Complex Systems 10 (1996) 91-119

Continuous-valued Cellular Automata for Nonlinear
Wave Equations

Daniel N. Ostrov
Department of Mathematics,
Santa Clara University,
Santa Clara, CA 95053

Rudy Rucker
Department of Mathematics and Computer Science,
San Jose State University,
San Jose CA, 95192

Abstract. In 1955, E. Fermi, J. Pasta, and S. Ulam investigated
quadratic and cubic schemes for numerically simulating nonlinear
waves. We derive the partial differential equations corresponding to
the Fermi—Pasta—Ulam schemes, present a discussion of the accuracy
and stability of different schemes for the equations, and implement
the schemes as continuous-valued celluar automata (CA). Some illus-
trative runs of CAPOW, a CA simulator, are presented which demon-
strate the behavior of the different schemes both in stable and unstable
domains. These runs include a confirmation of an observation in [2]
regarding the approximate temporal periodicity of the quadratic and
cubic nonlinear wave equations.

1. Introduction

Stanislaw Ulam can be thought of as the father of cellular automata (CA).
He began investigating discrete CA in 1950 [1]. In 1955, he coauthored the
famous paper [2], with Fermi and Pasta, which has been the starting point
of many works in nonlinear waves and solitons.

In an introduction to [2], written by Ulam in 1965, he remarks that:

“Fermi expressed often a belief that future fundamental theories
in physics may involve nonlinear operators and equations, and
that it would be useful to attempt practice in the mathematics
needed for the understanding of nonlinear systems. The plan
was then to start with the possibly simplest such physical model
and to study the results of the calculation of its long-time behav-
ior.” [3]

© 1996 Complex Systems Publications, Inc.

92 Daniel N. Ostrov and Rudy Rucker

In [2], nonlinear models for particles attached horizontally by springs
where the particles can move vertically are examined. We refer to this model
as the FPU model, two algorithms for the resulting wave motion are consid-
ered in [2]. The first corresponds to a quadratic nonlinearity:

U = (U —=U) = (U; = Ujy)

+ar (Upsn = Up)* = (U; = Uj-a)?) (i)
the second corresponds to a cubic nonlinearity
Up = (U =Uj) = (U; = Uja)
+ap ((Uj+1 —U;)* = (U; - Ujfl)s) : (i)

where U; represents the vertical position of the jth particle and U] is the
second derivative of the jth particle position with respect to time. It is
pointed out in [2] that for each of these schemes “(t)he corresponding partial
differential equation. . .is the usual wave equation plus nonlinear terms of a
complicated nature.”

In section 2 of this paper, we determine the precise form of the nonlinear
terms of the hyperbolic partial differential equations (PDEs) that correspond
to schemes (i) and (ii). In section 3 we discuss the accuracy and stability
of CA simulations for the FPU model with an eye to finding reasonable
parameter values to use in running the nonlinear wave schemes. In particluar,
we address the role of characteristics in determining the Courant—Frederichs—
Lewy stability condition.

In the past it has been customary to study only CA that have a finite
number of discrete state values. In section 4, we show how it is natural to
extend the idea of CA to rules which allow continuous-valued state variables.
We describe how specific continuous-valued CA simulations for the linear and
nonlinear waves were finally arrived at, resulting in the shareware program
CAPOW [4].

Section 5 shows some illustrations generated by CAPOW and discusses
their meaning. In particular, we examine the behavior of the quadratic and
cubic nonlinear waves, study the ways in which instability can set in for
nonlinear waves, and confirm an observation from [2] that a nonlinear wave
seeded with a sine wave will eventually cycle back to a close (but not ex-
act) approximation of the initial sine wave seed. Further, we examine a
way in which unstable nonlinear wave simulations can be made to behave
like discrete-valued CA. This effect occurs when the possible cell values are
clamped to lie in a bounded range. A clamped unstable CA rule bounces
among the minimum and maximum values and a few in-between values, pro-
ducing what is effectively a discrete-valued CA. To coin a term, we refer
to clamped unstable continuous-valued CA with a finite range of values as
“pseudodiscrete CAs.” Our experiments indicate that pseudodiscrete CAs
can be of Wolfram class 1, 2, 3, or 4, that is, single-valued, periodic, chaotic,
or complex [5].

Continuous-valued Cellular Automata for Nonlinear Wave Equations 93

2. Fermi—Pasta—Ulam wave equation

We begin by describing the nonlinear string in the FPU model in more detail.
When the string is at rest it lies along the z-axis. When the string moves it
only moves in the y direction. The string is modeled by considering a series
of particles along the z-axis with fixed x coordinates that are separated by
a distance Az. It then follows that the mass of each particle is pAz, where
p is the constant density of the string. The motion of each particle in the
y direction is modeled by considering the effect of springs connecting each
particle to its two neighbors. In Rheology, long polymeric molecules are often
modeled by considering these “bead-spring” type models, where each bead
(particle) represents 10 to 30 monomer units. When the springs are assumed
to follow Hooke’s law, these macromolecular models are called Rouse chains;
when the springs are not hookean, they are called Rouse—Zimm chains [6].
Let u(zo,to) represent the vertical displacement (i.e., the value of y) at
time to of the particle whose horizontal location is xo, and let Au represent
the difference in the vertical displacement between two neighboring parti-
cles. We can express the distance Ad between two neighboring particles as

(Az)? + (Au)?2. The magnitude of the force for most springs will usually

be some function G of this distance (divided by Az so that the force is
normalized), that is,

Il =6 (51).)

