
that we reuse below. In Figure 1, we see a very simple traffic model (the
CA T) based on rule 184 but with two different models of cars. The
principle is quite simple, a car stays at the same position if there is a
car in front of it and moves toward the right if the next position is free.
The system seems “chaotic” when the density Ρ of cars is greater than
or equal to 0.5 because of the traffic jams, but not “chaotic” otherwise.
Saying that this CA is chaotic or not does not make sense since it will
depend on its utilization: whether it is used for traffic jam or for fluid
traffic simulation. Its average behavior makes no sense if we do not
explain what is a “random configuration,” that is, which measure we
take on its configuration set. If we assume that the cars repartition is
initially uniform and that we have the same number of red and blue cars,
we will consider the Bernoulli measures Μ3Ρ such that the probability to
find a blue car in a cell is Ρ/2 and equal to the probability to find a red
car while the probability that there is no car is 1 ( Ρ. The idea is to
say that this CA is Μ3Ρ-almost everywhere sensitive to initial conditions
when Ρ 5 1/2 while it is Μ3Ρ-almost never sensitive to initial conditions
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Ρ ' 0.2 Ρ ' 0.4 Ρ ' 0.5 Ρ ' 0.7

Figure 1. The CA T is a very simple traffic model based on rule 184 but with
two different models of cars. The system seems chaotic when the density Ρ of
cars is greater than or equal to 0.5 because of the traffic jams, but not chaotic
otherwise. Below the space-time diagrams (time goes toward the top), we show
with a gray level the space-time repartition of the average number of alterations
induced by the modification of the middle cell.

otherwise. If it is important to take into account the fact that a lot of
people take their car at the same time to go to work, other measures
allow modeling a nonuniform repartition.

1.4 DΜ-attracting sets

DΜ-attracting sets have been defined in [9], we will use them to point out
the homogenization process to periodical configurations, some examples
are presented in Figure 2.

Definition 3. A subshift is any subset 9 : QŸ, which is Σ-invariant and
closed in the Cantor metric. The language L(9) of a subshift 9 : QŸ, is
the set of factors of 9. A subshift is of finite type (SFT), if there exists a
positive integer p called order, such that for all c & QŸ, c & 9 1 ;i &
Ÿ, c[i,i$p(1] & L(9).

Definition 4. For a subshift 9 : QŸ and x & QŸ, define the density of
9-defects in x by

dD(x,9) ' lim
k%$-

lim sup
l%$-

#*i & [(l, l] . x[i,i$k(1] < L(9)+
2l $ 1

.

Notation 1. When d is a pseudodistance, we can naturally define the
pseudodistance from an element x to a set as the inf of the pseudodis-
tance between x and the elements of the set:

d(x,9) ' inf
y&9

d(x, y).

Note that dD(x,9) is not associated to any pseudodistance because in
the general case dD(x, *y+) / dD(y, *x+).
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184 18 54 110

Figure 2. This figure presents the space-time diagram of four ECA, that is, we
use the vertical axes to represent their successive configuration (time goes up).
*(01)3, (10)3+ is a DΜ-attracting subshift of rule 184 for Μ1/2 [9]. [11] conjectures
that *(1000)3, (0100)3, (0010)3, (0001)3, (1110)3, (1101)3, (1011)3, (0111)3+ is a
DΜ-attracting subshift of rule 54 and that *c & *0, 1+Ÿ.;i, c(2i) ' 0+ 4 *c &
*0, 1+Ÿ.;i, c(2i $ 1) ' 0+ could be a nonfinite type subshift of rule 18. The latest
results of N. Ollinger on rule 110 let us think that its behavior is similar to rule
54 behavior.

Definition 5. Let Μ be aΣ-ergodic measure, a subshift9 is DΜ-attracting if

Μ(*c & QŸ . lim
n=$-

dD(Gn
∆ (c),9) ' 0+) ' 1.

Remark 1. As the set *c & QŸ . limn=$- dD(f n(c),9) ' 0+ is shift in-
variant, its measure is either 0 or 1.

