Complex Systems 10 (1996) 229 237

Evolving Parallel Computation

Kurt Thearling*
Exchange Applications,
695 Atlantic Avenue,
Boston, MA 02111, USA

Thomas S. Ray'
ATR Human Information Processing Research Laboratories,
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-02, Japan

Abstract. Evolution is applied to the development of parallel digi-
tal computer programs. The environment is a shared memory virtual
computer containing a population of parallel computer programs. Al-
though the digital computer is a very different environment than the
ecology of Earth, evolution is shown to work effectively in the digital
environment and produce significant increases in parallelism.

1. Introduction

The process of evolution by natural selection, until recently, has been known
exclusively in carbon-based life on Earth, where it has created stunning di-
versity and complexity of life forms. However, recent experiments have al-
lowed this process to be extended into the medium of digital computation,
producing freely evolving ecological communities of “digital organisms” (self-
replicating machine code programs). The challenge becomes understanding
and creating the conditions that support diversification and complexity in-
crease in digital evolution in the computer.

Within the realm of carbon-based life, there has been a great complexity
increase between the first self-replicating molecules and the large life forms
that currently inhabit Earth. It has been observed that in organic evolution,
the bulk of complexity increase occurred in a number of major transitions [1].
The best known and probably largest of these was the “Cambrian explosion
of diversity,” which was associated with the initial appearance and diversi-
fication of macroscopic multicellular life on Earth. In the digital domain,
analogous transitions might also occur. It is our belief that the transition
from serial digital to parallel digital processes can be compared to the one

*Electronic mail address: kurt@santafe.edu, http://www.santafe.edu/~kurt.
tElectronic mail address: ray@hip.atr.co.jp, http://www.hip.atr.co.jp/~ray.

© 1996 Complex Systems Publications, Inc.

230 Kurt Thearling and Thomas S. Ray

aspect of the Cambrian explosion, namely the transition from single to mul-
ticellular organic creatures.

In the work presented here, the first steps in the evolutionary transition
from serial to parallel digital processes are described. We show that digital
evolution can make use of increasing parallelism to improve the fitness of
self-reproducing computer programs. Recent history has shown that parallel
computers can be harnessed to efficiently solve complex problems, but opti-
mally implementing such programs can be difficult for human programmers.
It is our hope that the results presented here can be used to help generate
optimal parallel programs (or critical kernels of parallel programs). Although
the problem that is ultimately solved (self-reproduction) is not in itself a ter-
ribly useful application, we expect that the general techniques that evolve to
optimize the parallelization of this process (e.g., parallel load balancing) will
transfer to other applications.

The objective of this work is not to model or simulate organic evolution,
but rather to explore the properties of digital evolution. Analogies with or-
ganic evolution and life are made, in part to borrow processes that might
contribute to complexity increase. However, care must be taken to not force
digital evolution to take on forms or processes which mimic organic evolu-
tion in ways that are not natural to the digital medium. In recent years a
large body of literature has developed describing the application of digital
evolution to various problem spaces. Genetic programming and genetic algo-
rithms [2] are well known examples in this area. Recently the Avida project
has explored the evolution of computer programs in more complicated two-
dimensional spaces [3]. Our work differs in that we are interested in evolving
parallel programs while most other research has focused on optimizing serial
(nonparallel) digital processes.

2. Overview of Tierra

The work described here was performed using a software system called
Tierra [4]. The Tierra software creates a “virtual computer,” a software em-
ulation of a computer. The Tierra computer has a small but otherwise fairly
normal instruction set, which is Turing complete and capable of general pur-
pose computation [5]. The virtual operating system (VOS) has some unique
process management features that help to support darwinian evolution. The
VOS manages a population of virtual processes, all of which operate on a
shared memory area.

Normally, a single replicating program is introduced into the memory.
As this program replicates, virtual processes are assigned to the new copies
of the program daughters, and each copy of the program is assigned space
for its code in the memory area with a single central processor unit (CPU)
to execute instructions. The VOS provides an equitable sharing of the real
CPU time among the virtual processes. When the memory area fills up, the
VOS kills old processes to make room for the newborn; thus, through time,
there will be a turn-over of generations.