Since it is assumed that the particles do not move in the x direction, we are
only concerned with the vertical component of the spring force. The absolute
value of the vertical component of the force is given by

Ad\ Au
Fsp,vcrt =G (E) ma (2)

which we can express strictly as a function of Au/Au:

Au? Lu
Fsp,vert =G < (E) + 1) Airz (3)
A
V(&2 +1

If the spring is linear (i.e., follows Hooke’s law) and has an equilibrium length
of z = 0, as is the case for Rouse chains, then G(z) = kz, where k is the
positive-valued spring constant, and therefore Fy,vert = kAu/Az. For linear
springs with nonzero equilibrium lengths or nonlinear springs where G(z)
is an analytic function near z = 1, we can express G(z)/z as a series of
even powers of Au/Ax when Au/Az is small, which leads to the following
expression for Fip vert:

Au Au\® Au\’®
Fopvert = alﬂ + as (E) + as (E) SR (4a)

94 Daniel N. Ostrov and Rudy Rucker

If the spring force is an analytic function of Awu instead of an analytic function
of distance, we may also have even powers in the series:

" _ Au+ (Au>2+ (Au)3+ (Au)4 (4b)
sp,vert — ay Az a3 Az az Az Ay Az .

Now we consider the effect of the forces on a generic particle, located at
xo. If we define Au_ = u(zo) — u(zy — Azx) and Auy = u(zg + Azx) — u(wo)
then we can express Newton'’s law by using (4b) to describe the effect of each
of the two springs acting on the particle:

pAzuy (0, t) = (% - %) T ((%)2 B (%)2>
o ((5) - (%)) ©

As Az approaches 0 in equation (5), we obtain the nonlinear PDE corre-
sponding to the FPU model:

2 3
PU = A1 Ugy + 2a2uzuzz + 3a3uzuzz + 4a4uzuzz R (6)

We consider some special cases of our model. If the springs follow Hooke’s
law and have an equilibrium length of 0, then the nonlinear terms disappear
and we are left with the standard linear wave equation

PUR = A1 Ugzg (7)

where a; = k, which is the spring constant. If u, stays small in the nonlinear
model we can ignore the effects of higher order terms. This leads to the
quadratic FPU equation

PU = AUz + 2a2uzuzzv (8)

which the scheme in equation (i) simulated. When the spring force is strictly
a function of distance, we work with equation (4a) instead of (4b), so a, =
ay = ag = --- = 0. For this common case, we obtain the cubic FPU equation
when u, stays small

PUsy = A1y + 33U, (9)

which the scheme in equation (ii) simulated. Equations (7) through (9) will
be the three equations of interest in this paper.

3. Accuracy and stability

Because of the discrete nature of computers, we can only approximate the
solution to a PDE at certain grid points on the (z,t) plane. We label these
points of approximation (z;, t") where j = 0,1,2,..., Jandn =0,1,2,..., N
and employ the abbreviations U = U(z;,t") and u} = u(x;,t"), where
U(x;,t") is the numerical approximation at the grid points of interest for

Continuous-valued Cellular Automata for Nonlinear Wave Equations 95

u(x;,t"), the actual PDE solution. We are interested, of course, in making
(U — u?| as small as possible. To accomplish this we must consider the
accuracy and the stability of our approximation scheme.

The accuracy of a scheme is really just a matter of minimizing the error
term in the Taylor appoximation for the scheme. Because of its simplicity,
and its applicablity to equations (7) through (9), we use as an example the
first order linear traveling wave equation

U = —AUy where a > 0. (10)
From Taylor’s formula we have that

s =+ (e + U gy 4 (e

(Az)® +O((Az)Y) (11)

3!
where Az = 241 — «; and also that
w)? U)T
Wt =+ (w) AL+ (t); (AL)? + (;)J (AP +O((At)Y (12)
where At = t"*t! — " so it follows that
G Sn = oA + 0(an (13)
N !

since the u; and the au, terms cancel by applying equation (10). This sug-
gests the following numerical algorithm to simulate equation (10):

Urtt =Up —aA(U7,, - UT) (14)

where A = At/Az. This algorithm explicitly shows how to compute values
for a new time t"*! given information at the current time ¢*. To compute the
value at a fixed time tg, the algorithm must be run through to/At time steps.
Since the error from each step is At(O(Ax)+ O(At)), the total error between
the computed solution and the actual solution at t = ¢, is (O(Az) + O(At)),
assuming that the errors from each time step can be added together (which is
not the case when the algorithm is unstable as we soon discuss). Due to the
form of the total error (if the algorithm is stable), we refer to the algorithm
as being “first order accurate in = and first order accurate in t.” If, instead
of using the Taylor expansion in equation (11), we use

wi = uj— (ug)jAz + %(A@Z
(el A+ 0((20)1), "

we end up with a similar numerical scheme that also is first order accurate
in both x and t:

Urtt = U —aA(U = U). (16)

96 Daniel N. Ostrov and Rudy Rucker

The scheme in equation (14) is called a downwind scheme; the scheme in equa-
tion (15) is called an upwind scheme. We could also subtract equation (15)
from equation (11), which yields

Wy — = 2(u,)! A + O((Ax)?), (17)

which implies that the numerical scheme
n n a n n
Uj = Uj - EA(U]‘H - Ujfl) (18)

is first order accurate in time and second order accurate in space since the
error at a fixed time value is (O((Az)?) + O(At)). Obviously, one wishes to
employ schemes with higher order errors since these schemes require less grid
points (and therefore less computational time) to obtain a computed solution
that is within a given error of the actual solution.

