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Abstract

We present Spindle, a mixed initiative tool for author-
ing choice-based interactive fiction that targets Twine, a
popular framework for text-based storygames. Twine
artifacts have properties of both stories and games,
placing our system at the intersection of Automated
Game Design (AGD) and Automated Story Generation
(ASG). We construct a generative pipeline that involves
condensing narrative context into a compact represen-
tation in order to feed to a pretrained language model,
which we further fine-tune. We demonstrate that, by
maintaining narrative context in the prompt presented
to the language model, we can greatly improve over the
loss of long-term coherence that still plagues such mod-
els. Our story compression technique for representing
narrative context uses a handful of freely available nat-
ural language processing libraries and models, demon-
strating that such interpretive pipelines can be built with
limited computational resources and low cost. The re-
sulting tool is capable of producing full-text branch-
ing narratives, or of generating individual passages that
maintain a high degree of narrative coherence with the
prior passages. The framework we design is both lan-
guage model-agnostic and narrative theory agnostic, al-
lowing future researchers to easily expand on it with
new language models and story representations. We re-
lease our code under the BSD-4-Clause'.

Introduction

While large language models have proven capable of pro-
ducing highly coherent text for such purposes as auto-
completion and chat bots, less research effort has gone into
exploring the entirely new forms of media they enable. We
are interested in ludic spaces that may be created by ad-
vancements in language model-based story generation, and
present one such tool, a system for authoring interactive
fiction which allows for expressive interaction with an Al
model. By focusing on the experience of writing as a target
for Al augmentation as well as a source of entertainment,
this project is influenced by two fields of study: computer
mediated writing and automated game design, resulting in
a system that is both engaging and encouraging of narrative
experimentation.

"https://github.com/alex-calderwood/spindle

Our tool allows users to author interactive-fiction narra-
tives with the Twine framework, alternately ‘passing the
keyboard’ between the system’s language model and the
user at will. When queried, the system utilizes a method
of narrative compression to come up with an understanding
of the current thrust of the story, and uses that understand-
ing to condition the generation of the next passage. This
approach is novel in how it uses the compressed narrative
context to improve the coherence of generated narratives
through prompt engineering. Prompt engineering is a new
and understudied paradigm where pretrained language mod-
els are guided towards better responses by providing a suc-
cinct (often templated) prompt to the model at the time of
prediction (Reynolds and McDonell 2021). This method of
iterating on a series of prompts has been successfully used
in the computational creativity literature for text to image
generation (Liu and Chilton 2021).

Unlike many past story generation techniques, which gen-
erate a list of ordered plot events, our system generates fully
realized multi-passage branching narratives, with a capabil-
ity for mixed-initiative use. The generated passages follow
Twine syntax and include outgoing links (player decision
points) and corresponding passage titles. Generated pas-
sages display a level of narrative coherence that allows the
model to ‘yes-and’ the user’s apparent authorial intention,
while still enabling a degree of defamiliarization that results
from the composition of nearly appropriate text, an attribute
of AI writing which has been said to be prized by writers
including the novelists Robin Sloan and Sigal Samuel, who
respectively envision an Al writing assistant as “less Clippy,
more séance” and describe feeling “strangely moved” by Al
writing (Calderwood et al. 2020).

We fine-tune GPT-3, a model notable for its introduction
of meta-learning, or zero-shot learning, to language gener-
ation (Brown et al. 2020). Under the zero-shot paradigm,
queries consist of a small number of example (prompt, re-
sponse) pairs. Further, fine-tuning such a model allows it
to capture the grammar and stylistic accompaniments of a
structured corpus such as our dataset of Twine stories. The
model has notably been used to enable gameplay in Al Dun-
geon?, a text adventure game that allows arbitrary player in-
put (Hua and Raley 2020). Accessing the model through the

*https://play.aidungeon.io/



OpenAl API and utilizing other open-source NLP packages,
we fine-tune our GPT-3 based models at a small fraction
of the cost of traditional NLP development, and all systems
easily run on an internet-connected laptop.

Background

Creating a Twine game is an act of writing as well as interac-
tion design; Twine games are ‘played’ by reading and read
through play, and generating these artifacts requires both
story and game generation techniques.

