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USING SAT SOLVERS
IN LARGE SCALE DISTRIBUTED ALGEBRAIC
ATTACKS AGAINST LOW ENTROPY KEYS

ViLiAM HROMADA — LADISLAV OLLOS — PAVOL ZAJAC

ABSTRACT. In this paper we study large scale distributed algebraic attacks
with SAT solvers in a specific scenarios. We are interested in the complexity
of finding low entropy keys with the help of SAT solvers. Moreover, we examine
how to efficiently distribute this process on multiple computing nodes. Finally,
we show that the average cost of the attack per key decreases, if the attacker has
access to many different encryptions with different keys.

1. Introduction

The algebraic cryptanalysis tries to solve cryptanalytic problems directly
through their algebraic representation. One of the basic types of algebraic at-
tacks is just to model an encryption with Boolean formula in conjunctive normal
form (CNF). The unknown literals are mapped to internal state of the cipher
during the encryption process, inputs, outputs and potential key bits. Then a
SAT solver is applied to the CNF. The attacker can extract the key bits from
the positive proof found by the solver (if it exists). Although the SAT prob-
lem is hard in general, there are some instances (see, e.g., [5]) when algebraic
cryptanalysis using SAT solvers was found to be more efficient than brute force
attacks.

In our contribution we focus on three particular practical issues arising when
using SAT solvers (and other algebraic cryptanalytic tools in general). In the
first part, we remark on the improvements we can get when keys are not taken

© 2012 Mathematical Institute, Slovak Academy of Sciences.

2010 Mathematics Subject Classification: 94A60, 68P25.

Keywords: algebraic cryptanalysis, SAT solvers, DES, distributed computing.

This work was supported by project VEGA 1/0173/13 and project Cryptography brings
security and freedom SKO06-IV-01-001. This project is co-funded by the EEA Grants and
the state budget of the Slovak Republic from the EEA Scholarship Programme Slovakia.
Part of the experiments were run on Slovak infrastructure for high performance computing
under the project Algebraic cryptanalysis.

187



VILIAM HROMADA — LADISLAV OLLOS — PAVOL ZAJAC

from a uniform random distribution, but are “password based”. In the second
part, we focus on issues that are involved in distributing the algebraic attacks to
many computational nodes. In the final part, we remark on attacks in multiple
key scenario in which the attacker wants to recover just one out of many keys
used for different encryptions.

All experiments are concluded on the simple example of (round reduced) DES.
We remark that basic algebraic attacks are typically successful only against
already weak ciphers. However, we can apply many of these basic techniques
for more advanced scenarios involving algebraic complexity reduction [6],
or in combination with other types of attacks [10,15].

2. Preliminaries

Let S be a deterministic encryption scheme with key space I, message space
M, ciphertext space C. As usual, the scheme is defined by the three algorithms:

e Gen : Z — K is a probabilistic key generation algorithm (with security
parameter as input);

e Enc: K x M — Cis a deterministic encryption algorithm,;
e Dec: K x C— M is a deterministic decryption algorithm.

We assume that scheme is correct, i.e., for any k € I, m € M, we get
Dec(k, Enc(k,m)) = m.

We focus on a basic key recovery attack: Given N plaintext-ciphertext pairs
(PC pairs in short) (m;,c;), attacker wants to determine the key k, such that
Enc(k,m;) = ¢; for i = 1,2,...,N, or to show that no such key exists.
The simplest attack involves trying every possible & € K, and checking con-
ditions Enc(k,m;) = ¢;. This attack is called exhaustive search (or a brute-force
attack). A probabilistic version of exhaustive search involves a random selection
k € K, instead of a systematic enumeration.