There is, however, more to numerical simulation of PDEs than just Taylor
expansions and accuracy questions. Consider equation (10) where the domain
of x is infinite and the initial condition f(z) is specified:

U = —auy where z € (—oo0,00) t € [0,00) (19a)

uw,0) = f(a). (190)
The unique solution to this equation is simply

u(at) = (o — at). (20)

In other words, the value of the solution is constant along each line z = at+C.
These lines are called characteristic lines, and they occur when the domain
of x is finite as well as infinite. Therefore, the value of the solution at a point
depends only on which characteristic line crosses through that point. If we
consider x to be the abscissa and t the ordinate, then each characteristic line
has a positive slope of 1/a. The constant a is often referred to as the wave
speed since it specifies how fast a disturbance at a point = propagates down to
other values of . Now consider what happens when we apply the downwind
scheme in equation (14) in an attempt to solve equation (10). The downwind
scheme only uses the points (z;,t") and (x;41,t") to estimate the value of
the point (z;,"*!), but we know from the characteristic lines that the value
at this point only depends on the value of the solution at @ = z; — aAt if
t = t™, which is outside the range of the two points being used. This causes
a computer simulation using the downwind scheme to go haywire and yield
gibberish. One may wonder how can this happen since we know the scheme
is accurate. The answer is that accuracy only considers local error, whereas
the stability problem that is occuring in this case is a global issue.

The Taylor series analysis of error in determining accuracy assumes that
the solution is correct at ¢ = ™, and then finds the error that is created when
the solution at t = t"*! is approximated. However, if the error accrued in
a step is magnified by each subsequent step, we can no longer just add the
individual errors produced at each step; in fact, when the errors are magnified

Continuous-valued Cellular Automata for Nonlinear Wave Equations 97

by subsequent steps, we observe that the simulation is unstable, that is, the
global error quickly exceeds processing ability. When a scheme attempts
to approximate the solution at a point (z;,#"™') whose characteristic line
crosses the ¢t = t™ line outside the range of points used by the scheme, then
the scheme, no matter how accurate, will always magnify errors in each step
and therefore be unstable. In other words, the numerical range of dependence
must always contain the theoretical range of dependence of the solution or
instablity will occur. This principle is called the Courant Friedrichs Lewy
(CFL) condition (sometimes referred to simply as the Courant condition)
[7]. This guarantees that the downwind scheme will always be unstable and
that the upwind scheme can only be stable if aA < 1. Even if a scheme
satisfies the CFL condition, it may still be unstable, but we do not analyze
any schemes that possess this flaw in this paper.

Before analyzing the FPU nonlinear wave equations, we wish to apply
the preceding analysis to the linear wave equation, uy; = c?u,,, where we
use ¢? to denote the constant a,/p for reasons that will soon be apparent.

If we define V = {UI where v; = u; and vy = u, then we have that the

V2
wave equation is satisfied, (v;); = c?(vq),, and also that the mixed partials
are equal, (v1); = (ve);. This allows us to write the wave equation as the
following first order partial differential system:

2
V.= AV, where A — H ”0} . (21)
Equation (21), of course, is just the matrix form of the travelling wave equa-
tion from equation (10), and its solution contains many of the same properties
as equation (10). As opposed to the solution depending upon one character-
istic line, the solution V(z,t) now depends on two characteristic lines with
wave speeds ¢ and —c, the eigenvalues of A. Therefore the slopes of the two
characteristic lines are the reciprocals of the wave speeds, 1/c and —1/c. As
before, we must satisfy the CFL stability condition, so we now require that
AN < 1.
All that remains is to find a sufficiently accurate scheme. To obtain an
approximation for u,, we add equation (11) to equation (15), yielding

uly, +ulg = 2uf + (um);l(Ax)z +O((Az)"), (22)

which we can combine with the analogous expression from the Taylor expan-
sions with respect to time to yield the numerical scheme

n+1 n n—1 n n n
Ut - 20+ U U — 20 U

= 23
(atp @p 25
which we can reexpress as
UJ-"Jrl =2U}" — Uj"71 + (:2)\2(U]73rl —2U7 + U} ,). (23b)

Note that this scheme is second order accurate with respect to both time and
space.

98 Daniel N. Ostrov and Rudy Rucker

We are now ready to consider the nonlinear FPU equations. We begin
with the quadratic FPU equation

Ut = AUgy + Buruzz (24)

where a = a;/p and 8 = 2ay/p. (Note that @ > 0 since a4, like the spring
constant k, is always positive in any realistic spring model.) As with the
linear wave equation we can rewrite equation (24) in vector form, but now
the matrix A depends upon the value of v,:

0 oz—l—/i'vz}.