2. Μ-almost everywhere sensitivity and apparent entropy

2.1 Μ-almost everywhere sensitivity to initial conditions

The definition of almost everywhere sensitivity to initial conditions is not
obtained by replacing “for all configurations c” with “for Μ-almost all
configurations c” in the sensitivity definition, it is a bit more restrictive,
so that a CA that is not Μ-almost everywhere sensitive, is “Μ-almost
nowhere” sensitive to initial conditions.

Definition 6. [11] A CA is Μ-almost everywhere sensitive to initial
conditions (for Besicovitch pseudodistance) if there exists M such that
for all Ε0 > 0, there exists Ε < Ε0 such that if c and c,, are two Μ-
random configurations, if e is a ΜΕ random configuration and if c, '
ce $ c,,e is the configuration whose state at a given position is equal to
the corresponding state of c when the corresponding state of e is equal to
1 and to the corresponding state of c,, otherwise (see Figure 3), then with
probability 1 (for Μ?Μ?ΜΕ) there exists n such that d(Gn

∆A (c), Gn
∆A(c,)) 5

M.
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Μ-random configuration

c,,b c b a b c a a c c ba

Μ-random configuration

ca b c c a b b bc acb

a c c a c c b a c a bc

ΜΕ-random configuration

0 1 0 0 0 1 1 0 0 00 0 e

c, ' ce $ c,,e

210 120

Figure 3. The configuration c, ' ce $ c,,e is the configuration whose state at a
given position is equal to the corresponding state of c when the corresponding
state of e is equal to 0 and to the corresponding state of c,, otherwise. Remark
that, due to the great number law, with probability 1, d(c, c,) ' Εd(c, c,,) @ Ε.
Rule 210 is Μ-almost nowhere sensitive to initial conditions while we guess that
rule 120 is Μ-almost everywhere sensitive.

Remark 2.

If c and c,, are two generic configurations forΜ and e is a generic configura-
tion for ΜΕ, it is easy to see that c, ' ce$c,,e is generic for Μ. Furthermore,
due to the great number law, with probability 1, d(c, c,) ' Εd(c, c,,) @ Ε.

This definition implies that there exists M such that for Μ-almost all
configurations c and for all Ε > 0, there exists c, and n with d(c, c,) < Ε
and d(Gn

∆A
(c), Gn

∆A
(c,)) 5 M.

Usually, when the space is compact, the previous result implies the sen-
sitivity to initial conditions. The main point of the proof is that any
compact subset has a nonnull measure, but the Besicovitch topological
space QŸ/ 0 is not (locally) compact and the argument fails.

The set of configurations 3-uplets (c, c,,, e) such that if c, ' ce $ c,,e there
exists n so that d(Gn

∆A
(c), Gn

∆A
(c,)) 5 M is obviously shift invariant on

(Q?Q? *0, 1+)Ÿ. As Μ?Μ?ΜΕ is Σ-ergodic, thus the set measure is either
1 or 0. As a consequence a CA is either Μ-almost everywhere sensitive to
initial conditions or “Μ-almost nowhere sensitive to initial conditions:”
for any Η there exists Ε such that if we build c, c, as usual, for any n,
d(Gn

∆A
(c), Gn

∆A
(c,)) @ Η almost everywhere.

The Μ-almost everywhere sensitivity to initial conditions makes sense
because we saw that some CA are not (obviously rule 0 is not) and the
additive CA are [11].