Automated Story Generation

Automated story generation has long been considered a
grand challenge of artificial intelligence. Early systems used
symbolic reasoning (Meehan 1977; Lebowitz 1987), often
utilizing hierarchical generation based on grammar rules
which provide model interpretability, clearly identifiable de-
sign spaces, easy extensibility, and little or no input data,
though they sometimes lack robustness (Black and Wilen-
sky 1979; Riedl and Young 2010). Tracery has found pop-
ularity as an author-focused generative text tool with non-
deterministic grammar production (Compton, Kybartas, and
Mateas 2015). When it comes to full stories, “hand-authored
templates are seen as insufficient for large scale narrative
generation” (Roemmele 2018), though the combination of
generative grammars with language modeling has not been
sufficiently explored. A major component of many narra-
tive generation systems includes a planner, a system that
searches for a goal story state from the current state to find
the series of narrative actions needed to bridge that gap (Por-
teous 2016; Young et al. 2013). StoryAssembler is a relevant
example of a system that uses a planner to generate Twine-
like interactive narratives (Garbe et al. 2019).

Utilizing statistical NLP, Chambers and Jurafsky (Cham-
bers and Jurafsky 2008) define the narrative cloze task as
the prediction of missing narrative events from an event
sequence, which they produced from short plot descrip-
tions. Their technique involves running a dependency parser
over a collection of plot summaries to produce grammati-
cal relationships, using these to extract a sequence of pred-
icates along with their subject and object noun phrases, and
then resolving these into ordered event chains. Pichota and
Mooney (Pichotta and Mooney 2016) build on this frame-
work, utilizing an LSTM architecture to extract (s, v, 0, m)
event tuples from Wikipedia articles (corresponding to sub-
ject, verb, object, and modifier, respectively). “John and
Mary went to the store,” becomes (john, go, store, (). This
event list may be thought of as a high-resolution, but po-
tentially low accuracy, representation of the narratological
notion of a fabula, or the chronological ordering of events in
a narrative (Bal and Van Boheemen 2009).

Martin et al. follow this approach with a three part decou-
pled architecture: a system that extracts event tuples from
unstructured narratives, an event2event model that predicts
the next event predicated on the previous events, and an
event2sentence model which expands a sequence of events
back into natural language (Martin et al. 2018). To im-
prove the model’s performance, they used entity recogni-

tion to generalize characters and locations during predic-
tion, which were memorized and later in-filled. This work
serves as the closest inspiration for our approach. Our use of
modern large-pretrained language models allows us to com-
bine the event prediction and text generation steps into one
text completion step, and our narrative interpretation module
functions as a memory of important narrative entities with-
out the need for back-filling generalized text.

Many attempts at narrative generation focus just on the
production of language, but Mexica (Pérez and Sharples
2001) models creative writing as a cognitive process that
consists of engaged and reflective states. In the reflective
state, the model evaluates coherence, interestingness, and
novelty of the generated sequences for text refinement. Our
strategy utilizes reflexive interpretation to increase coher-
ence of the proceeding passages. Like the generation of
long-form text, automated interpretation of full stories has
proven challenging, not least because it relies on systems
such as long distance character co-reference resolution to be
of a high-accuracy. BookNLP (Bamman, Underwood, and
Smith 2014) is one of the few systems that approaches this
tough problem. Increasing the quality of generated stories
will likely need to incorporate global measures of coherence,
and will therefore likely require the semantic readings that a
system like BookNLP can provide.

The Virtual Storyteller System is a plot generation system
that used a director model to orchestrate emotional episodic
plots (Theune et al. 2003; Theune et al. 2004). The au-
thors imagine a user acting as a character within the narra-
tive, allowing them to influence the course of the story some-
what like a role playing game, not dissimilar to our mixed-
initiative writer model.