V:,= AV, where A = 1 0

(25)

The wave speeds of the two characteristic lines are still the eigenvalues of A,
which are ++/a + [fv,. We require a + v, to be positive since otherwise the
wave speeds would be imaginary and the PDE would no longer be hyperbolic,
which leads to equations beyond the analysis here and causes the scheme to
become unstable. Since the speeds are functions of vy, that means the speeds
vary, which implies that the characteristic lines are now curves with slopes
that vary with time as opposed to being straight lines as is the case for the
linear wave equation. This leads to a stability problem as the CFL condition
now requires that (a+ Bvy)A? < 1. If 3 is small compared to «, then a+ fv,
will be positive and the variations in vs may not be severe enough to violate
the CFL condition, but if the nonlinearity becomes more significant, which
means the value of 3 becomes larger, eventually the CFL condition will be
violated (or o + fuy will become nonpositive) and the scheme will become
unstable. (In the experiments in section 5, we set @ = 1 and use values
of A that are slightly smaller than 1 which causes the CFL condition to be
violated before a+ vy becomes nonpositive.) Since by definition vy = u,, we
see that if u, gets large not only does the numerical scheme become unstable,
but also the underlying differential equation becomes less valid since higher
order terms in the Taylor approximation given in equation (4) start to become
significant.
The analysis for the cubic FPU equations is similar. We now have that

Ut = QUgy + ’Y(uz)zuzr (26)
where v = 3a3/p, which can be expressed in matrix form as

0 atym)?
1 0

The corresponding CFL condition is (a + v(v2)?)A? < 1. Note that if v is
positive, the wave speeds will be real and we will always have a hyperbolic
PDE.

There are numerous accurate schemes that one can apply in the region
where the algorithm is stable. To simulate the quadratic FPU scheme (equa-
tion (8)), we can combine equation (17) with equation (23) to form

n+1 n n—1 n n n
Urtt 207 + U Uz, 207 + UL

— Ui — Ui
(A1) = <°‘+ﬁ 28z) g B

V.= AV, where A = (27)

Continuous-valued Cellular Automata for Nonlinear Wave Equations 99

which can be rewritten as a scheme which is second order accurate in time
and space:
Urtt = oUr — Ut 4 A2 (a 4l U}U) (Ur, =20 + U™, (29)
J J J 2AT J+l J =1

Equation (28) is a generalization of the FPU quadratic scheme (equation (i)).
After setting a/(Az)? =1 and 3/ (2(Ax)?) = a;, one can quickly establish
that the right-hand sides of equations (28) and (i) are identical.

Similary, we can simulate the cubic FPU scheme (equation (9)), by again
combining equation (17) with equation (23) to obtain the following second
order accurate scheme:

Uptt =2ur Ut + N <a G i S Uﬁl)z) U}y — 207 + Upy). (30)

A T A(Ar)? g+l i Y
The fact that the scheme in equation (30) is not the same as the cubic
scheme (equation (ii)) does not pose a problem. Either equation (ii) or
(30) can be used to simulate the cubic FPU equation as both schemes are
second order accurate and will therefore produce essentially equally valid
simulations. (The second order accuracy of equation (i) is quickly established
using Taylor series.)

There is another phenomenon that is important in nonlinear hyperbolic
PDEs. Because the characteristics are curves, characteristics within a family
can intersect each other. (In the linear case, each family of characteristic
lines has a constant slope: 1/c for one family, —1/c for the other family.)
When the characteristics intersect, a shock; that is, a discontinuity in the
solution, occurs. While multiple weak solutions to the nonlinear equation
are possible, one usually desires to simulate the unique observed solution
that the phenomena being modeled exhibits. For most physical phenomena
the solution of interest is the Laz entropy solution of the equation, which can
be simulated using monotone schemes [8]. A particularly nice introduction
to shock capturing monotone schemes is presented in [9].

We do not pursue these schemes here, however, as we are interested in
other aspects of the transition to instability.

4. Continuous-valued cellular automata for wave equations

A CA is a manifold of computing cells which repeatedly update their internal
states. The update process is characterized by parallelism, homogeneity,
and locality. Parallelism means that all the cells are updated at the same
time, in lock-step synchronization. Homogeneity says all cells use the same
update rule; and locality says cells only gather information from their nearby
neighbors.

Much of the mathematical theory of CAs focuses on the large-scale dy-
namical behaviors of classes of CAs; this involves looking at many different
runs of CAs. As a practical matter, it used to be hard to get large CA com-
putations to run rapidly, so mathematicians have mostly looked at CAs in

100 Daniel N. Ostrov and Rudy Rucker

which the cells have only a small amount of information—for instance, the
“Game of Life” CA uses only one bit of internal state per cell. There is, how-
ever, no intrinsic reason why CAs should not have state values characterized
as one or even several continuous-valued numbers.

Looking at such continuous-valued CAs to some extent duplicates work
which numerical analysts have already done under the name of finite differ-
ence method simulations. But approaching these numerical simulations from
a CA standpoint has the following positive effects.

1. Tt incorporates existing CA simulation techniques to achieve a rapidly-
running and interactive graphical display.

2. It encourages an artificial life outlook in which emergent simulation
properties are examined.

3. It implements a genetic algorithm approach whereby a large space of
simulation-parameter values can be efficiently explored.

The CA framework also provides a conceptual language for discussing the
behavior of a simulation after instability sets in. Readers with access to
a computer using Microsoft Windows may wish to download the CAPOW
program [4] in order to assess this for themselves.

For our continuous-valued CAs we let each cell be a small data structure
that contains two floating point numbers which we call U and V. These are
to stand for the intensity and velocity, that is, U stands for v and V stands
for u,.

To carry out this computation we use three buffers, with each buffer being
a linear array of cell data structures. The length of the buffers corresponds to
the number of space cells being used (or particles being considered). In [2],
64 and 128 cells are used, but we typically use several hundred, up to the
horizontal pixel-width of the active screen resolution. At each step of the
computation, one buffer can be thought of as holding the current cell values,
with the other buffers holding the “old” cell values and the “new” cell values.
The new buffer is updated on the basis of the values found in the current
buffer and the old buffer. Rather than copying values from buffer to buffer,
after each update, the names of the buffers are cycled: the new buffer becomes
the current buffer, the current buffer becomes the old buffer, and the old
buffer becomes the new buffer.

