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This paper analyzes the decoupling of a sliding structure six-axis force/torque sensor, which is used to measure the interactive 

force between surgical tools and soft tissue for the establishment of soft-tissue force model. Because this decoupling structure 
requires accurate sliding clearance and symmetric grooves, the influence of contact force between the elastic body and the groove 
sidewall on decoupling is analyzed. The analysis results indicate that the contact force will produce additional coupling error. The 
robust design method of elastic body size optimization is used to eliminate the influence of contact force. In the calibration test, the 
expanded uncertainty of the calibration device is evaluated and the calibration results validate the good decoupling.  
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1.  INTRODUCTION 
O IMPROVE the operators’ immersion sense in virtual 
surgery, the haptic information acquisition is carried out 
to measure the tool-tissue interactive force for the 

establishment of the soft tissue force model. Many 
acquisition approaches are based on tensile or compressive 
test of non-destruction tissue samples [1] [2], which cannot 
reveal the variation of tool-tissue interactive force for tissue 
fracture comprehensively [3]-[6]. Many kinds of sensors can 
be used to measure the force or torque [7]-[10]. Typical 
surgical operations such as clamping, cutting, puncture and 
suture feature motion and application of force in a multi-
degree of freedom, so multi-axis force/torque sensors are 
used.  

Dimensional coupling elimination is a key issue for multi-
axis force/torque sensors. A. Gaillet [11] developed a multi-
axis force/torque sensor based on the Stewart parallel 
structure. But owing to the coupling signal output of the 
sensor, the calculation of decoupling is complex. For a more 
direct acquisition of the force signal, the design of some 
sensors is based on mechanical structure decoupling of the 
elastic body. Float beam structure and sliding structure are 
typical mechanical decoupling approaches. A. G. Song [15] 
developed a kind of float beam structure based 
multidimensional force sensor. When force is applied, the 
non-sensing beams of the sensor become floating because of 
the compliance of non-sensing beams. The dimensional 
coupling is therefore eliminated. Due to the contradiction 
between compliance of non-sensing beams and sensor 
overall stiffness, the decoupling is limited. In the sliding 
structure based multidimensional force sensor, the non-
sensing beams become floating via sliding along the guiding 
groove, then the decoupling can be more effective. 
However, this decoupling structure requires accurate sliding 
clearance and symmetric grooves, especially for the sensor 
with small measurement range. Otherwise, contact force 
between the elastic body and the groove sidewall will 
influence the decoupling. 

This research analyzed the mechanical decoupling 
mechanism of a designed sliding structure six-axis  

 
 

force/torque sensor and the influence of contact force 
between elastic body and groove on decoupling. The contact 
force determined by structure size, machining error and 
assembly error will produce additional coupling error. 
Owing to the fact that the relationship between contact force 
and structure size and machining error is non-linear, higher 
machining and assembly accuracy may not be able to 
achieve the desired target. Thus, a robust design method [17] 
of sliding structure for structure size optimization is adopted 
to eliminate the influence of contact force on decoupling. 
 

2.  DECOUPLING ANALYSIS OF THE SLIDING STRUCTURE  
SIX-AXIS FORCE/TORQUE SENSOR 
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Fig.1.  Structure components. (1) elastic body 1, (2) elastic body 2, 

(3) top cover, (4) outer shell, (5) bottom cover. 
 

The structure components of the six-axis force/torque 
sensor are shown in Fig.1. Two elastic bodies are composed 
of four identical parallel beams with double holes, 
respectively. Elastic body 1 is designed to measure force Fx, 
Fy and torque Mz, and elastic body 2 is designed to measure 
force Fz, torque Mx and My. The clearance fit between the 
elastic body and the groove of the outer shell makes the 
elastic body slide when the force is applied. The 
measurement range of the sensor for force is 0~20 N and for 
torque is 0~800 Nmm. The resolution of the sensor is 20 
mN. The dimension parameters of the sensor are shown in 
Table 1. 
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Table 1.  Dimension parameters of the sensor 
 
height of the sensor  h = 28 mm 

diameter of the sensor  D = 52 mm 

height of elastic body 1  a = 4 mm 

height of elastic body 2  b = 8 mm 

thickness of the thin wall  d = 0.5 mm 

distance between the two holes  l = 8 mm 

 
Four strain gauges bonded to the thin wall of each parallel 

beam of the elastic body compose a full Wheatstone bridge, 
thus 32 strain gauges and eight full Wheatstone bridges are 
needed in total. Each parallel beam can measure a single 
dimensional force, so two or four beams can be combined to 
measure the same force/torque for increased sensor 
sensitivity.  