Relation to Automated Game Design (AGD)

Full-game generation has historically focused on games that
can be automatically analyzed with automated game players
or a stack of static evaluation criterion (Pell 1992; Browne
and Maire 2010; Cook, Colton, and Gow 2016). Such
game generators seek to maximize a particular optimization
function that guides search, which may be grammar-based,
constraint-satisfying, or evolutionary in nature. They often
utilize an intermediate Game Description Language (GDL)
(Schaul 2013; Summerville et al. 2018; Duplantis et al.
2021), typically a text representation that is designed to have
a high expressive range, produce interesting games a high
proportion of the time, and be suitable for automatic search.
Both Inform 7 and Ceptre can be viewed as narrative GDLs;
the former is used in the TextWorld framework (C6té et al.
2018). In our case, Twine’s Twee syntax3 is modeled and
generated analogously to these GDL’s. From it, the Twee
compiler targets interactive HTML.

The automated game players in AGD are intermediate
processes that form interpretations of games, similar to the
readings our system produces to conduct the narrative flow.

Cook et al. point out that most automatic game generation
scholarship has gone towards “objectives, obstacles, and the
notion of challenge” (Cook 2015). Game generators have

*Examples at: https://dan-q.github.io/twee2/tutorial htm]



description of orchids next to stream a babbling stream running through everything

@Q@@@

remember running through the garden as a child @ w

that night, you told her everything.

Figure 1: A small Twine tree. The Start node (passage and links) was written by hand, further passages and titles were generated

by Spindle. For space, only passage titles links are shown.

recently begun exploring the hard problem of automatically
producing games with semantic, thematic, and cultural im-
port, rather than focusing on fun or challenge. In (Cook
2015), the authors point to narrow readings of the word
‘game’ as hampering fruitful experimentation in generative
systems. Unanswerable questions like “Is this a game?”, “Is
this a story?”, or “Is this art?” often surface at challenging
moments in the development of new expressive mediums,
defensively boxing-in existing endeavours rather than nur-
turing interdisciplinary growth. Game-O-Matic is the first
game generation system that attempts to reason about the
rhetorical relationships between objects that make up the
game, utilizing the theory of operational logics to build up
an understanding of possible player interpretations (Treanor
et al. 2012). Gemini takes this a step further, using an-
swer set programming to build up a proceduralist reading
of a game as it is generated, using that reading to influence
generation (Summerville et al. 2018). In (Cook 2021) the
authors attempted to generate games without scores, focus-
ing on the aesthetic experience of play. It is worth noting that
they found it challenging to determine their level of success
or generate through a broad expressive range, in part due to
the unclear notion of success.

Automatic game generation and games as a whole have
seen relatively slow adoption of language models. Al Dun-
geon is one notable exception (Hua and Raley 2020). A
few reasons for this may be that language models are un-
predictable, sometimes producing undesirable sexist, racist,
and otherwise inappropriate language. Twine games are his-
torically inclusive of explicit and otherwise non-normative
content (Harvey 2014), meriting a conversation about what
a nuanced treatment of complex social, sexual, and psycho-
logical issues looks like in the context of these models.

Additionally, getting these models to understand narra-
tive context is difficult, as we will see. Some work has been
done to use language models to evaluate text games (Co6té
et al. 2018; Kostka et al. 2017a; Kostka et al. 2017b). Fan
et al. use neural generation to populate the world of a text-
adventure game (Fan et al. 2020), but did not attempt full
narrative generation. Earlier games such as Scribblenauts*
have used human specified corpuses as safer and more reli-
able tools for injecting language understanding into games.

*https://en.wikipedia.org/wiki/Scribblenauts

(Barros et al. 2019) used Wikipedia as a corpus to automat-
ically generate murder mystery games populated with char-
acters and appropriately themed puzzles.

Twine

Twine is a platform designed to give non-coders the abil-
ity to author branching interactive fiction narratives. Such
games are designed and written via a visual authoring
tool that positions narrative passages on an interface re-
sembling paper notes connected by strings on a corkboard
(Friedhoff 2013). Passages are Twine’s “equivalent of a
page in a Choose Your Own Adventure book™ (Friedhoff
2013), containing markdown-style hyperlinks to other pas-
sages. Gameplay consists simply in clicking between pas-
sage links, which may simulate making narrative choices
for a first or third person character. Passages and links
are handwritten, as contrasted with more open-ended com-
mands available in parser games. Collections of Twine
games include the Interactive Fiction Database’ and itch.io®.