One danger in such continuous-valued simulations is that some of the
U or V values may run away to very large or small values which produce
a floating point overflow. To avoid this, we add a “clamping” step to the
update process. Some maximum and minimum allowable values of U and
V' are selected in advance, and whenever a new U or V is computed, it is
clamped to lie between the appropriate minimum and maximum; that is, if a
value is above the allowed maximum we set it equal to the maximum, and if
it is below the allowed minimum we set it equal to the minimum. Clamping
is of course a nonphysical process, so only a simulation in which no clamping
takes place can be regarded as modeling a PDE.

Continuous-valued Cellular Automata for Nonlinear Wave Equations 101

The values of the U or the V variables in the cells of the current buffer
are displayed in two ways: as a graph, and as a space-time diagram. In each
case we scale the allowable minimum to maximum range into some small
discrete range of possible values. To show a graph, we use the scaled values
to measure the vertical displacement of the pixel intended to represent the
cell value in question. To represent the cell value as part of a space-time
diagram, we use the scaled value to ascertain a color or gray-scale palette
index for the pixel representing the cell upon a horizontal line corresponding
to that instant of time.

For a given cell at some time j and space position n, Uj* and V;" stand
for the respective U and V' values of the cell. U ; and U}, stand for the U
values of the left and right neighbors of the cell, while U;“l and U]'-L+1 stand
for the old and new values of the U field of the cell. V;-”H stands for the new
value of the V field of the cell.

If we track the V values as well as the U values, the scheme corresponding
to equation (23b) is

n+1 n n—1 CQAtQ Un Un Un
U]- = ZU] - U]- + H (1 2 j + jfl) (31&)
U+ - up)
|ZAE I 31b
¢ ~ (31b)
Equation (31a) takes a particularly simple form if ¢ is 1 and
Az = At;
that is, it becomes
Uptt = —Ur ' + U + Uy (31a*)

It is typical of the power and economy of CA that such a tiny equation
contains the behavior of waves!

One can also think of the scheme in equation (31) in an alternate (but
equivalent) way which is perhaps more intuitively obvious: update the veloc-
ity by adding At times the acceleration, then update the intensity by adding
At times the velocity, that is,

n+1
Vi

Ui — 207 + anl) (32a)

n 2
Vit + (At)e (N

n+l __ n n+1
Ut = Up + (At V. (32b)

A conceptual advantage of the scheme in equation (32) is that it suggests
how to expand the scheme to different kinds of accelerating forces. In general,
if F'is a numerical representation of the acceleration caused by a force, then
this scheme implies that appropriate schemes will be of the form

Vil = VI (AYF (33a)
UMt = UT 4 AV (33b)

102 Daniel N. Ostrov and Rudy Rucker

In computational practice, the scheme in equation (31) works better than
that in equation (32) because it is more “balanced.” That is, we generally are
going to be working with small values of At and Az which are similar in size.
In equation (31a), we use them in the form A#?/Az? but in equation (32a)
we use the form At/Az? Typically the first of these numbers will be near
1, but the second will be quite large. Multiplying by large numbers reduces
the computational accuracy of a scheme.

As was mentioned above, unless sufficient care is taken, runaway values of
U and V can occur. We discussed how to use a clamping technique to prevent
these runaway values from crashing the simulation, but for any physically
meaningful simulation, runaway values should not arise in the first place. An
analysis of our numerical methods for the preceding algorithms reveals that
runaway values are the result of either of the following.

1. Instability caused by choosing the space and time steps so as to violate
the CFL condition.

2. Inaccuracy caused by seeding the CA with a clearly discontinuous func-
tion.

Regarding the first issue, we recall the CFL stability condition from sec-
tion 2:

AL
<1.
Az? —

This condition has implications on the time and space scaling of the model.
Since the values of U;H'1 depend only on information in the cell U}, its two
nearest neighbors U, and U}, and its past state U;l_l. The fastest speed
at which information can propagate is one space cell per one time update.
So in terms of a cell metric, the maximum wave speed ¢ is always 1. In other
metrics we can define the maximum speed ¢ to take any value as long as we
choose an appropriate scale for how distance is measured on the x and ¢ axes.
If a horizontal screen inch represents X spatial units, then a vertical screen
inch will represent X/c time units. Thus if we want ¢ to be the speed of light
(roughly 3 x 10'° ¢cm/sec), and we want the distance scale to be natural, with
one horizontal screen centimeter representing one centimeter of = distance,
then we must say that one vertical screen centimeter represents no more than
(roughly) 0.33 x 10710 seconds.

Regarding the second cause of runaway values, note that if you look at
equation (31a*), you see that space and time behave like a red and black
checkerboard of odd and even cells. That is, the values in the “black” cells
depend only on the values in the other “black” cells, while the “red” cells
depend only on the other “red” cells. This means that it is entirely possible
for completely different patterns to be evolving in the odd and the even
space-time cells. In the case where ¢?At?/Az? is strictly less than 1.0, there
will be some averaging of information between the black and the red cells,

Continuous-valued Cellular Automata for Nonlinear Wave Equations 103

but even then the disassociation of the odd-cell and even-cell simulations can
make itself evident.! Attempts to recover a solution by blending or averaging
the values from the two patterns is unwarranted and, unsurprisingly, leads
to bizarre, nonphysical behavior.