 

 
(a) Sliding mechanism of elastic body 1 

 

 
(b) Sliding mechanism of elastic body 2 

 
Fig.2.  Sliding structure of the six-axis force/torque sensor 

 
The sliding structure of elastic body 1 and elastic body 2 is 

shown in Fig.2.(a) and Fig.2.(b), respectively. When a single 
dimensional force or torque is applied, sensing beams 
produce bending deformation and non-sensing beams are 
floating owing to sliding, or produce lateral bending 
deformation, or torsional deformation.  

 

When bending deformation occurs on beams, there are 
symmetrical tensile strain and compressive strain on two 
thin walls on both sides of the beam, respectively. The 
sensitivity of output voltage can be increased 4 times with 
the Wheatstone bridge.  

When lateral bending deformation occurs on beams, the 
overall strain of the strain gauge is zero due to the equal 
tension and compression on both sides of the strain gauge 
neutral layer, so beams will not sense lateral bending 
deformation.  

When torsion deformation occurs on beams, both normal 
stress and shear stress are produced in the cross section 
simultaneously. Because of the great torsional stiffness of 
beams, the normal strain is very small and can be neglected. 
The strain gauges do not sense shear deformation, thus 
beams will not sense torsional deformation.  

Thus, beams of the elastic body can sense bending 
deformation but are insensitive to lateral bending 
deformation and torsional deformation. The deformation of 
each beam under a single dimensional force or torque is 
listed in Table 2. 

Table 2. shows that beam 11 and beam 13 sense the 
deformation under the force Fx; beam 12 and beam 14 sense 
the deformation under the force Fy; beam 11, beam 12, beam 
13 and beam 14 sense the deformation under the torque Mz; 
beam 21 and beam 23 sense the deformation under the 
torque Mx; beam 22 and beam 24 sense the deformation 
under the torque My; beam 21, beam 22, beam 23 and beam 
24 sense the deformation under the force Fz.  

The output can be calculated by 
 

4
o

i

U K
U

ε=
v

v
                               (1) 

 
where 1 2 3 4 5 6 7 8( , , , , , , , )ε ε ε ε ε ε ε ε ε=v  and 

1 2 3 4 5 6 7 8( , , , , , , , )o o o o o o o o oU U U U U U U U U=
v

are the 
strain and the bridge output voltage of beam 11, beam 12, 
beam 13, beam 14, beam 21, beam 22, beam 23 and beam 
24, respectively, K is the gauge factor, and Ui  is the input 
voltage of the Wheatstone bridge. 

Considering the equal deformation of some beams under a 
single dimensional force or torque, 

( , , , , , )F Fx Fy Fz Mx My MzU U U U U U U=
v

can be obtained as 

 
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 1 1 1
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0 0 0 0 0 1 0 1
1 1 1 1 0 0 0 0

F OU U

⎡ ⎤
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⎢ ⎥
⎢ ⎥
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− −⎣ ⎦

v v       (2) 

 
(2) indicates that the sensor is structure decoupling and the 

sensor sensitivity is doubled or quadrupled. 
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Table 2.  Deformation under a single dimensional force or torque 

 

 Deformation mode (“B”, “-B”, “LB”, “T” denote tensile bending deformation, compressive bending deformation, lateral bending 
deformation and torsional deformation and “0” means no deformation) 

 beam 11 beam 12 beam 13 beam 14 beam 21 beam 22 beam 23 beam 24 

Fx B 0 B 0 LB 0 LB 0 
Fy 0 B 0 B 0 LB 0 LB 
Fz LB LB LB LB B B B B 
Mx LB T LB T B 0 -B 0 
My T LB T LB 0 B 0 -B 
Mz B B -B -B LB LB LB LB 

 
3.  INFLUENCE OF CONTACT FORCE ON DECOUPLING 

Contact force between the elastic body and the groove 
sidewall will emerge as a coupling force during the 
operation. Considering the small measurement range (0~20 
N and 0~800 Nmm) of the sensor, it is necessary to analyze 
the influence of the clearance and the asymmetric groove. 

X

Y

 
 

(a) Ideal contact 
 

 
(b)  Contact with an angle 

 
Fig.3.  Typical contact modes between the elastic body  

and the groove. 
 

 
Fig.3.(a) shows the ideal contact mode between the elastic 

body and the groove. Fig.3.(b) shows the contact mode with 
angle θ and deviation distance h of groove, where the 
deviation distance of the groove is sinh a θ= . In 
Fig.3.(b), the branch force might deform the non-sensing 
beam to bring additional coupling. 