2.2 Apparent entropy

By looking at space-time diagrams starting from initial configurations
for different densities of 1, Wolfram [14] observed that the rules he
termed “chaotic” present a complex behavior and that this behavior
does not (asymptotically) depend on the initial way of choosing a ran-
dom configuration. Our aim here is to give sense to this intuition. The
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idea is to use information theory to express this. A very first idea would
be to consider the amount of information contained in the space-time
diagrams of the CA, but obviously, the amount of information of the
whole diagram is the same as the amount of information in the ini-
tial configuration. This has been pointed out many times (at least in
[6, 14]). If we think about information theory in terms of Kolmogorov
complexity, it is obvious that a very simple program is able to build a
space-time diagram knowing the initial configuration and the transition
table (which is finite). A second idea is to consider the evolution of the
amount of information of the successive configurations [10, 14]. But
again it is easy to prove that the amount of information cannot grow

(if t1 @ t2 then S
(t1)
Μ (A) 5 S

(t2)
Μ (A) where S(t)

Μ (A) is the entropy of the
configuration after t steps, see the definition below), and contradicts
our intuitive idea. Again, this is obvious if we think of Kolmogorov
complexity but let us recall the proof for the metric entropy [10].

Definition 7. Let (A, ∆) be a CA and Μ a Σ-ergodic measure, the met-
ric entropy of its configuration after t computation steps is defined as
follows:

S(t)
Μ (A) ' lim

n=$-

("u&Qn p(t)
u log(p(t)

u )
n

with the usual convention 0? log(0) ' 0 and where pu is the probability
of the pattern u appearing in the configuration c: p(t)

u ' Gt
∆(Μ)([u]0)

where the notation f (Μ) represents the measure defined by f (Μ)(X) '
Μ(f (1(X)). In mathematical terminology, S(t)

Μ (A) is the metric entropy of
Σ for the measure Gt

∆(Μ).

Theorem 1. LetA be a CA and Μ a measure on its configuration set, if

t1 @ t2 then S
(t1)
Μ (A) 5 S

(t2)
Μ (A).

Proof. [10] For convenience, let us define

S(t)
Μ,n ' ( !

u&Qn

p(t)
u log(p(t)

u )

where p(t)
u is the probability of the pattern u appearing in the configura-

tion after t steps of computation. The probability of sequences at time
t and t $ 1 are related since

p(t$1)
u ' !

*v.*∆n$2r=r
A (v)'u+

p(t)
v

which gives the entropy at time t $ 1

S(t$1)
Μ,n ' ( !

u&Qn

p(t$1)
u log(p(t$1)

u ) @ S
(t)
Μ,n$2r.
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’rho = 0.10’

1 2 3 4 5 6 7 8 9 10 0

5

10

15

20
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

Figure 4. This diagram represents, for the first 20 configurations of the additive
rule 150 starting from a random configuration for Μ0.9, the ith, 1 @ i @ 10
term of the limit that defines the metric entropy, that is, ("u pu log(pu) when
u & *0, 1+i and pu is the probability of the pattern u of length i. We see that for
all i the superior limit is log(2), this means that the probability tends to be the
same for all the patterns of length i.

So the increase of measure entropy for one step is

BS(t)
Μ (A) ' S(t$1)

Μ (A) ( S(t)
Μ (A).

An explicit calculation gives

BS(t)
Μ (A) ' lim

n%$-
#1
n

S(t$1)
Μ,n (A) (

1
n $ 2r

S
(t)
Μ,n$2r(A)$

' lim
n%$-

# 1
n $ 2r

(S(t$1)
Μ,n (A) ( S

(t)
Μ,n$2r(A))

$ #1
n
(

1
n $ 2r

$ S(t$1)
Μ,n (A)$ @ 0

since the first term in the limit is negative or zero and the second term
goes to zero as m %$-. Thus measure entropy cannot increase when
a deterministic rule is applied.

Therefore the entropy cannot grow, but it is possible that the limit
that defines it converges more and more slowly in the successive con-
figurations. That means we need to look at bigger and bigger patterns
to detect correlations between the states of the configuration. This has
been noticed in [10] and represented for an additive one-dimensional
CA (Wolfram rule 150). In Figure 4 we can see the correlation on pat-
terns of size 0 to 10 of the first 20 configurations of the evolution of
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rule 150 on an initial configuration whose density of 1 is 1/10. We see
very quickly that there is almost no correlation in the patterns of size
less than 10, with some exceptions that are specific to the additive rules
at time 2n.