When you seed this simulation with a discontinuous initial profile, then
the numerical scheme does not simulate the underlying wave equation, since
the Taylor series expansion for u used to derive the computational scheme
in section 3 is, of course, not valid at discontinuities. If the CA is seeded
discontinuously, it is entirely likely that the odd and even cells will behave
differently in the resulting pattern. In order to obtain a range of continuous
results we can use initial shapes for u(x,0) such as a simple sine wave, a
Fourier sum of several sine waves, or we can start with any random smooth
pattern. If a simple discontinuity is introduced into one of our simulations,
one sees the expected “Gibbs ringing” phenomenon whereby high frequency
wave components form around the discontinuity. When the CFL quotient is
near unity, the simulation becomes very sensitive to added discontinuities,
as will be discussed in the next section.

For the quadratic nonlinear wave equation, we use the scheme in equa-
tion (29), and set o = 1, so that we have

At?
n+1l n—1 n
Uj = —U]- + 2U]- + (E)

X ((Ujﬁ+1 =207 + an—l) th ((UJTLH - Uﬂﬁ)Q B (Ufn B an_l)2)> (34

where k; = 3/2Ax. In the case of the cubic nonlinear wave equation, equa-
tion (30) gives the scheme:

At?
n+1 n—1 n
Ut = UM 207 + (902)

) ((U — 207+ U2) + ks ((o) (o - UJ."J)?’)) (35)

where ky = v/4Ax>.

5. Experiments

In this section we discuss several experiments performed with the CAPOW
software. The illustrations in this section use a gray-scale palette of the form
shown in Figure 1 to represent the intensity, or u value, of a cell. The scale
consists of a series of 17 bands that alternately shade from black to white to
black etcetera as the value of u increases.

In the CAPOW experiments discussed here, we look at one-dimensional
CA. The arrays are about two hundred cells wide, and periodic boundary
conditions are used, wrapping the left end to match the right end. In order

In [10], this checkerboard effect is analyzed for simulations of Burgers’s nonlinear wave
equation.

104 Daniel N. Ostrov and Rudy Rucker

High Intensity Change which?
@ Al
 Focus

Color:

Bandom |

v Mono
Band count:
:

Palette Size:
16

256
% Thousands

VDK

Figure 1: The CAPOW color dialog box, showing the color map used

=
o
£
3
=
[
5
“
E

in the subsequent figures.

to view the activity in a given CA, we show two different views of the CA, as
in Figure 2. The lower part of the figure shows an instantaneous image of the
CA in the form of a graph of cell intensity against cell position. The upper
part of the figure shows a space-time diagram of the CAs history of states,
with the time axis running from top to bottom. In the space-time diagram,
each instantaneous state of the CA is represented as a single horizontal line,
with the pixel colors being based on the intensity at the corresponding cell
position. The earlier CA states correspond to horizontal lines higher up
in the image, and the bottom line of the image corresponds to the CA state
currently being displayed as a graph. Figure 2 shows the stable wave equation
simulation scheme in equation (31a), seeded by a randomly chosen Fourier
sum of several sine waves. The value of At used is 0.02, the value of Az
used is 0.024, and the clamping range is —150.0 to 150.0. Wave equation
simulations are not particularly sensitive to these values, as long as one is
sure that Az is greater than At, and that the initial seed values chosen lie
within the clamping range.

It is possible to show several CAs at once with CAPOW. Figure 3 shows
the results of seeding the wave simulations with; clockwise from upper left,
a single tent-peak, a sine wave, a Fourier sum, and random values. The sine
wave seed yields a space-time pattern that looks a bit like a box of sushi.
The random seed does not settle down for the linear wave scheme.

We previously discussed that the space step must be greater than or equal
to the time step. Experiment shows the simulation to be more robust if it is

Continuous-valued Cellular Automata for Nonlinear Wave Equations 105

S

Figure 2: The wave equation simulation, seeded by a Fourier sum of
sine waves.

Figure 3: The wave equation seeded by a spike, wave, Fourier sum,
and random noise.

strictly greater. As mentioned before, if we do set the space step equal to the
time step, the scheme reduces to the scheme in equation (31a*). In Figure 4
we show how this rule can lead to an alternating pattern.

Figure 4 was arrived at by seeding the CA with a sine wave, and then
introducing a step-discontinuity at a small interval overlapping the left and
right boundaries (recall that we use periodic boundary conditions). More
precisely, we patch in a small interval of values taken from a sine wave of a
different phase.

When the perturbation first happens, we see a pattern similar to the
middle of the space-time picture in Figure 4, with the disturbance moving

106 Daniel N. Ostrov and Rudy Rucker

Figure 4: An unstable wave, with the odd space-time cells out of
phase with the even space-time cells.

inward from both the left and the right ends. As the CA continues to evolve,
the two perturbation waves repeatedly pass through each other at the center
of the CA, proceed out to the ends, wrap around to move back towards the
center and so on. Figure 4 shows the CA after it has already undergone
several of these cycles since the initial perturbation event. If left alone, the
CA would repeat this pattern indefinitely.

When we refer to the CA in Figure 4 as having an “alternating” pattern
of instability, we mean that the odd-numbered and the even-numbered cells
are out of step with each other. If the Ax were strictly greater than the At
in Figure 4, the image would change in two ways: the upper left and lower
right rows of dots would be vertically translated so as to lie evenly with the
rest of the curve; and the spacetime diagram part would be less fuzzy. The
perpetually criss-crossing perturbation pattern would remain.