Evolving Parallel Computation 231

The ancestor makes a copy of itself by first determining the memory loca-
tions of its beginning and ending, which are indicated by specific instruction
patterns in memory. By subtracting the beginning location from the end
location the ancestor then determines its length. A new block of memory
(of the same size as the ancestor) is then requested for the daughter. The
ancestor then enters a loop copying instructions from its memory to the new
memory of the daughter. When the copy loop has completed, the ancestor
separates from the daughter and the daughter begins executing instructions
on its own.

The VOS also introduces noise into the system, in the form of random
bit flips in the executable machine code, and in the form of flawed execution
of machine instructions. A consequence of this noise is that there is genetic
variation among the daughter processes. Due to the turn-over of generations,
this generates a process of evolution by natural selection.

The VOS does not evaluate an explicit fitness measure but implicitly the
reproduction time can be thought of as the fitness of a program. Since the re-
production time is proportional to the program size (number of instructions),
when all processes are given roughly equal amounts of CPU time, it provides
a strong selective pressure for size reduction. A typical run showing the re-
sulting size decrease is illustrated in Figure 1. Initially, there is a bimodal
size distribution, reflecting programs near the size of the ancestor (eighty
bytes), and much smaller “parasites” which execute the code of neighbor-
ing programs. Eventually the fully independent replicating algorithms can
reduce in size to as few as 22 bytes.

Initial work with the Tierra system demonstrated a great diversity of
replicators evolving in a unicellular environment [4]. The present report
extends this work to explore the feasibility of digital evolution in the context
of parallel (multicellular) replicators.

3. Multicellularity and parallelism

To allow for the development of parallelism in Tierra, a new “split” instruc-
tion was added to the programming language. When a split is executed, an
additional CPU is added to the process. This model of developmental par-
allelism was based on binary cell division as found in living systems and is
related to the multithreaded form of parallelism found in computer science
literature [4]. Note that a process with two parallel CPUs is considered to
be different than two processes, each with a single CPU (e.g., host and par-
asite processes). In the former, both CPUs are working on solving the same
problem (reproduction of a single copy of the program), while the latter has
each CPU working on a different problem (the host copying the host, the
parasite copying the parasite, albeit using some of the host code to perform
the copy). Each parallel CPU has been given its own independent instruc-
tion pointer, which allows for multiple instruction, multiple data (MIMD)
parallelism to develop. In MIMD parallelism, different CPUs can execute
different parts of the code. Although MIMD parallelism is the most general

232 Kurt Thearling and Thomas S. Ray

(o2}
o
T
i
]
i
i
i
I

Program Size (bytes)
N
o
1

n
o
T

6 260 460 660 8(.)0
Time (millions of clock cycles)

Figure 1: Size optimization of serial self-replicating computer pro-
grams. The horizontal axis shows elapsed time in millions of instruc-
tions executed by the system while the vertical axis shows genome
size in instructions (bytes). Each point indicates the first appearance
of a new genotype which crossed a prespecified abundance threshold
of 2% of the population of programs in the memory.

(and powerful) form of parallelism, it is often difficult to exploit fully since
MIMD programming is a very complicated process.

Each new CPU begins executing at the next instruction following the
split. To allow the two parallel threads of execution to differentiate between
themselves, at the moment the split occurs, one register is given different
values (0 and 1) in the two CPUs. If the processors execute a conditional
instruction (e.g., if-zero-then-jump) based on the values in this register, the
processors can differentiate themselves from each other by executing different
portions of the program.

3.1 Experiments

A large number of experiments in evolving parallel self-reproducing programs
have been performed. Over 60 runs were performed generating approximately
312,000 species of multicellular Tierra programs. Nearly all runs produced
qualitatively similar behavior and this section describes the behavior from
a typical multicellular simulation. Some of the pitfalls in developing the
system, as well as a discussion of how evolution can take advantage of flaws
in the system, are described by the authors in [7].