Algebraic cryptanalysis understands the conditions Enc(k, m;) = ¢; as a set
of equations in unknown k, and the attacker obtains the key by solving this
system. Each equation Enc(k, m;) = ¢; can further be expanded into a system
of smaller equations involving internal state of the cipher during the encryp-
tion and related by the details of the encryption algorithm. There are many
techniques of algebraic cryptanalysis, depending on the representation of the
system of equations and tools used to solve this system. In this article we focus
on algebraic cryptanalysis with SAT solvers.

We can use a single PC pair to determine the key from Enc(k,mi) = ¢,
but if || > | M| there are more potential keys (so called false keys), for which
the Enc(k,m1) = c1, but which were not actually used to encrypt m; to c;.
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Typically, to get rid of false keys we require that |[M|Y > |K|. In our experiments
we will be working with DES, where |K| = 2°¢, and |[M| = 2%, so a single PC
pair is typically enough to exclude false keys. If it is clear from the context,
we will omit indexes, and talk just about system Enc(k,m) = c.

2.1. SAT solver based algebraic cryptanalysis

Let x1, 2o, ..., 2z, represent Boolean variables. Recall that conjunctive normal
form (CNF) is a logical form in the form

F = /\ Ci, where Cz = \/ LiJ.
i=1 j=1
Here L; ; are literals that can either be a single Boolean variable, or its nega-
tion, i.e., L; ; = xp, or L; ; = —x,. Expressions C; are called clauses. Formula
F' is satisfiable, if there exists some assignment of Boolean values to variables
2T1,%2,...,Tn, SO that the whole formula F' evaluates to TRUE. Any assignment
of variables such that F' is satisfied is called a proof of satisfiability for F.

SAT problem is a decisional problem that asks whether given formula F' is
satisfiable. For CNF formulas this problem (so called CNF-SAT) is believed to be
a hard problem. Its complexity depends on the number of variables n (it is easy
to see it is no harder than 2™ evaluations of F'), the number of clauses m, and the
structure of the system. In random regular instances (each k; = k) with low ratio
m/n, there are typically many assignments for which each C; is true, and it can
be quickly verified that F is (most probably) satisfied. On the other hand, if the
ratio m/n is high, it is almost impossible to satisfy all constraints. In practice,
there are fast software tools, so called SAT solvers, that can efficiently solve SAT
problems in many practical instances. A SAT solver can either provide a proof
of satisfiability (SAT), decide that formula is unsatisfiable (UNSAT), or stop
after running out of specified time or system resources (UNDECIDED).

Algebraic cryptanalysis with SAT solvers involves the following steps:

(1) Encode the equation system Enc(k,m) = c¢ in a CNF representation F
in such a way that literals in a satisfied CNF formula translates back to a
solution of the equation system. Typically we encode each internal state bit
as a Boolean variable, and associate logical value TRUE with bit-value 1,
and logical value FALSE with bit-value 0.

(2) Predetermine some of the literal values (so called guessing). The number

of guessed variables must be balanced against the expected running time
of SAT solver.

(3) Try to find a proof that F is satisfiable with SAT solver. If it is, by trans-
lating back the logical values to bit-values, we get a solution of the system.
Otherwise the guess was incorrect and we try to examine other guesses,
either in a systematic way or in a randomized fashion.
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There are many types of SAT solvers based on different algorithms and em-
ploying various heuristics to speedup the solver. In our experiments we use SAT
solvers MiniSat [§] and SharpSat [I6]. They are both based on the DPLL algo-
rithm [7]. Although we use the solvers as a blackbox, we need to present some
parts of the algorithm to understand some of the experimental results and issues
involved in distributed SAT-solver based cryptanalysis.

The DPLL algorithm, and its modern versions, have three principal compo-
nents:

(1) Reduction of clauses and literals. This is accomplished by two rules:
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(a) Unit propagation: If some clause contains a single literal, there is only
one value assign to the associated variable: TRUE for positive literal
or FALSE for a negative literal. Suppose that x; must be TRUE due
to some single literal assignment. Then in other clauses every literal
x; is true, and we can remove this clause as it is already satisfied.
On the other hand, if some clause contains literal —x;, we can remove
this literal from the clause as the clause can only be satisfied by the
rest of the literals. If we somehow remove all literals from a clause
(we get an empty clause), we know that the original formula cannot
be satisfied (we get UNSAT result).