Note that this observation explains why the CA we want to call
chaotic have a complex space-time diagram; or more exactly, complex
configurations, most of the time. Actually, when we represent a space-
time diagram, we can only represent a finite part of it, so as soon as the
size of the correlation is larger than the represented part, we are unable
to detect these correlations, and we cannot distinguish it from a random
configuration.

To quantify the limit sup of the configuration complexity, we will
define the apparent entropy which is obtained by inverting the limits.

Definition 8. Let A be a CA and Μ a Bernoulli measure, we define the
apparent entropy as follows:

Sa
Μ(A) ' lim

n=$-
lim sup

t=$-
!

u&Qn

p(t)
u log(p(t)

u ) ' lim
n=$-

lim sup
t=$-

S(t)
Μ,n

where p(t)
u is the probability of the pattern u appearing in the configura-

tion after t computation steps.

Remark 3.

Note that limn=$- lim supt=$- S(t)
Μ,n exists because the sequence (lim supt=$-

S(t)
Μ,n)n is subadditive.

In mathematics, the following equivalent definition of apparent entropy
would probably be preferred. Let us consider the topology associated
to the simple limit on the set of measures; that is, such that a sequence
(Μn)n of measures converges if and only if for any pattern u, the sequence
(Μn)n(u) converges, obviously the set of measures is compact (as a product
of compacts). Thus, the sequence of measures (Gn

∆ (Μ))n has adherence
point(s). Actually, the apparent entropy is the limit sup of the entropy of
the adherence points.

Our definitions have to be linked with Ferrari et al. [7] which consid-
ers for some additive CA (when the number of states is ps with p prime)
the Cesàro mean of the successive configurations distribution starting
from a l-step Markov measure Μ

MΜ ' lim
M%$-

1
M

M(1!
m'0

Μ !G(m
∆

and proves that it exists and is the product of uniform measures (i.e.,
it is the measure of maximal entropy). Obviously, this implies that the
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apparent entropy of additive CA is maximal (i.e., log(.Q.)). Further-
more, it proves that most configurations will look completely random.
For this reason defining apparent entropy as the entropy of the Cesàro
mean seems more interesting: it represents the complexity of almost all
the configurations rather than its limit sup. The problem is that we do
not know whether it is defined for any CA and the definition we take is
more natural with respect to the notion of almost everywhere sensitivity.

2.3 Apparent entropy: Exact calculation and approximation

2.3.1 Exact calculation of the apparent entropy

Unfortunately, we cannot compute the apparent entropy for most of
the rules. There are some exceptions, like the rule for which we can
prove that the configuration tends Μ-almost surely to be uniform (like
Wolfram’s rules 0, 1 ...). In this case, the apparent entropy is equal to 0
for any Ρ. For the identity or the shifts, obviously, the apparent entropy
is equal to the initial configuration entropy. Moreover, we saw that
the additive rules have a maximal apparent entropy for any nontrivial
Bernoulli measures when n ' ps with p prime (this is a consequence
of [7]).

We can also obtain some information about the apparent entropy
of a rule when we know a DΜ-attracting set because of the following
theorem.

Theorem 2. If 9 is a DΜ-attracting SFT forA, then the apparent entropy
Sa
Μ(A) is less than the topological entropy of 9.

Definition 9. The topological entropy of a subshift 9 is

h9(Σ) ' lim
n%$-

log(#*u & Qn . Cc & 9, c[0,n(1] ' u+)
n

.

Lemma 1. Let 9 be a SFT of order p. If k 5 p, define

d
(k)
D (x,9) ' lim sup

l%$-

#*i & [(l, l] . x[i,i$k(1] < L(9)+
2l $ 1

.

Then d
(k)
D (x,9) @ (k ( p)dD(x,9).