As with the original Tierra work [4], we began our experiments with an
“ancestor” designed by the authors. The multicellular ancestor that was

Evolving Parallel Computation 233

500
400 ¥
> .
2 i
S =
o) -
X A
S 300 %
° B,
E B
§ o00 [“‘&"-"«
3] o T
3 B
3 e —
g o =
()
o
100 - _ ——
PR
0
200 400 600 800 1000 1200

Time (millions of clock cycles)

Figure 2: Optimization of reproduction time in parallel programs.
The horizontal axis is the same as in Figure 1. The vertical axis is
the number of clock cycles required to reproduce. Over 14,000 unique
program species exceeded the abundance threshold and were saved
during a simulation totaling 1.2 billion instructions.

placed into the Tierra memory space started out with a single CPU and then
issued a single split instruction. It then proceeded to copy itself using two
parallel CPUs in 439 clock cycles. The multicellular ancestor operates similar
to the previous unicellular ancestor, except that the two parallel processors
of the ancestor each copy different blocks of memory to the daughter. One
processor copies the first half of the memory of the ancestor while the other
processor copies the second half.

The question then was whether evolution would be able to improve the
efficiency of the self-reproducing program by increasing the use of parallelism.
Since multiple CPUs are now possible for a single self-reproducing program,
the relationship between size and reproduction time is no longer directly
inferrable from the size. A long program with many parallel CPUs might
very well reproduce faster than a short program with few parallel CPUs.

The graph in Figure 2 shows the evolution of reproduction time for a typi-
cal multicellular simulation. The run is initialized with the ancestor program
which quickly fills up the memory of the simulated computer. In nearly all
of the multicellular Tierra simulations that were run, two distinct evolution-
ary phases can be observed after the initial population develops. In the first
phase, the evolutionary process makes use of only serial program optimiza-
tion techniques to reduce program size. Once the serial optimizations have
run their course, the second phase begins and evolution introduces additional
parallelism to decrease reproduction time.

234 Kurt Thearling and Thomas S. Ray

100

60 |

Size (instructions)

20

200 400 600 800 1000 1200

Time (millions of clock cycles)

Figure 3: Size optimization of parallel programs. The axes are the
same as in Figure 1.

During the first evolutionary phase shown in Figure 2, two bands of pro-
gram genotypes (instruction sequences) can be seen. The upper band cor-
responds to the fully self-reproductive programs while the lower band cor-
responds to parasites. During the 200 million clock cycles associated with
phase one, the programs gradually improved their reproduction speed by re-
ducing their size, but there was no increase in parallelism detected, beyond
the two CPUs built into the ancestor.

Following the completion of the first evolutionary phase, sharp decreases
in reproduction time (e.g., 30% in Figure 2) are usually observed. This
optimization is achieved through additional parallelism, corresponding to an
increase from two to four CPUs per program. In the graph of program size
versus time (Figure 3, from the same run as shown in Figure 2), this change
is even more noticeable since the newly evolving programs increased in size
from 36 to 44 bytes. The larger but more parallel programs take over the
population.

Once additional parallelism evolves, it becomes the dominant form of
improvement in reproduction efficiency. At about 500 million clock cycles
programs with eight CPUs can be seen. About 100 million clock cycles later
evolution pushes to 16 CPUs (which was the limit of the simulator in this
run).

Other runs with higher limits (between 64 and 256 CPUs) have evolved
programs that were able to use 32 parallel CPUs. It appears that 32 CPUs is
the limit of usefulness of parallelism for the programs in their current form.
In fact, some runs that evolved 32-CPU parallelism sometimes oscillated
between 16 and 32 CPUs after being allowed to run for extended periods.

Evolving Parallel Computation 235

This is due to the fact that 16-CPU programs of size 60 require almost exactly
the same reproduction time as 32-CPU programs of size 70. At this point
in the evolutionary process, for 16 and 32 CPUs the fitness differential is
negligible.

3.2 Evolutionary tricks

One noticeable characteristic that can be seen in the size versus time graph
(Figure 3) is that when there are increases in parallelism, the first programs
with the increased parallelism generally have a size that is a multiple of
the number of CPUs. These programs usually contain some instructions
that have no effect (e.g., incrementing an unused register). Although these
instructions do not affect the operation of the program, they pad its size to
a multiple of the number of CPUs so that the workload can easily be evenly
distributed among the parallel CPUs.