Mixed-Initiative Interface

Narrative extraction

enter your story title: /

Figure 2: Entry into the prototype interface.

Our system models writing a Twine story as constructing
a graph of passages connected by their respective links, first
soliciting a title and by-line from the author, and then mov-
ing into the authoring of the Start passage.

Spindle’s interface is designed to treat both the human and
machine as writers capable of drafting or refining passages

Shtps://ifdb.org/viewlist?id=ax0yq2ksub57ie70
Shttps://itch.io/games/made-with-twine



in the working story. The system maintains a “To Do List’, or
a fringe of outgoing passage titles that have yet to be drafted.

At present, the system’s primary interaction loop begins
by asking the user to select a passage title from the To Do
List. Passage selection is accomplished with arrow keys —
building a graphical Ul is the focus of the next iteration of
the tool. Next, the user is asked to indicate whether they
would like to 1.) draft the passage body in a spartan text ed-
itor, 2.) indicate that the system should automatically gen-
erate the passage body using the narrative context stored for
that passage, 3.) view the passages thus far written by the
mixed-initiative system, 4.) generate N passages sequen-
tially from the head of the list, or 5.) conclude the writing
process, inserting placeholder text for unwritten passages.

The writer may for instance describe a branch point in an
adventure game, say, a description of a cave with many tun-
nels for the player to explore. The tool is designed not to
impose stylistic restrictions on the writer, so they may au-
thor link text in declarative or imperative styles (‘“You head
into the entrance covered in stalactites” vs “Enter the slimy
tunnel”) or any other text (“An unusual door”). Addition-
ally, the writer can override the link text with specific titles
for the linked passages so that “enter the cave” corresponds
to the more conventionally formatted title “The Cave”.

The author may want to immediately write some pas-
sages and generate placeholder text for the others. Alter-
natively, they may decide to have the system generate all
narrative branches recursively to create unplanned stories to
play themselves. Using the tool in this manner allows it to
produce ‘games that the developer wants to play’, which is
commonly cited as a reason game makers get into develop-
ment.

After a passage has been written by human or machine,
it is parsed by the system to ensure it is well-formed Twine,
and passed back to the writing protocol if not. In practice,
the models we train rarely produce malformed syntax.

When all passages have been written or writing is manu-
ally concluded, the system uses the Twee compiler to con-
vert the passages into playable HTML, saves those files, and
then launches the Twine game in the default web browser as
shown in Figure 3. At present, the games do not make use of
custom visual styling, though we imagine future work will
include conditionally generating stylesheets on the basis of
a game’s thematic content.

Formulating the Generation Problem

Twine stories can be thought of as directed graphs composed

of passages p; = (pt*te, pi")dy) connected to others by out-
going links. Each story contains a predefined Start node.
Any text in the body may be formatted as a link to a speci-
fied passage’.

The model should ideally be aware of all preceding text
in order to generate the next passage, according to the prac-

"Advanced Twine authors sometimes make use of macros or
custom Javascript code to allow conditional or stateful storytelling.
While language models have shown an ability to produce complex
code snippets, for simplicity we have excluded passages containing
these features.

the garden

alex and GPT-3

Start bookmark rewind to here

In the garden of my childhood, there were cacti, orchids, a babbling stream
running through everything. I remember running through the garden as a
child, finding the secret treasure, solving the maze

solving the maze in the garden

You head for the maze in the garden, the place where you always escape to when
you need to think. For once, you don't think about anything. Your brain is blank.
You see the outline of the maze as you enter, but as your eyes grow used to the
darkness, you see more and more of the garden.

You remember the first time you went there. You were nine. Your mother took you
there on a picnic. She had been so excited, had been talking about the maze the
whole day. You remember her laughing as she had pulled you through the first few
turns. You remember the long walk back, her arm wrapped around yours. She
always had a way of making you feel safe. that night, you told her everything.

This story was created with Twee and is powered by TiddlyWiki.

