
Word Embedding for Analogy Making

Mei Si

Department of Cognitive Science

Rensselaer Polytechnic Institute, Troy NY 12180, USA

sim@rpi.edu

Abstract

In recent years, natural language processing techniques
have made impressive improvements in many tasks.
However, their ability to make analogies is still mini-
mal. This is partially due to the underlying representa-
tion of words and phrases, i.e., the word embedding is
trained at the word sequence level and not at a concept
relationship level. This work explores training a word
embedding specifically for analogy making using
knowledge graphs. The algorithm computes how analo-
gous two concepts are based on the structural similarity
of their adjacent concepts and relationships.

Introduction

Analogies describe comparative relationships between two
sets of concepts. The Stanford Encyclopedia of Philosophy
defines it as "An analogy is a comparison between two
objects, or systems of objects, that highlights respects in
which they are thought to be similar" (Bartha, 2019).
With the recent release of large language models, such as
GPT3 and BERT, natural language processing (NLP) algo-
rithms can achieve almost human-level performance in
some text generation tasks. For example, the AI Dungeon
game is powered by GPT3 and can automatically generate
dialogue and interactions with virtual characters as the user
interact with the game. NLP algorithms have also achieved
impressive performances in dialogue generation, question-
answering, and even common sense reason tasks.
 However, the current state-of-the-art NLP techniques still
only have rudimental abilities in making analogies. A fa-
mous example of analogy-making came from Mikolov et
al.'s work when the word2vec technique was invented for
training word embedding (2013). Their work shows words
that have similar meanings also have similar representa-
tions in the embedding space. Using vector operation, sub-
tracting the embedding of the word Man from the embed-
ding of King, and then adding the embedding of Women
results in the embedding of Queen. I.e., the famous analo-
gy example of:

King-Man+Women = Queen.

 Another example of analogies formed based on word
embedding is about locations. For example, the pair (Albu-
querque, Albuquerque_Journal) is analogous to (Baltimore,
Baltimore_Sun). While these analogies show that the
trained word embedding is meaningful, they are not quite
the same as typical analogies created by people. Further,
more recent research on validating the analogies generated
by word embedding found the system to be fragile and not
always able to generate meaningful analogies. Even for the
original example, “King-man+women” is actually closer to
the embedding of King, rather than Queen (Nissim et al.,
2019)!
 The imperfection is not a surprise since the word2vec
technique trains embedding using plain text, without ex-
ploring the relationships among concepts. In this work, we
explore creating word embedding using algorithms in-
spired by cognitive theories of analogy, particularly the
Structure-Mapping Theory (SMT) (Gentner, 1983; Gentner
& Smith, 2012). SMT emphasizes the structural alignment
of the relationships between two sets of concepts when
forming analogies. We explore using structured content
from knowledge graphs as input. The example outputs
from our system show that the new embedding can create
interesting and creative analogies among concepts.

Related Work

We review three types of related work: the cognitive theo-

ries about analogy-making, the knowledge graphs extract-

ed from Wikidata, and a knowledge graph based analogy-

making system.

Analogy-Making

How people form analogies has been studied extensively in

cognitive science (Gentner, 1983; Kubose, Holyoak, and

Hummel, 2002; Larkey and Love. 2003; Gentner and

Smith, 2012). It is generally believed that analogy-making

involves mapping concept groups with hierarchical struc-

tures from different domains.

The Structure-Mapping Theory (SMT) points out that

analogical mapping is created by establishing a structural

alignment of the relationships between two sets of con-

cepts. The closer the structural match is, the more optimal

the inferred analogy is. Surface features, i.e., properties of

concepts that are not included in the hierarchical relation-

ship structures, play little role in determining the analogy.

Figure 1: The analogy between the solar system and the

Rutherford model (Figure taken from (Gentner, 1983).)