Proof. As 9 is a SFT, x[i,i$k(1] & L(9) if and only if ;j, 0 @ j @ k ( p,
x[j,j$p(1] & L(9). Thus for each i & [(l, l] such that x[i,i$p(1] < L(9),
we have x[j,i$k(1] < L(9) for i ( k $ p @ j @ i. Thus in the worst case,
#*i & [(l, l] . x[i,i$k(1] < L(9)+ @ (k(p)#*i & [(l, l] . x[i,i$p(1] < L(9)+. We

deduce that d
(k)
D (x,9) @ (k ( p)dD(x,9).

Proof. (Of Theorem 2.) The proof is a consequence of the fact that the
metric entropy is less than or equal to the topological entropy.
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By definition,

Sa
Μ(A) ' lim

n=$-
lim sup

t=$-
S(t)
Μ,n ' lim

n=$-
lim sup

t=$-
!

u&Qn

p(t)
u log(p(t)

u )

where p(t)
u ' Μ((Gt

∆)(1([u])).
Let us prove that for all Ε > 0, this limit is less than or equal to

h9(Σ) $ f (Ε) with f (Ε) %Ε=0 0.
By definition of h9(Σ), there exists K such that for all k 5 K

log(#*u & Qk . Cc & 9, c[0,k(1] ' u+)
k

@ h9(Σ) $ Ε.

If a SFT 9 is a DΜ-attracting set of (QŸ, G∆), by definition

Μ(*c & QŸ . lim
n=$-

dD(Gn
∆ (c),9) ' 0+) ' 1

thus Μ(*c & QŸ . limn=$- d
(k)
D (Gn

∆ (c),9) ' 0+) ' 1 from Lemma 1.
So, for all Α > 0, there exists M such that for t 5 M,

Μ(*c.d
(k)
D (Gt

∆(c),9) @ Ε+) 5 1 ( Α.

As Σ is ergodic, the measure of this set is actually 1.
In this case we have

S
(t)
Μ,k '

("u&Qk p(t)
u log(p(t)

u )
k

'
("u&QkEL(9) p(t)

u log(p(t)
u )

k
$
("u&Qk%L(9) p(t)

u log(p(t)
u )

k

@
log(#*u & Qk . Cc & 9, c[0,k(1] ' u+)

k

$
("u&Qk%L(9) p(t)

u log(p(t)
u )

k

@ h9(Σ) $ Ε $
("u&Qk%L(9) p(t)

u log(p(t)
u )

k

now, to deal with the last term, let us denote Εt(c) ' d
(k)
D (Gt

∆(c),9) and
notice that for t 5 M and Μ-almost every c, Εt(c) @ Ε.

Our first goal is to prove that "u&Qk%L(9) p(t)
u @ Ε. Let us define

f

&&&&&&&&&&&
QŸ = —

c ! 1 if c[0,k(1] & Qk%L(9)
0 otherwise

and gt ' f !Gt
∆. We have ' gtdΜ ' "u&Qk%L(9) p(t)

u . f is measurable (actu-
ally continuous) thus gt is measurable too and we can apply Birkhoff’s
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ergodic theorem with Μ and Σ: if Sn(gt)(c) ' 1/(2n $ 1)"n
i'(n gt ! Σ

i(c),
for Μ-almost all c, limn=- Sn(gt)(c) ' ' gtdΜ

lim
n=-

Sn(gt)(c) ' lim
n=-

#*i & [(n, n].Gt
∆(c)[i,i$k(1] < L(9)+

2n $ 1

' d
(k)
D (Gt

∆(c),9).

Thus, for Μ-almost all c,

Εt(c) ' d
(k)
D (Gt

∆(c),9) ' ( gtdΜ ' !
u&Qk%L(9)

p(t)
u @ Ε.

Furthermore, (" p(t)
u log(p(t)

u ) is maximal when all p(t)
u are equal to

Ε/.Qk%L(9)., thus in the worst case,

S
(t)
Μ,k '

("u&Qk p(t)
u log(p(t)

u )
n

@ h9(Σ) $ Ε $ .Qk%L(9). #(1
k

Ε
.Qk%L(9).

log # Ε
.Qk%L(9).

$$
@ h9(Σ) $ Ε $

(Ε
k

log # Ε
.Qk%L(9).