The structure of Fig.3.(b) can be equivalent to a first-order 
hyperstatic structure of sliding structure in order to calculate 
the bending moment distribution of each beam, which can 
produce the bending deformation, as depicted in Fig.4. 

 

 
(a) Mechanical model of elastic body 1 

 

 
(b) Mechanical model of elastic body 2 

 
Fig.4.  First-order hyperstatic structure of the elastic body  

in the sliding structure. 
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As shown in Fig.4.(a), four unknown restraint reaction 
forces and a horizontal force F are applied on the elastic 
body 1. A redundant vertical reaction force FB emerges after 
removing the restraint at endpoint B. The force deformation 
compatibility condition can be given as 

 

11 1 0B FFδ δ+ =                        (3) 
 
where 11δ and 1Fδ denote the deformation value of the 
endpoint B in FB direction when force FB and F are applied 
to the statically determinate base, respectively. 11δ and 

1Fδ can be obtained according to Mohr’ s theorem, and the 
vertical reaction force FB is derived from (3)  
 

1 3 3 2 2

sin 2
sin(2 ) 2( ) / 3 / 2B

MF K F F
N a b a b ab

θ
θ α

= =
+ + + + +

 

(4) 
where  
 

3 3 2 2 2 6(( ) / 6 ) / 4M a b a b ab b= − + + + , 
 

2 2 3 2 2tan (( ) / 2 /12) / ( / 2)a b ab b a b abα = − − + , 
 

2 2 2 2 2 3 2( / 2) (( ) / 2 /12)N a b ab a b ab b= + + − − . 
 

For M > N, it is clear that K1 and FB increase with the 
increase of θ . The bending moment of all beams, which is 
produced by the horizontal force F and the vertical reaction 
force FB, can be obtained based on the superposition 
principle. The strain of elastic body 1 is given as 

 

5 7 1(cos sin )
2
FL K
EW

ε ε θ θ= = +          (5a) 

 

6 8 1(sin cos )
2
FL K
EW

ε ε θ θ= = +          (5b) 

 

1 2 3 4 0ε ε ε ε= = = =                  (5c) 
 

Assuming F is applied in x direction, FU
v

can be 
calculated in accordance with (1) and (2) 
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1
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v
                   (6) 

 

It follows that force Fx and Fy emerge when force F is 
applied in x direction, and force Fy is considered as a 
coupling force. The coupling error Er(Fx) can be given as 

 

1

1

(sin cos )( )
(cos sin )r x

KE F
K

θ θ
θ θ
+

=
+

                  (7) 

 
From (4) 10 1K≤ <  is obtained, then 

1sin( ) sin( )Kθ θΔ > Δ and 1cos( ) cos( )Kθ θΔ > Δ  is 
derived. (6) and (7) indicate that the contact angle produces 
additional coupling. The coupling error Er(Fx) increases 
with the increase of θ . 

When moment M is applied on elastic body 2, the 
mechanical model is shown in Fig.4.(b). Similar method to 
that of elastic body 1 can be used to obtain the bending 
moment distribution.  Assuming M is applied in x direction, 

FU
v

can be obtained as 
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2
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where 2 2

27 sin
21 10

abK
ab a

θ
=

+
. 

The coupling error Er(Mx) produced by Myε can be given 
as  

 

2

2

(sin sin )( )
(cos sin )r x

KE M
K

θ θ
θ θ
+

=
+

                (9) 

 
(9) shows that the coupling error Er(Mx) increases with the 

increase of θ . 
 

4.  ROBUST OPTIMIZATION DESIGN OF SENSOR SLIDING 
STRUCTURE 

Robust optimization design approach is used to ensure 
good quality performance when controllable factors and 
uncontrollable factors deviate from the design value. This 
approach aims to minimize the performance sensitivity to 
noise by selecting the appropriate design parameters instead 
of eliminating the noise factor.  

If the coupling error change caused by controllable factors 
and uncontrollable factors is allowed, the decoupling of 
sliding structure is robust. For sliding structure of the sensor, 
the size of the elastic body a, b and the groove width r are 
given as undetermined random variables and feature 
Gaussian distribution. The design variables (controllable 
factors) are shown as 
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1 2 3( , , ) ( , , )T Ta b r x x x= =x . 

 
aΔ , bΔ and rΔ are machining errors, and noise factors 

(uncontrollable factors) are shown as 
 

1 2 3( , , ) ( , , )T Ta b r z z z= Δ Δ Δ =z .  