The Structure-Mapping Engine (SME) is a computation-

al system that implements SMT (Falkenhainer, Forbus, and

Gentner, 1989). A typical example produced by SME is the

analogy between the Solar system and the Rutherford

model, as shown in Figure 1. For producing this analogy,

SME compares alternative ways of mapping the two

groups of concepts to each other and determines that max-

imum structural mapping happens when the sun is mapped

to the nucleus, and the planet is mapped to the electron.

This mapping receives maximum support from the struc-

tural mapping of the relationships among these concepts.

In the solar system, the sun and the planet have the "at-

tracts" relationship in both ways, i.e., they both attract each

other. The sun is also "more massive than" and "hotter

than" the planet. The planet "revolves around" the sun.

Similarly, in the Rutherford model, the electron and the

nucleus have "attracts," "more massive than," and "re-

volves around" relationships. Furthermore, the "attracts"

relationship results from both the sun and the planet having

mass and gravity. The same relationship structure exists in

the Rutherford model as well.

Structured Information in Knowledge Graphs

The input data -- the concepts and their relationships --

used by SME are manually designed as entities and

predicates. To enable computer programs to generate

analogies automatically, we also need to enable automation

in generating input data. Knowledge graphs are composed

of concepts connected by their relationships. They are

structured data organized similarly to the manually curated

data used by SME, and therefore provide a good basis for

analogy generation algorithms.

Knowledge graphs cannot be directly used for

computing structural mappings as in SME. Figure 2

provides an example knowledge graph crawled from

Wikipedia. The main concepts from the solar system and

Rutherford model analogy – sun, plant, electron, and

nucleus were used as the seed nodes, and only concepts

within two steps away from the seed nodes were included.

The differences between Figures 1 and 2 are pretty

obvious. The manually curated relationship structures only

contain a limited set of entities. However, there are no

natural boundaries for the groups of concepts when using

knowledge graphs. This makes directly aligning two

groups of concepts not feasible. Furthermore, the

knowledge graph gathered from Wikipedia is less

connected than the manually curated relationship

structures. Typically, there is just one relationship between

each pair of connected concepts. In contrast, as seen in

Figure 1, there are often many relationships between a pair

of concepts. In fact, these relationships are important

supporting evidence when aligning the solar system and

the Rutherford model.

Figure 2: Sun and related concepts in Wikipedia.

Make Analogies using Knowledge Graph

This work is inspired by and based on (Si & Carlson,

2017), which uses information from DBpedia as the base

for generating analogies. Si and Carlson’s approach was

inspired by the Structural Mapping Theory (SMT). The

algorithm finds analogous relationship pairs, and the anal-

ogies are composed of a pair of mapping concepts and a set

of supporting evidence, i.e., analogous relationship pairs.

An essential step in the algorithm is inferring pairs of

analogous relationships. The algorithm computes how

analogous two relationships are based on the topological

similarity of their adjacent concepts and relationships. Si

and Carlson compute four sets of relationship differences

between the linked-from concept and the targeting concept:

1. Gain – what relationships are associated with the

targeting concept but not the linked-from concept;

2. Loss – what relationships are associated with the

linked-from concept but not the targeting concept;

3. Same – what relationships are associated with both

the targeting concept and the linked-from concept;

4. Diff – the combination of the gain and the loss sets.

The differences among these sets are used to generate a

unique index (embedding) for each relationship (Si & Carl-

son, 2017).

This relationship embedding serves as the basis for con-

structing analogies. If two concepts have many relation-

ships that are analogous/similar to each other, the two con-

cepts are regarded as being analogous. For example, Punk

Rock is analogous to LPC (a programming language) be-

cause “the stylistic origin of Punk Rock is Garage Rock,

Glam Rock, and Surf Music, just like LPC is influenced by

Lisp, Perl, and C,” and “Punk Rock is a music fusion genre

of Celtic Punk, just like LPC influences Pike.” Here, the

analogy between Punk Rock and LPC is supported by

mapping the “stylistic origin” of a music genre to the “in-

fluenced by” relationship among programming languages,

and the “fusion genre” relationship among music genres to

the “influence” relationship among programming lan-

guages. This approach mimics how structural mapping

works in a weaker form.