$
@ h9(Σ) $ Ε $

(Ε
k

log # Ε
.Q.k
$

@ h9(Σ) $ Ε (
Ε
k

log(Ε) $ Ε log(.Q.).

This inequality holds for all t 5 M and for all k 5 K, thus, Sa
Μ(A) '

limn lim supt S(t)
Μ,n @ h9(Σ) $ Ε ( limk Ε/k log(Ε) $ Ε log(.Q.) ' h9(Σ) $ Ε $

Ε log(.Q.) and, since Ε $ Ε log(.Q.) % 0, Sa
Μ(A) @ h9(Σ).

For instance, as noted before (and proved in [9]), the subshift *(01)3,
(10)3+ is BΜ1/2-attracting for rule 184, thus Sa

Μ1/2
(184) ' 0. In addition,

if 0 < Ρ < 1/2 (resp. 1/2 < Ρ < 1) then the subshift of the finite type
generated by 00 (resp. 11), 01, and 10 is BΜΡ-attracting for rule 184,
thus Sa

ΜΡ
(184) @ log(3)/2.

2.3.2 Approximations of the apparent entropy

To have an idea of the apparent entropy, when we cannot calculate it
exactly, we have computed the correlation over patterns of size 10 (the
tenth term of the limit that gives the entropy of the configuration) after
100 iterations. The problem is that it is almost impossible to compute
the correlation on really large patterns (20 is possible, but 30 is not).
By drawing three-dimensional diagrams of the correlation depending
on both the size of the patterns and the number of iterations, we can
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see that it is a good approximation for most of the rules, but not all of
them. When more iterations were absolutely necessary (the rule 110,
for instance) we have computed 1000 iterations. But we did nothing
when the size of the patterns were too small, which mainly occurs for
almost chaotic rules (see section 4). The errors on the apparent entropy
measures have two consequences: they explain that in our diagrams the
apparent entropy always tends to zero when Ρ tends to 0 or 1 and in
some cases, the apparent entropy may actually be significantly lower
than represented in our diagrams (as for rule 184 with Ρ ' 1/2, whose
apparent entropy should be zero, and there are also big errors for rules
like 54 and 110).

Let us note that to quickly get an idea of the apparent entropy of
a rule, we can use the usual compressors on a file that contains the
configuration after 100 or 1000 iterations. We did some experiments
with gzip and bzip2 (there were no significant differences between both
compressors). Furthermore, it appears that the size of the correlation
they take into account is less than 10. Anyway, we could not expect
better since although they use different algorithms, the compressors
cannot take into account bigger patterns because of the same problem
of memory. The problem of this method is that we have no idea of the
error we have made.

2.4 Relations between Μ-almost everywhere sensitivity and apparent entropy

Let us first remark that if a CA has a null apparent entropy then the
metric entropy of its successive configurations tends to zero. We do
not know if the reverse is true. Actually, in [11], all the CA such that
the metric entropy of its successive configurations tends to zero have a
DΜ-attracting set of null topological entropy and thus have a null appar-
ent entropy. We conclude that some CA may be Μ-almost everywhere
sensitive to initial conditions and have a null apparent entropy. Figure 5
summarizes this with some examples in each region.

3. The chaotic rules

We will here say that a CA is “chaotic” for Μ when it is Μ-almost
everywhere sensitive to initial conditions and has a nonnull apparent
entropy.

We think that the chaotic rules among ECA consist of the 30 rules
represented in Figure 6. We put together the rules that have the same
behavior when we change 0 and 1 or left and right. We (arbitrarily)
show for each class a space-time diagram of the rule of lower number.