(b) Pure literal elimination: If some literal is found with a single polarity
(either only x; or only —x;), we can simultaneously satisfy (and remove
from the system) all these clauses by assigning a value positive for the
pure literal.

Both of these reduction techniques can be implemented in a fast way
(essentially in a linear time based on the size of the system). However
they are not sufficient to find the solution in most relevant cases. We note
that if we assign values for key and plaintext bits in the DES system, the
rest of the values of other variables can be found just by unit propagation
(following the computation by a logical circuit).

Splitting rule. Select some variable x; and group clauses in such a way
that we get a formula in the form

F=(AVz)N(BV-x;)AR.

Formula F' cannot be satisfied if both AA R and B A R cannot be satisfied.
We can use this rule to define a recursive search algorithm: We assign z;
value TRUE, then recursively check whether B A R is consistent. If yes,
than assignment xz; = TRUFE along with the proof for B A R is a proof
for F. In not, we must then assign x; value FALSE and recursively check
formula A A R. The recursive part of the algorithm can be described by a
search tree, with a branch for TRUE and FALSE assignment.
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(3) Heuristics and learning. In modern solvers, the straightforward search
through the recursive assignments is replaced by more sophisticated meth-
ods of non-chronological backtracking and clause learning. These tech-
niques exploit the information obtained from pursuing some branch of
the search tree to search through the rest of the tree more efficiently.
Moreover, sophisticated heuristic algorithms are used to determine which
variable is assigned which value when branching is required. We say that
the algorithm makes decisions, and the running time is mostly influenced
by the total number of decisions the algorithm must take before it termi-
nates.

Due to the tree-search nature of the algorithm, the expected number of de-
cisions and thus running times have log-normal distribution, as confirmed by
experiments such as [2] (and our experiments as well, see Section H).

2.2. Algebraic cryptanalysis of DES

As an object of our experimental research we have chosen the old encryption
standard DES [13]. Although DES is considered insecure, suffering from various
attacks and short keys, it is still used in some legacy applications. DES is useful
in our research as a "benchmark” cipher as there are many results on brute-force
attacks and cost of keys [I1], as well as many results in algebraic cryptanalysis
such as [51[9]. We stress that most of our results should be cipher agnostic, and
we will point out explicitly those results that seem to be connected to weaknesses
of DES instead of general.

DES operates on 64-bit blocks with 56-bit long keys. DES has a Feistel struc-
ture with 16 rounds. After initial permutation, internal state is split into halves
denoted by u}, u%. New state is computed as

uiL"'1 = u, ug'l =ul @ Fli(ufy),
where F' is a non-linear key-dependent function composed of bit-expansion F,
subkey addition, S-box application S and bit permutation P. Subkeys k' are
derived directly from key k by taking selected 48 out of 56 bits in each round.

To convert the DES key recovery to algebraic problem we represent all key
bits, input bits, and output bits with unknowns. Moreover, we add new unknowns
for each state bit in each round, and for each input v* and output w’ of S-boxes.
We then construct linear equations for inputs and outputs of S-boxes

Eup) o k' o o =0,
P(w') ®ul @ulf! = 0.
Finally we write non-linear equations for each S-box

w' = S(v').
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All variables in vectors u'y,u’, v’ w’, k" were indexed in global vector space,
so we will just write x; for any variable in the system, regardless of its original
meaning (we can go back to original vectors once we know the values of x;).
Each equation was written in a simple symbol form [I8], which is a tuple con-
taining index set I and possible values of variables z; with ¢+ € I. An example
symbol representation of linear equation x1 & x74 @ x9g = 0 is