 
2( , ( / 3) )xx μ Δx� can be obtained, where xμ  is 

expectation of x. 
The coupling error y is determined by both controllable 

factors and uncontrollable factors and can be obtained as  
 

( ) ( , )r xy E F y= = x z                    (10) 

 
y is design target function and the ideal value is 0. The 

statistical mean y can approach the target value via 

expectation minyμ → and yΔ can be minimized via 

variance minyσ → . The target function with smaller-the-

better can be established as  
 

min ( , ) y yF μ βσ= +x z                   (11) 

 
where β  is weighted coefficient for coordination of 

expectation and variance. Adding constraint function ( )g x , 
the robust optimization model can be given as  

1 2 3

2 2 2
1 2 3

1 2 3

( , , )
min ( , )

. . ( ) 0
(45,55), , (3,5)

T

y y

x x x
F

s t g x x x
x x x

μ βσ
⎧ =
⎪

= +⎪
⎨

= + − ≥⎪
⎪ ∈ ∈⎩

x
x z

x

             

(12) 

 
The initial value, discrete increments and upper and lower 

bounds of design variables are listed in Table 3. 0.97β =  
and 1 2 3( , , ) (0.046,0.022,0.022)x x xΔ Δ Δ =  (GB/T 1800.3-

1998 IT8) are given. yμ and yσ can be calculated based on 
best square approximation method after sampling. 
When ( ) ( , )r xy E M y= = x z , the same method can be 
used. 

The robust optimization design solution can be obtained 
by using one-dimensional traversal optimization. The 
optimized sizes of elastic body are shown in Table 4., and the 
corresponding mean and variance of random function Er(Fx) 
and Er(Mx) is 0.34 % and 0.48 % for elastic body 1, and 
0.65 % and 0.72 % for elastic body 2, respectively. 

 
Table 3.  The initial value, discrete increments, upper and lower 

bounds of design variables 
 

Variables 
(mm) 

Discrete 
increments Upper bound Lower bound 

1( )x a  0.010 55 45 

2 ( )x b  0.001 5 3 

3 ( )x r  0.001 5 3 

 
Table 4.  Robust result of optimized design variables 

 
 a  b  r  aΔ  bΔ  rΔ  

elastic body 1 (mm) 52.041 4.732 4.758 0.046 0.022 0.022 

elastic body 2 (mm) 51.386 4.260 4.309 0.046 0.022 0.022 

 
5.  CALIBRATION TEST  

 

 
 
Fig.5. Calibration device of sensor (torque Mx calibration) 

 
The uncertainty is a parameter that reasonably shows the 

dissolution characteristic of a measurement value [23]. 
Fig.5. shows the calibration test of the fabricated six-axis 
force/torque sensor. In the calibration of the six-axis 
force/torque sensor, the combined standard uncertainty is 
obtained by combining the A type standard uncertainty due 
to lack of reproducibility, the B type standard uncertainty 
from the calibration device. The B type standard uncertainty 
due to the resolution of the data acquisition card. 

In order to calculate the uncertainty due to lack of 
reproducibility, the force Fx, Fy and Fz from 1 N to 20 N at 
1 N steps, and torque Mx, My and Mz from 40 Nmm to 
800 Nmm at 40 Nmm steps is measured, respectively, five 
times. The full-scale output voltage is 10 V. The average 
measured values at each step are obtained and the standard 
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deviation S of the force Fx, Fy and Fz, and torque Mx, My 
and Mz can be calculated with the maximum average 
measured value from Bessel formula. The uncertainty ur can 
be expressed as 

 

5r
Su =

                                 
(13) 

 
The calculated uncertainty ur of the force Fx, Fy and Fz, 

and torque Mx, My and Mz is 0.0037 V, 0.0035 V, 0.0029 V, 
0.0046 V, 0.0047 V and 0.0052 V, respectively. The 
freedom vr = 5-1 = 4. 

The uncertainty from the calibration device means the 
uncertainty due to the transmission of force and torque. The 
maximum force direction deviation angle α  during the 
calibration can be measured. Multiplying the coverage 
factor k = 3 , the uncertainty uf from the calibration device 
can be expressed as 

 
(1 cos )

3
o

f
Uu α−

=
                      

(14) 

 
Where Uo is the measured output voltage of Fx, Fy, Fz, Mx, 
My or Mz.  

The calculated uncertainty uf of the force Fx, Fy and Fz, 
and torque Mx, My and Mz is 0.0013 V, 0.0012 V, 0.0009 V, 
0.0013 V, 0.0015 V and 0.0018 V. The freedom vf =∞ . 