We now turn to the quadratic nonlinear wave based on the scheme equa-
tion (34). This simulation very easily becomes unstable. If we set the non-
linearity to 0.385 and seed it with a Fourier seed, we see a result similar
to that in Figure 5. The simulation breaks down and becomes unstable at
several points, and the breakdowns spread at the speed of the wave in the
medium. In order to avoid floating point overflow, we clamp our maximum
and minimum wave values to be within a certain range (—12.0 to 12.0 in the
case of Figure 5). A result of this is that the cell values spend a lot of time at
the maximum and/or minimum values. Because these special values are vis-
ited so often, certain intermediate values calculated from these special values
are visited often as well. This has the effect of making the continuous CA
behave somewhat like a discrete-valued CA with a limited number of states.
Note in Figure 5 how the unstable zone shows behavior similar to discrete-
valued CA. This is an example of the “pseudodiscrete CA” mentioned in the

Continuous-valued Cellular Automata for Nonlinear Wave Equations 107

N[N\

Figure 5: Quadratic nonlinear wave breakdown, nonlinearity 0.385.

Figure 6: Clamped quadratic wave seeded with random values, after
500 generations.

introduction. In terms of Wolfram classification, this CA seems to be of the
glider-sustaining type 4, as evidenced by the zig-zagging patterns which send
off diagonal lines.

For the rest of our quadratic nonlinear wave experiments we use these
parameters: Az is 0.109, At is 0.090, the clamping range for U is —12.0 to
12.0, and the k; “quadratic nonlinearity” value in the scheme in equation (35)
is 0.076.

For our first experiment with these settings, we seed the CA with a ran-
dom selection of values, (Figure 6). Due to instability, the CA values get
repeatedly clamped, producing an appearance like a discrete-valued type 4

108 Daniel N. Ostrov and Rudy Rucker

Figure 7: Clamped quadratic wave seeded with random values, after
1500 generations.

Figure 8: Clamped quadratic wave seeded with random values, after
5000 generations.

CA, as shown in Figure 7. For this particular value of the nonlinearity
parameter, the repeated clampings of the CA happen to bring groups of cells
into approximate continuity, and the CA then evolves into a smooth pattern
marked by step-shaped waves and a single maximal discontinuity as shown
in Figure 8. For lower values of the nonlinearity parameter, there is not
enough clamping to impose this artificial continuity, while for higher values
of the nonlinearity parameter, the imposed continuity takes over to make the
CA cell values constant across the entire space. From a CA standpoint these
patterns are interesting, although from a physical standpoint they are simply
artifacts of a broken simulation.

Continuous-valued Cellular Automata for Nonlinear Wave Equations 109

In [2], experiments are carried out by seeding schemes based on the
quadratic and cubic forms of the nonlinear wave equation with a sine wave,
and then repeatedly examining the power spectrum (i.e., Fourier modes) of
the shape assumed by the “nonlinear string” as more and more generations
go by.

In his autobiography, Ulam gave a nice summary of the surprising results
of some of their experiments.

“It was the consideration of an elastic string with two fixed ends,
subject not only to the usual elastic force of strain proportional
to strain, but having, in addition, a physically correct small non-
linear term. The question was to find out how this nonlinearity
after very many periods of vibration would gradually alter the
well-known periodic behavior. . . and how, we thought, the entire
motion would ultimately thermalize, imitating perhaps the be-
havior of fluids which are initially laminar and become more and
more turbulent.... The results were entirely different qualita-
tively from what even Fermi, with his great knowledge of wave
motions, had expected. The original objective had been to see
at what rate the energy of the string, initially put into a single
sine wave. .. would gradually develop higher tones with the har-
monics, and how the shape would finally become ‘a mess’. ... To
our surprise the string started playing a game of musical chairs,
only between several low notes, and. ..came back almost exactly
to its original sinusoidal shape.” [11], pages 226 227.

CAPOW confirms the behavior Ulam observed for both the quadratic
and the cubic forms of the nonlinear term.

In Figures 9 through 16, we look at the long-term evolution of a nonlinear
quadratic CA seeded with a sine wave. The time-step counts given are ap-
proximate, the behavior does not change rapidly enough for greater precision
to be required.? Because the quadratic scheme is not spatially symmetric, the
sushi wave patterns become pointed. When observed running, the moving
graph of the CA produces an illusion of rotation. The rotation effect centers
on the vertices where the longer pieces of the curve connect the shorter pieces,
as in Figures 10 and 11. These vertices, which correspond to the maxima
and minima of the original sine wave seed, seem to rotate clockwise around
the points at the centers of the segments, which correspond to the initial
seed values of 0. As the vertices approach and recede from each other, the
connecting segments look as if they are being squashed and stretched, with
secondary waves being sent off from the “rotating” tips, as in Figure 12.

As the evolution continues, higher frequency terms are produced by the
perturbations caused by the stretching and shrinking of the wave, as in Fig-
ures 13, 14, and 15. The pattern remains periodic. After about one hundred

2A Pentium-class computer running CAPOW for a single CA about two hundred cells
wide does about 100 complete CA updates per second, and can perform one hundred
thousand steps in about 15 minutes.

110 Daniel N. Ostrov and Rudy Rucker

Figure 9: Quadratic wave seeded with sine wave, after 100 steps.

Figure 10: Quadratic wave after 1500 steps.

Continuous-valued Cellular Automata for Nonlinear Wave Equations 111

Figure 11: Quadratic wave after 3,000 steps.

Figure 12: Quadratic wave after 6000 steps.