T1 T74 T196

0 0 0
0 1 1
1 0 1
1 1 0

An example symbol representation of the first DES S-box is (we only show
the first three of all 64 lines for the sake of brevity):

Te1 T2 | 159 T160 T161 L162
0 1 1 1 0

1 0 0 0 0

0

0 1 0 0

=)

OOOQ%?
=
OOOQ%?
0
OOOC§
©
OOOGE:2
[en)
= o O

If we assign logical value FALSE to z; with value 0, and TRUE to z; with
value 1, we can understand symbol as a representation of a logical formula
in a disjunctive normal form. This formula is satisfied if any of the assign-
ments is made according to values in a symbol. E.g., the example equation
T1 B x74 P w96 = 0 yields logical formula

Fj = (cx1 A —~27g A —2196) V (021 A 74 A T196)
V (21 A w74 A2196) V(21 A T7a A T 196)

We can rewrite F; into a CNF by making a symbol of all combinations missing
in the original symbol (false assignments), negating the formula and applying
DeMorgan’s laws. In the example we would get

F; = _‘((_‘xl A =x7a A x196) V(021 A T7a A T 196)
V (@1 A =274 A 2106) V (21 A 274 A T196))
and finally
Fj = (21 Va7V 2196) A (21 V274V T196)
A (mx1 Vx7g V x196) A (—1 V 274 V 22 196)

The full CNF formula for the whole DES system is a conjunction of F}’s.
We can further simplify the formula by some standard logical operations,
or leave this simplification to a SAT solver.
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3. Algebraic attacks on low entropy keys

A typical security requirement on encryption scheme S is that keys are gen-
erated with uniform random distribution, i.e.,

Vk € K : Prob(Gen — k) = 1/|K]|.

In a real world situation might be different, e.g., the key generator might be
wrongly implemented or deliberately compromised and produce a skewed key
distribution. We focus on a different scenario. Here users are allowed to generate
keys, and the software under attack uses passwords directly as keys.
It is know that user generated passwords have low entropy and skewed distri-
bution [3]. However, we will not use statistical properties, only restrict the key
bytes to specific subset of ASCII encoded characters: lower case letters, upper
case letters, decimal digits, and their selected combinations. These restrictions
are easy to express as algebraic constraints on unknowns representing key bits
using symbols: we enumerate all possible combinations of respective bits, and
convert them to SAT form as described in Section

DES key consists of eight bytes, but only seven bits of each byte are used.
We will use remove most significant bit as it is always zero for selected character
encodings. DES key is thus a string kiks . .. ks of eight binary encoded numbers
from specific restricted sets of seven-bit values. The restrictions are thus encoded
as eight symbols involving seven unknowns. After applying restrictions to char-
acter codes used as key bytes we get a restricted key space K'. Any key from
outside K’ does not satisfy clauses imposed by character restrictions, and thus
whole system is unsatisfiable (expect possibly some rare instance where some
key from K’ is equivalent to some key from K\ K').

In our experiments we focus primarily on three sets of different size:

(1) Set az: k; € {97,98,...,122},

(2) Set az09: k; € {97,98,...,122} U {48,49,...,57},

(3) Set azAz09: k; € {97,98,...,122} U {65,66,...,74} U {48,49,...,57}.
The sizes of sets are

(1) az: 268 = 2376,

(2) az09: 368 = 2414

(3) azAZ09: 628 = 2476,

In experiments, we expect each key to be chosen only from the respective
set with uniformly random probability. We can adapt exhaustive search to this
case very easily: we just enumerate keys from K’ instead of all keys from K
(also called a dictionary attack). Thus the complexity of exhaustive search is ef-
fectively limited by size of K’. When using algebraic attack, the situation might
be different. The size of the system increases as additional clauses are added that
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Ficure 1. Estimated relative complexity of the algebraic attack on round
reduced DES with password based keys.

model character restrictions. These additional clauses can cause a sooner termi-
nation of a DPLL branch in a search tree. The important question is whether
these additional clauses are enough to reduce the practical complexity to lev-
els comparable to reduction of keyspace. E.g. if the complexity of the efficient
SAT-solver attack on some round reduced version of DES with full keyspace is
equivalent to 240 operations (instead of 2°%), does the same attack on the set
azAZ09 have complexity equivalent to 234 = 240/5648 gnerations?