The revolution of the data acquisition card is 0.0003 V. 
Multiplying the coverage factor k = 3 , the uncertainty ud 

due to the resolution of data acquisition card can be 
calculated as 0.0003 V/ 3 =0.00018 V. The freedom vd 

=∞ . 
The combined standard uncertainty uc can be written as   
 

2 2 2
c r f du u u u= + +

                    
(15) 

 
The calculated uncertainty uc of the force Fx, Fy and Fz, 

and torque Mx, My and Mz is 0.0039 V, 0.0037 V, 0.0030 V, 
0.0048 V, 0.0049 V and 0.0055 V. The freedoms of Fx, Fy, 
Fz, Mx, My and Mz are 4. 

The expanded uncertainty U is calculated by multiplying 
the combined uncertainty uc by the coverage factor k = 1.9 
(confidence level 95%, t0.95 (4) = 1.9). The equation for it 
can be written as 

 

cU ku=
                                

(16) 
 
The calculated expanded uncertainty U of Fx, Fy, Fz, Mx, 

My and Mz is 0.0074 V, 0.0070 V, 0.0057 V, 0.0091 V, 
0.0093 V and 0.01 V, respectively. 

The following relationship between force and output 
voltage can be given 

 

[ ] FF D U=
v v

                              (17) 
 

where ( , , , , , )x y z x y zF F F F M F F=
v

, [D] is the 
static calibration matrix. 

During the calibration procedure of the force/torque 
sensor, the force Fx, Fy and Fz are applied to the sensor from 
1 N to 20 N at 1 N steps, respectively, and the torque Mx, My 
and Mz are applied to the sensor from 40 Nmm to 800 Nmm 
at 40 Nmm steps, respectively. In the meantime, the voltage 
output values of the bridge from eight beams are recorded 
and 480 calibration data are obtained in total. FU

v
can be 

calculated from (2) and the static calibration matrix [D] can 
be calculated from (17) with least squares fitting as  

 
 370.15  -0.01      -1.99      -1.88      1.71       -1.79
 0.92      409.28   -2.39      -3.54      -1.52      -3.17
 -0.14     -0.57      86.44     -0.35      -0.65      -0.32

[ ]
 -7.98     -5.67     

D =
-4.82     1082.8    -2.98      -4.78

 -8.91     -9.34      -5.42      -2.62      1051.3   -7.57
 -6.38     -9.33      7.99       -6.84      -4.79      2708.2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(18) 
 

The static calibration matrix indicates that the coupling 
errors of Fx are between 0.01 % and 0.54 %; the coupling 
errors of Fy are between 0.22 % and 0.86 %; the coupling 
errors of Fz are between 0.16 % and 0.75 %; the coupling 
errors of Mx are between 0.28 % and 0.74 %; the coupling 
errors of My are between 0.25 % and 0.89 %; the coupling 
errors of Mz are between 0.18 % and 0.34 %. The maximum 
coupling error of the developed six-axis force/torque sensor 
is 0.89 % and the minimum coupling error is 0.01 %. It can 
be said that the measurement sensitivity is 5.4 mV/N for Fx 

and Fy, 4.2 mV/N for Mx and My, 4.8 mV/Nmm for Fz and 
5.3 mV/Nmm for Mz.  
 

6.  CONCLUSIONS 
In this paper, the decoupling mechanism of a designed 

sliding structure six-axis force/torque sensor is analyzed. 
This sensor can decouple more thoroughly, for each beam of 
elastic body can only sense a single dimensional force/toque 
independently. Because of sliding clearance and asymmetric 
groove, elastic body will come into contact with the groove 
at a certain angle. Thus, contact force will be applied to the 
non-sensing beams of elastic body and produce additional 
coupling error. The contact angle is related to structure size 
of the sensor, machining error and assembly error. Robust 
optimization method was employed by optimizing the 
elastic body size a , b , and the groove width r  to eliminate 
the coupling error but not decrease the machining error. The 
calculated values a , b and r are 52.041 mm, 4.732 mm 
and 4.785 mm for elastic body 1, and 51.386 mm, 4.260 mm 
and 4.309 mm for elastic body 2, respectively. For 
calibration device, the calculated expanded uncertainty of 
Fx, Fy, Fz, Mx, My and Mz is 0.0074 V, 0.0070 V, 0.0057 V, 
0.0091 V, 0.0093 V and 0.01 V, respectively, with 10 V 
full-scale output voltage. The corresponding mean and 
variance of coupling error is 0.34 % and 0.65 % for elastic 
body 1, and 0.48 % and 0.72 % for elastic body 2, 
respectively. The calibration test was carried out and the 
results show that the coupling errors are between 0.01 % and 
0.89 %. 
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