Approach

This work explores an alternative approach for computing

the embedding of relationships. Because the word2vec

algorithm has been widely used for creating word embed-

ding (Mikolov et al., 2013), we propose an algorithm that

uses word2vec to compute the relationships embedding.

Our proposed approach contains three main steps, as il-

lustrated in Figure 3. It first constructs a knowledge graph

by crawling information from Wikidata. We use Wikidata

instead of DBpedia to construct the knowledge graph.

For computing word embedding using word2vec, the

words must appear in the input data many times. Only then

the word2vec algorithm can learn their relationships with

nearby words. Unfortunately, most concepts in Wikidata

are unique, i.e., there is only one entry for each concept.

Therefore, the word2vec algorithm cannot be directly ap-

plied. On the other hand, the relationships in Wikidata are

rarely unique. E.g., “Give Name” is a popular relationship

that connects many pairs of concepts. Therefore, in the

second step, we construct a reversed knowledge graph

where the relationships are nodes and the concepts are

edges, as shown in Figure 4. And finally, we compute the

embedding for the relationships using this reversed

knowledge graph.

Construct Knowledge Graph

For getting information from Wikidata, we used a web

crawler, which stores concepts and their relationships in a

network structure. For creating the knowledge graph we

used in this work, we used 18 seed words, and did a

breadth-first search around each of them until at least 1000

nodes had been reached. Then we merged all the data col-

lected. The resulting knowledge graph contains 219691

entities and 1540 unique relationships.

Figure 3: Workflow.

For computing the embedding for the relationship, we

built a reversed graph where the relationships are nodes,

and the entities are links. For example, in Wikidata,

“member of political party” is the relationship between

“Armen Sarkissian” and “independent politician.” In this

reversed graph, relationships such as “member of political

party” and “given name” become nodes, and the entities

become edges. We then apply the node2vec algorithm on

this graph to obtain the embedding for the relationships

(Grover & Leskovec, 2016).

Figure 4: Reversed Knowledge Graph.

Node2vec

Node2vec is an embedding algorithm developed by Grover

& Leskovec (2016). This algorithm can convert nodes in a

graph into numerical representations, i.e., embedding.

Node2vec works in two steps. The first step uses a second-

order random walk on the graph to generate transaction

samples. These samples are equivalent to the text input to

word2vec, and the second step uses word2vec to compute

the embedding. Take Figure 4, for example; the random

walk algorithm would visit each note multiple times, and

randomly follow a link to move to the next node each time.

After sampling, the graph is essentially converted to a list

of linear transactions, each of them contains a list of nodes,

e.g. [given name, member of political party …]. These

linear transactions become the corpus for word2vec.

Example Output

Like regular word embedding, the relationship embedding

computed in this work allows us to calculate the distance

between two relationships and find the most similar rela-

tionships. We also implemented the algorithm from (Si &

Carlson, 2017) and compared these two embeddings.

Both embeddings are not perfect but can provide some

insightful results. Moreover, their results read more like

figurative language than a simple word association. For

example, Tables 1 and 2 list the top 10 closest relationships

to two relationships we used for testing. The closest ones

are on the top.

Table 1: Results for “member of political party”.

(Si & Carlson, 2017) Node2Vec
Work location Family name

Military rank

Position held

Military branch

Sibling

Spouse

Moth

Native language

Educated at

Sex or gender

Place of birth

Place of death

Language used

Official Language

Residence

Place of burial

Educated at

Parent astronomical body

Country of citizenship

Table 2: Results for “architectural style”.