Figure 3: A screenshot of a playable Twine game produced
by the system, corresponding to the tree in Figure 1

tice of automated feature engineering in which deep learn-
ing models themselves learn what information is relevant
to their predictions. In practice, it has been observed that
longer prompts decrease the coherence of completions in
large language models and many strategies for increasing
long form coherence have recently been proposed (Guan et
al. 2021; Cho et al. 2018). Prompt engineering therefore
necessitates a trade-off between including more information
that might be useful to the prediction, and not ‘overwhelm-
ing’ the model with too much text. State of the art text com-
pletion models typically allow no more than around 1024
words shared between the input (prompt) and output (com-
pletion). So we define two auxiliary functions whose pur-
pose is to condense preceding passages to a length that can
be ingested without a loss of coherence due to to this phe-
nomenon.

These abstract functions are implemented according to
authorial goals and narratological propositions. In our ex-
perimentation, we repeatedly iterated over their practical im-
plementation, each addition seeming to enhance narrative
coherence along some dimension.

A narrative reading R(p;) = r; is a representation of the
features most salient to the given passage. These represen-
tations can be arbitrarily complex, holding on to important
details such as characters and plot events, and stylistic fea-
tures such as tone or point of view, throwing away details
determined to be irrelevant.

Additionally, an explanation function X(p;) =
X(ro,...,mi—1) = Xp, maps chains of narrative read-
ings to a plain text description X, of the narrative context
leading up to passage p;. A sequence of individual readings
ro,...,7;—1 forms a context chain for a passage at depth ¢



along the minimum spanning tree path between the passage
and Start, pg. The necessity of a plain text description falls
out of the paradigm of transfer learning: using an out of
domain model on a sub—or alternate—domain®. By trans-
forming our latent story representations into English, we
can plug in any large pre-trained model into the generation
pipeline, and ensure our code base is largely model agnostic.
Additionally, the narrative descriptions produced by this
intermediate stage of the system are highly interpretable, as
they are in plain English.

Text Preprocessing and Model Training

We use these X and R (implementations detailed in the next
section) to approximate a distribution £ over the narratives
we aim to generate. We would like to provide the narrative
context to the model, alongside the title of the passage to be
generated: X, |pt*e in order to produce a p*°%. Fan et al.
(Fan, Lewis, and Dauphin 2019) and others have shown that
preprocessing text—injecting external knowledge, adding
start and end tokens, and generalizing named entities—aids
in generating coherent stories.

Data Processing

To begin, we convert Twine binaries into Twee 2, to repre-
sent the interactive stories textually as in Figure 4. Gather-
ing sufficient Twee-formatted stories required modifying the
Twee source’ to handle decompilation from games natively
authored in the graphical Twine interface.

We split our collection of Twine stories into passages, ex-
cluding passages with macros and non-unicode characters.
Next, we run our narrative reader and explanation functions
on our corpus to produce textual descriptions of the story
up until this point. Finally, we build (prompt, response)
pairs for each passage by appending to the readings unique
start and end tokens unlikely to appear in the corpus (e.g.
start :=<||start||>):

prompt(p) = start\xp|ptme|begin

response(p) = p*°¥|end

Of the 512 Twine stories downloaded from itch.io, only 82
were Twee decompilable, producing 10,784 passages with a
total of 11,098 embedded links.

Training

For each of the following experiments, we feed the pro-
cessed training examples to the OpenAl completion end-
point with the default meta-parameters: fop_p, temperature,
and best_of all set to 1. Experimenting with a different fop_p
would retrieve multiple responses from the model, which
we could pick from based on some retrospective evaluation.
This is left for future work, as is providing the user with
temperature (stochasticity) control. Each experiment uses
GPT-3’s largest available 175B parameter davinci model,
resulting in three separate fine-tuned models. Fine-tuning

8https://ruder.io/state-of-transfer-learning-in-nlp/
*https://github.com/tweecode/twee

involves a limited retraining of a neural network’s weights
(until recently, this typically meant a selective retraining of
only the latter levels of a feed-forward network) (Howard
and Ruder 2018; Lester, Al-Rfou, and Constant 2021). Fine-
tuning through the API abstracts the typical machine learn-
ing workflow, which typically requires splitting data into
training and test sets, selecting an optimization function, and
tuning hyperparameters.