Our first experiment is based on simulation using the tools to estimate com-
plexity of algebraic attacks with local reduction and guessing used in [IL[12,[19].
We measure the average value of ¢ for round reduced DES with N rounds, where
2¢ is estimated size of optimal search tree in sylog based solver. The value 2¢
is similar to the expected number of decisions in a DPLL based SAT solver [I].
We then compute a ratio
¢(N,K")

no_
r(V, K = log, K7

for K’ chosen either as whole K (denoted as Full), or one of the sets az, az09,
azAZ09. The ratio r is plotted in Figure [l We can see that for full DES (resp.
DES with at least 12 rounds), the algebraic attacks should be as complex as
respective dictionary attacks up to constant factors (depending on the efficiency
of the solver), but not more. In 6-10 round DES we see similar complexity
reduction in attacks on full keyspace as in attacks addressing reduced keyspace.
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An interesting situation occurs with 4-round DES, where there is an observable
significant difference in expected complexities between different sets. This might
be caused by a weak DES key schedule, where some of the bits involved in
restrictions are more important in the first four rounds. An interesting research
question is whether we can deliberately poison key schedule for otherwise good
cipher design to allow faster algebraic attacks for specific classes of keys?

We have conducted experiments with MiniSat to verify the simulation results.
We have created a system for 4- and 6-round DES, and included the clauses to
restrict key bytes to small letters in ASCII encoding (set az). We have run 100
instances of the problem with correct keys, e.g., those that contained only small
letters, and 100 instances of random keys. There is only a negligible chance that
random key is correct, in our experiments, all SAT instances from this set were
found to be unsatisfiable. The results are summarised in Figure @ and Table[Il

WG alta
& rard

L1
4_rand

20
15
0 [ | I ol = m I I I |
139 141 143 145

127 129 131 133 135 137

2

]

5

m

@ S P4 248 28 XSS P S 2T XS B MBS

Ficure 2. The distribution of the number of decisions (in log scale) made
by MiniSat when solving instances of 4 (on the left) and 6 round DES
(on the right). The system has additional clauses that restrict poten-
tial keys to small letters. The dark-colored distribution is a distribution
for instances with correct keys, the light colored one with random keys
(with very high probability incorrect).

TaBLE 1. Base 2 logarithm of average number of decision for MiniSat solv-
ing instances of 4- and 6-round DES with constraints restricting potential
keys to small letters, both for correct keys and randomly generated keys.

4-round DES 6-round DES
Password | Random | Password | Random
Average Log Decisions 14 14 27 28
Relative to log, 26° 37 % 37 % 1% 74 %

It can be seen that 4-round instances have similar performance for both cor-
rect and incorrect keys. However, the fraction of key space covered by decisions
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is higher than predicted by simulation (but comparable to attack on unrestricted
keys). Tt is interesting to note that some instances of the problem were easier
to solve than the typical ones, which can hint to insufficient heuristic selection
of bits by MiniSat in comparison to simulation.

Instances of 6-round DES are harder to solve (as predicted by simulation).
On the other hand, we can observe that the distribution is now different from
the expected lognormal, which could mean that in larger system the heuristics
employed by the solver have more pronounced effect. Moreover, the correct in-
stances are on average slightly easier to solve, but both correct and incorrect
instances have complexities similar to those predicted by the simulation.