(Si & Carlson, 2017) Node2Vec
Origin of the watercourse Architect

Heritage designation located on

street

Drainage basin

Material used

Legal form

Located on terrain feature

Located in time zone mouth of

the watercourse

Contain settlement

Director/Manager

Material used

Occupant

Lyrics by

Anthem

Legislative body

Legal form

Currency

Industry

In Table 1, both embeddings suggest “Educated at”

could be an analogy to “member of political party.” And in

Table 2, both suggest “Legal form” could be an analogy to

“architectural style.” We think these suggestions are pretty

creative.

Note that compared to WikiData itself, our crawled da-

taset is tiny and sparse. Therefore, these suggested rela-

tionships are not necessarily the best analogies from peo-

ple’s points of view. Nevertheless, most proposed relation-

ships convey meaning more or less similar to the source

concept.

Discussion and Future Work

We aim to create analogies where the relationship mapping

itself is analogous. Though the process of computing how

analogous two relationships are to each other leverages the

idea of computing structural similarity, we suspect the re-

sults presented here are different from results produced by

SME or other systems that infer analogies solely based on

structural similarities. Using SME, the symbolic meanings

of the relationships are discarded, and only the structural

alignment between the two groups of concepts is consid-

ered. Two relationships both named involving do not make

them more analogous to each other than two relationships

with different names. In our results, the meanings of the

relationships are undoubtedly important. We plan to ex-

plore this phenomenon and exam further to what degree

the embedding we computed is independent of the relation-

ships' symbolic meanings in the future.

The current work finds analogous relationships, but does

not use them to find analogous concepts yet. We will ex-

plore this direction in future work. We are also interested

in computing the relationship embedding using a larger

knowledge graph and seeing whether that improves the

results.

Author Contributions

M Si ideated and wrote the paper alone.

Acknowledgements

The author wants to thank the anonymous reviewers for

their thoughtful comments and suggestions.

References

Bartha, Paul: Analogy and analogical reasoning. In: The

Stanford Encyclopedia of Philosophy. Spring 2019 ed.

Edward N. Zalta (ed.), forthcoming URL =

https://plato.stanford.edu/archives/spr2019/entries/reasonin

g-analogy/

Falkenhainer, B., Forbus, K., Gentner, D.: The structure-

mapping engine: Algorithm and examples. Artificial Intel-

ligence, 41, 1–63. (1989).

Forbus, K., Oblinger, D.: Making SME greedy and prag-

matic. In: Proceedings of the 12th Annual Conference of

the Cognitive Science Society, 61–68. (1990)

Gentner, D., & Markman, A. B.: Structure mapping in

analogy and similarity. American Psychologist, 52, 45-56.

(1997).

Gentner, D., Smith, L.: Analogical reasoning. In V. Rama-

chandran (Ed.), Encyclopedia of human behavior. 2nd ed.

pp. 130–136. Elsevier; Oxford, UK. (2012).

Gentner, D.: Structure-mapping: A theoretical framework

for analogy. Cognitive Science, 7 (2), 155–170. (1983).

Grover, A., & Leskovec, J. (2016, August). node2vec:

Scalable feature learning for networks. In Proceedings of

the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 855-864).

Kubose, T. T, Holyoak, K. J, Hummel, J. E.: The role of

textual coherence in incremental analogical mapping.

Journal of memory and language, 47(3), 407-435. (2002).

Larkey, L. B., Love, B. C. CAB: Connectionist analogy

builder. Cognitive Science, 27(5), 781-794. (2003).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., &

Dean, J. (2013). Distributed representations of words and

phrases and their compositionality. In Advances in neural

information processing systems (pp. 3111-3119).

Nissim, M., van Noord, R., & van der Goot, R. (2020). Fair

is better than sensational: Man is to doctor as woman is to

doctor. Computational Linguistics, 46(2), 487-497.

Si, M., Carlson, C.: A Data-Driven Approach for Making

Analogies. In: Proc. Cognitive Science Society Confer-

ence, pp. 3155-3160. (2017).