Running a fine-tune job is currently free and took under
three hours for each tune. The total cost incurred from us-
ing the models did not exceed $40, demonstrating that using
open-source language toolkits on top of fine-tuning existing
large language models is a viable way to cheaply develop
creative language applications.

Narrative Reader Development

In this section we present a series of increasingly sophis-
ticated implementations of the two interpretation functions
and example passages generated by each from the same Start
passage (Figure 4).

Start

A tornado devastated town. Now you, Robert,
and Maya are alone.

[[Head outside|take them outside]]

[[Continue to shelter at home.|tell them to
stay inside]]

Figure 4: Our example input passage setting up a story about
a tornado. Bracketed text indicates link text followed by the
passage linked. Double colons :: represent a passage title.

0. Naive Method

The first question we wanted to address was the capability
of a fine-tuned davinci model to generate grammatical Twine
stories, regardless of their narrative coherence. For this base-
line, X (p) returns no narrative context and passage bodies
are generated solely based on their corresponding title.

We found that fine-tuning the davinci model with this
narrative reader generated Twine stories with correct Twine
syntax with high reliability despite the medium size of our
tuning dataset. This freed us to refocus on the quality of
the generated narratives in subsequent definitions of R and
X. The passages are sometimes formatted with rich text that
we were surprised to see render appropriately through Twee.
Unsurprisingly, the passages followed English grammar and
storytelling conventions.

The passages generated naively were disjointed; Figure 5
shows subsequent passages completely diverging from the
tornado narrative. The only times any narrative continuity
was observed between passages was when the titles were ex-
tremely explicit. Additionally, passages switch perspective
and verb tense, introduce new characters and do not refer
back to previous characters.



tell them to stay inside
<div id="day">

Day 49

</div>

You are in your car. You’re on your way to
pick up your daughter from daycare.

You’re still not ready to take this step.
The thought of leaving your child alone
for a whole day makes you cold.

You have a lot of work to do to finish your
project. You need to finish the sound
engine, implement a pathfinding system,
design the world generation...

Your free time is running short.

You need to finish your project. You need to

do it soon.

[[ok now im ready]]

ok now im ready

You look at your opponent. His eyes are
locked on you, a mixture of fear and
anticipation on his face. You draw your

sword and run towards him.

You both charge at each other, swinging your
swords wildly. You manage to land a few
hits, but he parries most of them.

Suddenly, he Jjumps back and cowers in
fear. "You can’t beat me", he cries. You
look down and see the cause of his
panic. You did a horrible job of
cleaning the blood of your opponent off
your sword. Horrible. You’ve been
defeated by a sword-swinging mop.
[[You’re done.|engstart]]

Figure 5: Two passages generated via the naive method did
not show continuity with the initial tornado passage (Figure
4) or each other, but demonstrate adherence to Twine syntax.

1. Zero-Shot Summarization

One concept for our narrative reader function was to use
GPT-3 as a zero-shot summarizer, defining X and R accord-
ing to Equations 1 and 2.

R(p;) = ZeroShot(p;) )
X (70, s Tim1) = 70|11 (2)

Using davinci, our ZeroShot summarizer produced ac-
curate single sentence summaries of complex multi-
character passages using the following prompt scaffold:

My Jjob is to summarize short stories
into a single sentence. Here is an
example of a longer story:

wnn

<Passage Text>
mmww

This is my one-sentence summary:
mmww

While this prompt engineering approach to summa-
rization was promising with davinci, we did not have

the resources to perform the summarization to produce
(prompt, response) pairs on our full dataset. Davinci is
10x the cost of the next largest curie model, which tended to
simply produce the first sentence of the passage rather than
an accurate summarization. In order to fine-tune the model
with the ZeroShot narrative reading function, we would need
to generate a summary for all 10,784 passages in our tuning
dataset. Since OpenAlI’s pricing model charges per gener-
ated token, this was prohibitively expensive with the davinci
model.

2. Entity Recognition

tell them to stay inside

You go back out to the hallway, where your
best friends are waiting.

"Are you crazy?" asks Robert. "You said it
was a trap!"

"It probably is a trap," you admit. "But I
can’t just leave them in there."

Maya Jjust looks at you with big, sad eyes.