4. Distributed algebraic attacks

It is very easy to distribute exhaustive search to multiple computers: we can
just split the search space to smaller segments and push them to individual
computing nodes. If we have M equivalent computing nodes, we can just split
the search region into M equally sized segments, and obtain M-times speedup.
If the nodes have different computing power, we create more smaller tasks, and
each node is given a new task once the search of a previous task is finished.
If the search space is large enough, communication and management overhead
is negligible.

To distribute algebraic attack we can apply a similar strategy: Split the whole
task into many small ones, and give each computing node a smaller task to
complete. Once finished, a new task is given to the node. We cannot split the
CNF formula, as all clauses must hold simultaneously. Instead, we select some
variables corresponding to key bits, say ki, ks, ..., kn. The set of variables can
possible have at most M = 2™ values. If we conduct an attack on low entropy
keys as in Section Bl we can reduce this space further before starting the SAT
solver based part. Each of these M assignments can be combined with original
CNF formula. Instead of the original, we get M new SAT problems. These
problems can be distributed into individual computing nodes to decide. If we
expect one satisfying assignment for the original SAT problem, we will get M — 1
UNSAT results and one SAT result with the correct solution from the computing
nodes.

There are some specific issues with distributing one large SAT problem to
many smaller SAT problems by guessing parts of the key. The first one is that
UNSAT instances are usually slower to prove than SAT instances. If we distrib-
ute M tasks, M — 1 are thus the slow cases. However, if we have M parallel
computing nodes, this does not matter, as we can stop as soon as we obtain a
positive answer. If M is much larger than the number of computing nodes, and
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time difference between SAT and UNSAT instances is significant, we can adapt
early stop strategy: once the SAT solver takes more time than required to find
SAT instance (with high probability), we abort it. This requires some significant
preparation to compute the empirical distribution, and fine tune the system,
but the settings can be reused for many attacks.

The second problem is that by guessing the key bits manually, and splitting
the tasks, we lose some of the heuristic speedup of the SAT solver. SAT solver’s
heuristics when making a decision cannot use information from the whole system
(as part of it is predetermined by our guess). SAT solver instances do not share
learned clauses, and cannot use information from learned clauses involving the
bits we guessed manually. The more bits we guess manually, the less efficient SAT
solver’s heuristics we can expect. The optimal strategy seems to be to split the
task at hand to exactly the same number of subtasks as the number of computing
nodes. However, in some cases the resultant instances might be still too large for
nodes to handle due to memory constraints (or time scheduling restrictions).

To examine the issues experimentally, we have realized a series of experiments
with six-round DES and MiniSat solver in distributed computing cluster [14].
Our goal was to check the effects of the task distribution on the (estimated) total
time of algebraic attack. We investigate not only the dependence of running times
on the number of guessed bits, but also on which bits are guessed. We use three
types of guessing strategies:

(1) first: We take the first m bits of the DES key. This can be thought of as
a random selection of bits, as nothing special distinguishes these bits from
others.

(2) good: We count the number of occurrences of DES key bits in the symbols
used to derive the SAT formula (more precisely in the index set parts
of symbols). We take the first m of the most often used key bits.

(3) bad: We count the number of occurrences of DES key bits in the symbols
used to derive the SAT formula (more precisely in the index set parts
of symbols). We take the first m of the least often used key bits.

The guessing strategies come from the heuristic experience obtained in other
attacks. The good and bad strategies are motivated by the fact that more often
a variable is used in a system, the more of the system it influences.

In Figure [B] we can see the empirical distributions of logarithms of running
times of SAT solvers for both good and bad strategy (the first strategy is similar
to the bad one). The more bits we guess, the lower the time needed to solve the
small distributed instance of the SAT problem. As expected, the running times
have a distribution similar to a log-normal one (we do not have enough precision
to show this in a statistical way).
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Ficqure 3. Histogram of logarithms of computing times depending on the
number of guessed bits. On the left are times for a "good” selection of bits,
on the right for a ”bad” selection of bits.