A first observation is that these rules are ΜΡ-chaotic for any 0 < Ρ < 1.
We proved that additive rules are chaotic and their apparent entropy
was log(2) for all 0 < Ρ < 1. On the other chaotic rules, we also observe
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0, 1, 128
54, 184(Μ ' 1/2)
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to initial condition

18, 120

“chaotic”

“almost chaotic”

Sa
Μ(A) ' 0

Figure 5. Apparent entropy versus Μ-almost everywhere sensitivity.
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Figure 6. All the chaotic behaviors among 2 states one-dimensional CA.
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Figure 7. Rule 18 is a chaotic rule which is very likely to have an apparent
entropy of log(2)/2 for any nontrivial Bernoulli measure (see the upper right
diagram). We see in the left diagram that the correlation of pattern of size less
than 10 converges very quickly to the same value starting from two different
densities of 1 (0,1 and 0,7). The right diagram represents the apparent entropy
of the simple car traffic model T (see [11]) for the measures Μ3Ρ for 0 @ Ρ @ 1.

that the apparent entropy is independent of Ρ, but it is not necessarily
maximum, as it is for rule 18 (see Figure 7). This rule adds the rightmost
and leftmost components but only if the center one is equal to 0. The
evolution of rule 18 is easy to understand: its space-time diagram can
be decomposed into two kinds of regions, those where only even cells
have a nonzero state and those where only odd cells have a nonzero
state. It is easy to see that these regions are disjoint because the local
rule always return 0 when the middle state it depends on is 1. Between
these regions, we find particles, as noticed many times (e.g., [3]). The
motion of these particles is probably a kind of random walk, anyway,
when two particles meet, they annihilate each other and the region that
was inside disappears. These events are going to be more and more
rare, but anyway, we can imagine that asymptotically, the density of a
region tends to zero because a random walker on Ÿ has a probability
1 to see any cell. In each region, rule 18 behaves like rule 90; so
on half of the cells, we can expect that the probability of 1 and 0
tends to 1/2, and hence we may suppose that the apparent entropy of
rule 18 is log(2)/2. We see that our experiments give a higher value,
probably due to their imprecision as discussed previously. We see that
rule 146 (except the fact that it erases long successions of 1 at the very
beginning) has the same behavior as rule 18 (146 ' 128$18) so clearly,
their apparent entropies are the same although our experiments give
different values.
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’traffic model’

Figure 8. This diagram represents the apparent entropy of the simple car traffic
model T (see [11]) for the measures Μ3Ρ for 0 @ Ρ @ 1.

We already said that on ECA the chaotic rules are chaotic for all
the Bernoulli measures (with 0 < Ρ < 1) and that the apparent entropy
for all these measures is the same. This is not always the case. On
the one hand, we can build measures so that the evolution of rule 120
on random (for this measure) configurations is a shift. To do this we
just have to consider a measure such that there are never two 1s in
two successive cells. This is not a Bernoulli measure, but it is a shift
invariant one (note that we can find a Bernoulli measure that does this
if we consider the CA grouped 2 by 2, see [12, 13] for a definition of the
grouping operation). On the other hand, the apparent entropy of the
car traffic model T (see Figure 8) is not constant, even on the chaotic
part (Ρ 5 1/2). Actually, using universal CA that would compute the
density of the initial configuration and change its behavior accordingly,
we can imagine that the apparent entropy of CA may be almost any
arbitrary computable function.

An intuitive idea to provide a definition of “chaos” or “complexity”
using apparent entropy would be to consider the CA whose apparent
entropy is strictly higher than its initial configuration entropy. However,
on the one hand, rule 18 (see Figure 7) is chaotic, while on a wide range
of measures its apparent entropy is smaller than its initial configuration
entropy. On the other hand, we would not like to call a CA chaotic that
makes a xor of the leftmost and the rightmost cell it can access (this is
possible by adding states) which has a strictly higher apparent entropy
than its initial configuration entropy.