After each increase in parallelism, evolutionary optimization begins to
remove the unnecessary instructions to make the programs shorter. This re-
duction in size is usually interrupted by additional increases in parallelism,
until the programs have reached their CPU limit. In that case, the only
optimization that can be performed is size reduction. Notice that the size
reduction at the end (16 CPUs) lasts significantly longer than the size reduc-
tions for earlier increases in parallelism.

Digital evolution produced some interesting behavior when optimizing
multicellular Tierra programs. For example, it is difficult to equally distribute
the workload of copying 60 instructions by 16 processors. One simple solution
would be for each CPU to copy four successive instructions, with the last
CPU copying four extra instructions beyond the end of the program. This
approach would usually incur a penalty since the memory beyond the end
of the daughter program is generally owned and write protected by another
process. Even though this algorithm would incur a penalty, it would be able
to reproduce quite effectively.

Evolution was able to choose a slightly more complicated approach to
this workload distribution problem. Figure 4 shows the decomposition of the
problem of self-reproduction for a 60 instruction, 16-CPU program. The ex-
ecution of the program hierarchically decomposes the problem, first starting
with two CPUs (each copying 30 instructions). The increase in parallelism
to four CPUs has each CPU copying a separate 15-instruction portion of the
program.

When the parallelism increases to eight CPUs, the decomposition adds
a slight twist. At this point each CPU copies eight instructions, but the
four pairs of CPUs each overlap one of their instructions so that the extra
instructions are written to the daughter twice. This decomposition proceeds
in a similar fashion for the increase to 16 CPUs. Evolution has found a
very elegant solution to the problem of workload distribution among parallel
processors.

236 Kurt Thearling and Thomas S. Ray

nop0
adrb
nopl
sSubAAC
movBA
adrf
nop0
nop0
subCAB
ifz

ifz

mal
split
ifz
adrb
shr

of FAACD
of EBBCD C of EBBCD
zeroD zeroD
ifz ifz
adro
ifz
split
split
shr

of FAACD
pushB
of EBBCD

zeroD
split

of EAACD
of EBBCD
incC
zeroD
split
noto0
ifz

ifz

shr

of fAACD
of EBBCD
nopl
nop0

2 CPUs 4 CPUs 8 CPUs 16 CPUs

Figure 4: Workload distribution during increasing parallelism for a 60
instruction self-replicating program.

4. Conclusion

The evolved parallel programs observed in this study did not exhibit full
MIMD parallelism. Although each CPU had its own instruction pointer, the
simplicity involved with copying a block of data from one location to another
did not require that different CPUs perform significantly different tasks. Each
CPU is able to execute the same instructions, with the only difference being
that different CPUs copy different parts of a program. The next step in
this work is to allow programs to exist in a much larger, networked computer
environment [8]. It is hoped that this will challenge evolution with even more

Evolving Parallel Computation 237

complex problems, leading to the evolution of differentiated, MIMD parallel
and distributed software.

References

(1]

2]

3]

(4]

[5]

[6

[7]

(8]

J. Maynard Smith and E. Szathméary, The Major Transitions in Evolution
(Freeman, Oxford, 1995).

M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996);
J. Koza, Genetic Programming (MIT Press, Cambridge, MA, 1993).

C. Adami and C. T. Brown, in Artificial Life IV, edited by R. Brooks and P.
Maes (MIT Press, 1994).

T. S. Ray, in Artificial Life II, Santa Fe Institute Studies in the Sciences of
Complexity, volume X, edited by C. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen (Addison Wesley, Redwood City, CA, 1991).

C. C. Maley, M..S. thesis, New College, Oxford University (1993).

Multithreaded Programming Guide (Sun Microsystems, Mountain View, CA,
1994).

K. Thearling and T. S. Ray, in Artificial Life 1V, edited by R. Brooks and
P. Maes (MIT Press, 1994).

T. S. Ray, Technical Report TR-H-133 (ATR Laboratories, 1995). Also avail-
able via the internet at
http://www.hip.atr.co.jp/~ray/pubs/reserves/reserves.html.