On the other hand, we can see that there is an order of magnitude difference be-
tween running times in the good and the bad case for the same number of guessed
bits. The difference is better seen in Figured, which shows a computed estimated
total running time to solve the whole system based on empirical statistics ob-
tained in the first experiment (including the first strategy and a comparison
with exhaustive search on the same platform).

— good" = _first” Jbad” = “brute-force”
10000

1000 M
/\/

100

? \_/\M

1
18 20 22 24 26 28 30

FicurEe 4. Estimated time complexity for the whole attack on 56-bit six-
round DES for different selections and numbers of guessed bits.

We can see that the bad and the first strategy produce the expected result
of growing total time per number of distributed tasks. On the other hand, our
good strategy performs relatively consistently across different number of guessed
bits with only a slow decline in performance when many tasks are generated.
We note that if we extrapolate the trendlines for the bad and the first strategy
to a single task where no bits are guessed, the expected running time should be
comparable to the good strategy.
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Thus, the overall impact of the distribution strategy is very significant.
Between the worst and the best choice of guessed bits (including the number
of bits) we get a thousand-fold increase in performance. In practice (as it is seen
in Figure M), the distribution strategy can also impact whether our SAT solver
based algebraic attack is more efficient than exhaustive search, or not.

5. Algebraic attacks in multiple key scenario

Classical key recovery attacks focus on obtaining a single key used to encrypt
a set of known P-C pairs. On the other hand, in the real world situations, the
attacker is able to obtain many P-C pairs encrypted by many different keys.
Suppose that each of these P-C pairs is based on the same plaintext. Attacker
can modify the exhaustive search algorithm. He sorts the ciphertexts (or prepares
a hash table). Then he tries to encrypting the plaintext with each key, and checks
whether he gets any ciphertext from the set. This allows the attacker to obtain all
the keys, or just one of them, much faster on average than by running individual
exhaustive searches for each of the keys. The situation does not hold when each
plaintext and ciphertext is different, as the attacker must test each key against
each P-C pair.

As already observed by Courtois in [4], algebraic attacks in multikey scenario
can be more efficient in the singlekey scenario. In [4], this was caused by spe-
cial properties of GOST leading to a set of weak keys for which the attack is
much faster than for an average key. However, as we will show, the algebraic
cryptanalysis can provide a speedup even in generic key search in the multikey
scenario.

For the sake of simplicity, let us suppose that one P-C pair is enough to iden-
tify the corresponding key. Furthermore, let the attacker collect M P-C pairs
(m®, ™), each encrypted with a different key k(") (unknown to the attacker).
The attacker can construct a system for the cipher where plaintext and cipher-
text bits are represented by unknowns, we will call them u, and v to differentiate
them from generic unknowns x. The attacker can construct M individual SAT
problems by adding additional unit clauses consisting of literals u;, if my) =1,
or —wuy, if mél) = 0, respectively. Similarly he adds unit clauses for v;. With
these assignments, the attacker can try to solve M individual systems. If he
only wants to obtain any of the keys, he can be lucky (or have enough parallel
computing nodes) and solve some of the systems faster. However, this can also
be done with exhaustive search, and algebraic cryptanalysis does not lead to any
special advantage in this case (if there are no special instances of weak key such

as in []).
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Ficure 5. The dependence of the logarithm of SAT solver decisions on the
logarithm of the number of PC pairs. On the left, average number of deci-
sions before the first key is found by MiniSat. On the right, average number
of decisions per key for SharpSat

On the other hand, the attacker that wants any key does not really need
to construct M individual systems. He can encode the M known P-C pairs as
one formula, which can be expressed in symbolic form as

> — ((uu) =mW) A (b = c<1>)) v ((u@) =m@) A (1@ = c(2>)> V.
Y ((u<M> = mM)A (M) = c<M>)) _

Each of the expressions (u(¥) = m()) can be expressed as a conjunction of literals
uj, if my) =1, or —wy, if mél) = 0, respectively. Similarly for (v = ().
Formula ® is not in CNF, but it can easily be rewritten to this form by Tseitin
transformation [17].