"Please," she says. "just this once."

You sigh. "I don’t know, Robert. I'm not
going to be able to sleep if I know you
two are in danger."

"Like you sleep anyway," says Robert. "What
if something happens to us and you don’t

even know?"

"Can’t we at least try to alert the [[unggoy
11 about the danger first?" you ask.

unggoy

"Ain’t you the one who told me to ’"keep my
head up lowbrows’ and all that?"

[[Well, I'm just looking out for you.|
anotherl]]

[[IT have a solution.|anotherl]]

Figure 6: Passages generated via the entity recognition
based reader from the same input passage as before.

For our next experiment, we define our narrative reading

as

R(p) :== (qpv Cp, lp) (3)
where ¢ was the set of characters referenced in the passage,
[ the set of locations, and ¢, the set of pronouns (“they”,
“you”, “she”, etc.). These were extracted from passage text
using the python spacy library for part of speech tagging and
a pretrained BERT model' for state of the art entity recog-
nition (Devlin et al. 2019). The explanation function X
counted the characters and locations in the context chain and
wrote the most frequent (top 8) of each to short sentences of
the form: “Locations mentioned: ..., Characters mentioned:
... Pronouns referenced: ...”.

This model proved capable of generating passages that
consistently referred back to previously mentioned locations
and characters (Figure 6 mentions ‘Maya’ and ‘Robert” from
the previous passage), adding a sense of social and spatial

https://huggingface.co/dslim/bert-base-NER



continuity to the stories. However, the passages generated
still do not often follow the narrative, or if so, only loosely
or by chance.

3. Event Extraction / Fabula

For the final experiment we report, we utilize the event ex-
traction methodology of (Martin et al. 2018).

tell them to stay inside
"It’s dangerous out there!" you scream. You
feel weak, but you manage to stand.
Maya and Robert look at you in shock. "You
can’t be serious!"
"I have to do something!" You say. "I have
to protect everyone!"
You turn and rush back outside. You ignore
the searing pain in your back and [[seek
out the children]]

seek out the children

You find a house with no roof and only
walls left. What was once a house is
now just a pile of rubble. You find a
group of around 20 children huddled
together. They are crying and shaking.
What do you do?

[[you try to talk to them]]

[[you leave them alone]]

Figure 7: Passages generated via the fabula reader.

We expand on our previous narrative reader (Equation 3)
with the following:

R(p) = (qIn Cp, lpa ep) 4

where e, is an ordered list of (s, v, 0) triples extracted from
the passage.

X is defined similarly to the previous section, with the
addition of a bulleted list of events, written in plain text as
in Figure 8.

Thanks to modern NLP libraries, this reader architecture
is cheap to run even on a CPU. Here, it does not directly pre-
dict event e;4from e;, as in (Martin et al. 2018), who use
a further LSTM model to expand predicted events into sen-
tences. Rather, the pretrained language completion model,
when fine-tuned on a corpus of (prompt, response) pairs
that include this event list, is expected to jointly learn next-
event likelihood alongside Twine grammar.

To reduce the prompt length (necessitated by the discus-
sion in the section Formulating the Generation Problem), we
apply the following crude reduction algorithm to produce a
new event list for X. We chose 32 as a constant following
initial tests and intuition.

func reduce (events) :
while length (events) > 32:
events = events[::2] // every other event

The effects of this necessary reduction step means that im-
portant events may be omitted from the fabula presented as
context to the model. It is an active area of NLP research to
find mechanisms to reduce the length of the prompt given to
a text generation model while discarding only less important
details. One may for example imagine a system for sifting
events based on perceived relevance to the current passage.

<|begin|>Pronouns referenced: you, yourself,
anyone, and everyone. Mentioned
Locations: None. Mentioned People: Katie
Preceding Events:
* you packed bag
* you asked mom
you tried not to look at anyone in the
eyes
you shove bag
you use body weight
you hear sound
it gives way
plane begins to move
you feel hand<|title]|>::
<|start|>

*

X % ok ok ok

offering support

Figure 8: An example prompt produced through the fabula
reader.