Furthermore, for a given CA and a given measure, the apparent en-
tropy appears to be a good indicator of how complex the CA is. In fact,
it is a good way to measure how complex its configuration may look af-
ter some computation steps. While the Lyapunov exponent [1] measures
at which speed the configuration will appear chaotic, apparent entropy
does not depend on the speed but only on how chaotic it asymptotically
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appears. The upper right diagram of Figure 6 represents the apparent
entropy, when it is not maximal, of all the chaotic rules and allows clas-
sifying them. We see that, for instance, rule 30 has a smaller Lyapunov
exponent than rule 22, but a higher apparent entropy. It seems that
the damages of rule 120 give the smallest growth among chaotic CA,
actually, in the worst case, they grow as Α log(n) where Α is a constant
that can be very small. Anyway, a subsequence of its configurations
looks asymptotically completely random.

4. Almost chaotic cellular automata

Except the chaotic rules, for some other rules the apparent entropy is
close to being constant (see Figure 9). Unfortunately, these CA do not
seem to have a specific property that would be a good definition for any
state number multidimensional CA. On ECA, there are the nonchaotic
CA whose apparent entropy does not tend to 0 when Ρ tends to 0
or 1. It seems that all of them (among ECA) present some kind of
particles. To present an almost constant apparent entropy, the bound
on the average number of modified cells when we change one cell of
the initial configuration depends on Ρ and is rather huge for very small
or very close to 1 values of Ρ. This corresponds to the intuitive idea
that to have an apparent entropy rather bigger than that of the initial
configuration, we have to use a lot of the initial configuration states.

It seems to be difficult to distinguish a chaotic CA, an almost every-
where sensitive CA with a null apparent entropy, and an almost chaotic
CA. Actually, we have no convincing experiment that allows deciding
where rule 110 is. For rule 118, it is easy, since the damages spreading
quickly reaches its bound, it stays constant after about 700 iterations
(see Figure 9). Among CA presenting particles in a periodical back-
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Figure 9. For any 0 < Ρ < 1, rule 118 has bounded damages spreading, thus
it is not ΜΡ-almost everywhere sensitive to initial conditions but has an almost
constant apparent entropy. The bottom right diagram indicates the average
number of damages (multiplied by 20) when we iterate rule 118.
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Figure 10. Some almost chaotic behaviors among 2 states one-dimensional CA.

ground, it seems that either all particles disappear (rule 184, Ρ ' 1/2)
and then it has a null apparent entropy, or (like rule 118) it remains
only one kind of particle randomly placed so that the apparent entropy
is nonnull and close to being constant (ultimately, the CA behaves like
a shift).

It would be interesting to find a way to split the CA whose damages
spreading is bounded but does not tend to 0 in such a way that the
almost chaotic rules are not together with the identity. If the behavior
of the growing damage of a CA is almost independent of the measure
we take, we can separate the CA whose damages spreading is uniformly
bounded from the others. This would separate the identity from the
almost chaotic CA, but rule 210 would be in the second case, that we
did not really expect. Anyway, the fact that Wolfram’s class 4 resists
our approach was expectable since our approach is exclusively statistic
while class 4 definition is based on computability theory.

Conclusion and open questions

In this article, we introduce the notion of apparent entropy. Thanks to
this notion, we can better understand why some space-time diagrams
that contain the same amount of information may appear more or less
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complicated to the human eye. The main point is that this tool allows
comparing the complexity for the human eye of the space-time diagram
with usual notions of chaos. As observed in section 4, the value of the
apparent entropy for only one measure is not really significant because
we may obtain arbitrary values whether the rule is chaotic or not. How-
ever, the values for a set of measures adequately chosen allow finding
relations. In the case of ECA, we observed such a relation that con-
firms Wolfram’s intuition. Unfortunately, this relation cannot be easily
generalized to more complicated CA.

This work suggests more experiment on rule 110 to better understand
its behavior and calculate its apparent entropy. It would also be inter-
esting to study more complex CA since ECA do not present all possible
CA behaviors. More theoretically, it may be possible to characterize CA
such that the sequence of apparent entropies does not tend to zero for a
sequence of measures whose entropy tends to zero.
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tribution of Group Automata Starting from Markov Measures,” preprint,
2000.

[8] R. H. Gilman, “Classes of Linear Automata,” Ergodic Theory & Dynam-
ical Systems, 7 (1987) 105–118.
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