112 Daniel N. Ostrov and Rudy Rucker

Figure 13: Quadratic wave after 12000 steps.

Figure 14: Quadratic wave after 30000 steps.

Continuous-valued Cellular Automata for Nonlinear Wave Equations 113

Figure 15: Quadratic wave after 42000 steps.

Figure 16: Quadratic wave after 100000 steps.

114 Daniel N. Ostrov and Rudy Rucker

thousand iterations a pattern similar to the starting pattern seems briefly
to reemerge, shortly after the pattern shown in Figure 16. The reemergence
of the seed wave happens even more clearly for the cubic form than for the
quadratic form of the nonlinear wave simulation.

For our cubic nonlinear wave experiments we use these parameters: Ax
is 0.109, At is 0.090, the clamping range for U is —1.0 to 1.0, and the k,
“cubic nonlinearity” value in the scheme in equation (36) is 10.720.

Because of the left-right symmetry of this scheme, the cubic scheme is less
apt to break down than is the quadratic scheme, so we can set the nonlinearity
to a fairly large value. On the other hand, cubing a number greater than one
can greatly amplify it, which is why we restrict our intensities to the range
—1.0 to 1.0.

We seed the cubic wave with a sine wave as shown in Figure 17. The
nonlinear effects of the scheme show themselves more slowly than in the
quadratic case. The first effect visible is a bending of the sushi into badge
shapes, with the wave becoming pointy instead of smooth as in Figure 18.
Soon secondary points occur, with the peaks of the wave folding down while
the sides are still moving up, as in Figure 19. Increasingly complicated, but
still periodic, patterns occur, as in Figure 20.

Finally a kind of maximum level of “thermalization” is obtained with
most of the energy of the wave in low amplitude high frequency oscillations,
as shown in Figure 21, when the return begins. Slowly the evolution of the
wave retraces itself, eventually getting back to something very much like the
initial condition, as in Figures 22 and 23.

Figure 17: Cubic wave seeded with sine wave, after 100 steps.

Continuous-valued Cellular Automata for Nonlinear Wave Equations 115

Figure 18: Cubic wave after 6000 steps.

Figure 19: Cubic wave after 24000 steps.

116 Daniel N. Ostrov and Rudy Rucker

Figure 20: Cubic wave after 36000 steps.

Figure 21: Cubic wave after 48000 steps.

Continuous-valued Cellular Automata for Nonlinear Wave Equations 117

Figure 22: Cubic wave after 90000 steps.

U

Figure 23: Cubic wave after 120000 steps.

118 Daniel N. Ostrov and Rudy Rucker

In the quadratic case, this quasiperiodic behavior for the differential equa-
tion being simulated (equation (8)) is explained in [12]. Recently, in [13],
Sobolev estimates are used to expand the results in [12] to explain this
quasiperiodic behavior for the discrete simulations presented here. Proof
of the quasiperiodicity in the cubic case has not yet been established, though
it seems likely to have an explanation that parallels the quadratic case.

Acknowledgment

Rudy Rucker gratefully acknowledges support from the Electric Power Re-
search Institute (EPRI) of Palo Alto, CA, under a contract entitled “Evolv-
ing Complex Cellular Automata for Power Grid Simulation,” which ran from
Spring 1994 through Fall 1997 and funded the development of the CAPOW
shareware at the Center for Applied Math and Computer Science (CAM-
COS) of the Department of Mathematics and Computer Science at SJSU by
Rucker and his students.

References

[1] S.Ulam, “Random Processes and Transformation,” in S. Ulam, Sets, Numbers
and Universes (MIT Press, Cambridge, 1974).

[2] E. Fermi, J. Pasta, and S. Ulam, “Studies of Nonlinear Problems,” originally
in Los Alamos Report LA-1940, 1955; later in [1].

[3] S. Ulam, Collected Papers of Enrico Fermi, volume 2, (University of Chicago
Press, 1965).

[4] R. Rucker, et. al., “CAPOW! Version 5.0,” software available for free down-
load at http://www.mathcs.sjsu.edu/capow, 1997.

[5] S. Wolfram, “Universality and Complexity in Cellular Automata,” Physica
D, 10 (1984) 1-35.

[6] R. B. Bird et al., Dynamics of Polymeric Liquids, volume 2: Kinetic Theory
(John Wiley and Sons, 1987).

[7] R. Courant, K. O. Friedrichs, and H. Lewy, “Uber die Partiellen Differenzen-
gleichungen der Mathematisches Physik,” Math. Ann., 100 (1928) 32-74.

[8] M. G. Crandall and A. Majda, “Monotone Difference Approximations for
Scalar Conservation Laws,” Mathematics of Computation, 34 (1980) 1-21.

[9] R. J. LeVeque, “Numerical Methods for Conservation Laws,” (Birkhauser-

Verlag, 1992).

[10] B. T. Hayes, Binary Modulated Oscillations in a Semi-discrete Version of
Burgers Equation (based on Ph.D. Thesis, Courant Institute of New York
University, 1994).

Continuous-valued Cellular Automata for Nonlinear Wave Equations 119

[11] S. Ulam, Adventures of a Mathematician (University of California Press,
1976).

[12] V. E. Zakharov, “On Stochastization of One-dimensional Chains of Nonlinear

Oscillators,” Sov. Phys. JETP, 38 (1974) 108 110.

[13] J. F. Bukowski, The Boussinesq Limit of the Fermi—Pasta—Ulam Equation
(Ph.D. thesis, Brown University, 1997).