However, the passages generated by this version of the
model seem to appropriately introduce new characters and
back-reference existing ones (‘Maya’, ‘Robert’ in Figure
6). It tends to stay on topic, with the deeper passage in
Figure 6 appropriately following the tornado theme with-
out overtly mentioning it. This example also demonstrates
the model’s tendency to follow the Twine convention of pre-
senting branch points that represent straightforward charac-
ter actions at the end of a passage, often weighted by con-
siderations of exploration and morality.

Discussion
Generating Twine Stories

The project was originally motivated by asking if Twine syn-
tax could be modeled in a straightforward way, and when
GPT-3 was brought on board to bootstrap the process, it be-
came clear that syntax was a trivial problem, inter-passage
fluency was very high, and intra-passage coherence was the
problem to solve. This required an exploration of the story
generation literature. In iterating on our narrative reader for-
mulation, we demonstrated that multiple theories of narra-
tive can be substituted into this generative framework and
that pairing the interpretive system with prompt-engineering
is a fruitful methodology for language model based interac-
tive story generation.

The Authoring Experience

Using the tool to write interactive fiction is itself a fun,
game-like experience. The feeling of having primed the
model to generate something interesting and coherent within



the given narrative context is uniquely pleasurable, some-
what like having succeeded in having an interesting con-
versation with a stranger, resulting in the discovery of new
opportunities for directions to take your writing. High co-
herence is not the only goal in building the model however;
unexpectedness is also key (Table 1). The hope is that a tool
like this might be useful for professional writers as well as
novices looking for inspiration, writing assistance, and for
those who would rather experience a custom Twine story
than write one.

Passage Coherence User Response

Incoherent; random
Mildly Coherent; unex-
pected

Coherent; unexpected
Coherent; expected

Annoyance, Confusion
Defamiliarization, Curiosity

Amusement, Joy, Ideation
Boredom

Table 1: Based on informal testing with 6 users, we iden-
tified a few common user responses to the various levels of
coherence the models produce.

Limitations and Future Work

As we’ve established a method for using automated narrative
readings to guide narrative text generation, it is clear that
there are many additional theories of narrative that could be
used instead of the fabula + entity method we arrived at.
Such possible readings include formalist theories such as the
SIG (Elson 2012), reader-response models (Castricato et al.
2021), or frame-based computational readings (Peng et al.
2021). Our earlier experimentation with other unsupervised
summarization methods did not yield promising results, but
a reviewer points out that this should be formally evaluated,
and recent non-GPT abstractive summarization techniques
such as those found in (Alomari et al. 2022) may suffice
1y, The fabula-based event structure we arrived at does not
encapsulate a total understanding of narrative and we look
forward to experimentation with many other representation
formats.

Mawhorter et, al. has introduced the theory of choice po-
etics, “a formalist framework for understanding the impact
of narrative choices on the player experience via their op-
tions, their outcomes, and how those relate to player goals”
(Mawhorter et al. 2018). Its application to this work seems
clear; we might model the sequence of choices that led to the
present passage as an additional component of the reading.

Recent work has shown complex world state may be
learned from a story via semantic role labeling, which can
be used to populate knowledge graphs about the story world,
and then stories can be generated such that they reduce dif-
ferences between the current story world graph and a given
goal graph (Peng et al. 2021). This approach is an extremely

"such as RefSum (Liu, Dou, and Liu 2021) or gensim’s Tex-
tRank summariser (tinyurl.com/2s35hcr4

promising approach to story generation. Integrating a simi-
lar knowledge graph parsing approach into our architecture
is an obvious next step, as is integrating a symbolic planner
to reason over inferred narrative semantics.

Additionally, we are working towards a front-end inter-
face that will allow for a more seamless revision-iteration
loop for more lively or dynamic interaction with the written
text. This will enable us to conduct a user study to assess
the quality of the written work and the experience of work-
ing with the tool.

Finally, the evaluation of story text coherence beyond
qualitative analysis needs to be addressed. Story coherence
is generally assessed with human evaluation, though auto-
mated analysis of new character introduction or scene/object
permanence may be possible. Without these evaluations, we
are unable to make objective statements about the increase
in narrative coherence we see from the baseline narrative
reader to the fabula approach.
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