If F expresses the original system for the cipher, formula F'A ® is satisfied for
any key that encrypts some m(?) to u(?). Moreover, each proof of satisfiability
gives us not only the value of the key, but also the corresponding plaintext and
ciphertext. The set of all solutions of F' A ® covers the whole set of keys. To find
all solutions of some SAT instance, it is possible to modify the DPLL algorithm
to exclude the solution that was found and continue the search. This is not
directly supported by MiniSat solver, but there are solvers such as SharpSat
that are able to provide all proofs of satisfiability within one computation.

We were increasing the size of the P-C set exponentially, so M = 2™
for m =0,1,2,...,8. In our experiments we were interested how M influences
the average number of decisions required to find the first solution of the system
(this can be done by MiniSat), and the average number of decisions per solution
of the system (we needed SharpSat for this experiment). The results are pre-
sented in Figure Bl We can see that we have no advantage if we only need one
key, but on the other hand, there is no specific penalty in the number of decisions
required to find the solution. This does not mean that the time does not increase,
but it only increases linearly with the size of the system, instead of exponentially.
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On the other hand, if we are interested in many solutions, each new solution

requ

ires on average less number of decisions. This means an average speedup

in exponent with the growing number of P-C pairs obtained by attacker, which
leads to a significant savings per key obtained. E.g., if the attacker collects million

P-C
The

pairs, the average number of decisions is 170-times lower per each key.
savings of the attacker depend on how effectively he can encode formula ®

for such a large set of P-C pairs in comparison to the size of the original system F.
We can, e.g., expect some savings, if each plaintext in the set of plaintexts shares
some common bits.

(1)

6. Conclusions
Our experiments with algebraic cryptanalysis with SAT solvers show that:

Low entropy keys from a set with an algebraic representation can be identi-
fied quickly, with the complexity based on the size of the set of low entropy
keys, not the whole key space. This does not mean that SAT-solver based
attacks on, e.g., a full DES are expected to be more efficient than brute-
forcing the expected low-entropy key space when searching for a single
key on a generic PC or specialized DES hardware. On the other hand,
a specialized SAT-solving hardware does not lose the the advantage of the
reduced key space. Moreover, for some weak instances of ciphers, the addi-
tional algebraic structure of the set of expected weak keys can significantly
improve the algebraic attacks compared to results obtained when we do not
impose any structure on the expected set of keys.

When performing distributed attacks with SAT solvers, we lose the effi-
ciency of solvers’ heuristics if we split the system into very small parts
by guessing parts of the key. On the other hand, if we carefully select the
key bits to guess, we can observe a thousand fold decrease in the expected
total running time when compared to a wrong choice (including the num-
ber of bits to guess). The dedicated attacker that wants to solve many
instances of the problem can analyze the problem beforehand and select
suitable distribution after initial simulation to gain this speedup in subse-
quent attacks. This could also mean that some of the experimental results
based on guessing some bits and extrapolating results might in fact under-
estimate the complexity of the attack for a dedicated attacker.

In multikey scenario, the attacker can encode many instances of the prob-
lem as a single SAT instance and try to find each solution of the system.
In this case he gets a decrease in the average number of decisions per key
depending on the number of P-C pairs he can obtain. To get some real time
savings, the attacker must be able to efficiently encode the large formula
based on the set of P-C pairs, and to efficiently find all solutions of SAT
problem in one search.
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The results taken together lead to a hypothesis that algebraic cryptanaly-
sis with dedicated fast solvers might be more efficient than simple brute force
in massive surveillance efforts, when the attacker can collect many unrelated
instances of the problem (many P-C pairs with distinct plaintexts and cipher-
texts), especially if he looks for some low entropy keys in these sets (produced
by known compromised random number generators, or based on passwords).
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