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Abstract 

In recent years, natural language processing techniques 
have made impressive improvements in many tasks. 
However, their ability to make analogies is still mini-
mal. This is partially due to the underlying representa-
tion of words and phrases, i.e., the word embedding is 
trained at the word sequence level and not at a concept 
relationship level. This work explores training a word 
embedding specifically for analogy making using 
knowledge graphs. The algorithm computes how analo-
gous two concepts are based on the structural similarity 
of their adjacent concepts and relationships.     

Introduction 

Analogies describe comparative relationships between two 
sets of concepts. The Stanford Encyclopedia of Philosophy 
defines it as "An analogy is a comparison between two 
objects, or systems of objects, that highlights respects in 
which they are thought to be similar" (Bartha, 2019).                   
With the recent release of large language models, such as 
GPT3 and BERT, natural language processing (NLP) algo-
rithms can achieve almost human-level performance in 
some text generation tasks. For example, the AI Dungeon 
game is powered by GPT3 and can automatically generate 
dialogue and interactions with virtual characters as the user 
interact with the game. NLP algorithms have also achieved 
impressive performances in dialogue generation, question-
answering, and even common sense reason tasks.   
   However, the current state-of-the-art NLP techniques still 
only have rudimental abilities in making analogies. A fa-
mous example of analogy-making came from Mikolov et 
al.'s work when the word2vec technique was invented for 
training word embedding (2013). Their work shows words 
that have similar meanings also have similar representa-
tions in the embedding space. Using vector operation, sub-
tracting the embedding of the word Man from the embed-
ding of King, and then adding the embedding of Women 
results in the embedding of Queen. I.e., the famous analo-
gy example of: 

King-Man+Women = Queen. 

 

 Another example of analogies formed based on word 
embedding is about locations. For example, the pair (Albu-
querque, Albuquerque_Journal) is analogous to (Baltimore, 
Baltimore_Sun). While these analogies show that the 
trained word embedding is meaningful, they are not quite 
the same as typical analogies created by people. Further, 
more recent research on validating the analogies generated 
by word embedding found the system to be fragile and not 
always able to generate meaningful analogies. Even for the 
original example, “King-man+women” is actually closer to 
the embedding of King, rather than Queen (Nissim et al., 
2019)! 
   The imperfection is not a surprise since the word2vec 
technique trains embedding using plain text, without ex-
ploring the relationships among concepts. In this work, we 
explore creating word embedding using algorithms in-
spired by cognitive theories of analogy, particularly the 
Structure-Mapping Theory (SMT) (Gentner, 1983; Gentner 
& Smith, 2012). SMT emphasizes the structural alignment 
of the relationships between two sets of concepts when 
forming analogies. We explore using structured content 
from knowledge graphs as input. The example outputs 
from our system show that the new embedding can create 
interesting and creative analogies among concepts. 

Related Work 

We review three types of related work: the cognitive theo-

ries about analogy-making, the knowledge graphs extract-

ed from Wikidata, and a knowledge graph based analogy-

making system. 

Analogy-Making 

How people form analogies has been studied extensively in 

cognitive science (Gentner, 1983; Kubose, Holyoak, and 

Hummel, 2002; Larkey and Love. 2003; Gentner and 

Smith, 2012). It is generally believed that analogy-making 

involves mapping concept groups with hierarchical struc-

tures from different domains.   

The Structure-Mapping Theory (SMT) points out that 

analogical mapping is created by establishing a structural 

alignment of the relationships between two sets of con-



cepts. The closer the structural match is, the more optimal 

the inferred analogy is. Surface features, i.e., properties of 

concepts that are not included in the hierarchical relation-

ship structures, play little role in determining the analogy.   

 

 

Figure 1: The analogy between the solar system and the 

Rutherford model (Figure taken from (Gentner, 1983).) 

 

The Structure-Mapping Engine (SME) is a computation-

al system that implements SMT (Falkenhainer, Forbus, and 

Gentner, 1989). A typical example produced by SME is the 

analogy between the Solar system and the Rutherford 

model, as shown in Figure 1. For producing this analogy, 

SME compares alternative ways of mapping the two 

groups of concepts to each other and determines that max-

imum structural mapping happens when the sun is mapped 

to the nucleus, and the planet is mapped to the electron. 

This mapping receives maximum support from the struc-

tural mapping of the relationships among these concepts. 

In the solar system, the sun and the planet have the "at-

tracts" relationship in both ways, i.e., they both attract each 

other. The sun is also "more massive than" and "hotter 

than" the planet. The planet "revolves around" the sun. 

Similarly, in the Rutherford model, the electron and the 

nucleus have "attracts," "more massive than," and "re-

volves around" relationships. Furthermore, the "attracts" 

relationship results from both the sun and the planet having 

mass and gravity. The same relationship structure exists in 

the Rutherford model as well. 

Structured Information in Knowledge Graphs 

The input data -- the concepts and their relationships -- 

used by SME are manually designed as entities and 

predicates. To enable computer programs to generate 

analogies automatically, we also need to enable automation 

in generating input data. Knowledge graphs are composed 

of concepts connected by their relationships. They are 

structured data organized similarly to the manually curated 

data used by SME,  and therefore provide a good basis for 

analogy generation algorithms.  

Knowledge graphs cannot be directly used for 

computing structural mappings as in SME. Figure 2 

provides an example knowledge graph crawled from 

Wikipedia. The main concepts from the solar system and 

Rutherford model analogy – sun, plant, electron, and 

nucleus were used as the seed nodes, and only concepts 

within two steps away from the seed nodes were included. 

The differences between Figures 1 and 2 are pretty 

obvious. The manually curated relationship structures only 

contain a limited set of entities. However, there are no 

natural boundaries for the groups of concepts when using 

knowledge graphs. This makes directly aligning two 

groups of concepts not feasible. Furthermore, the 

knowledge graph gathered from Wikipedia is less 

connected than the manually curated relationship 

structures. Typically, there is just one relationship between 

each pair of connected concepts. In contrast, as seen in 

Figure 1, there are often many relationships between a pair 

of concepts. In fact, these relationships are important 

supporting evidence when aligning the solar system and 

the Rutherford model.   

 

Figure 2: Sun and related concepts in Wikipedia. 
 

Make Analogies using Knowledge Graph 

This work is inspired by and based on (Si & Carlson, 

2017), which uses information from DBpedia as the base 

for generating analogies. Si and Carlson’s approach was 

inspired by the Structural Mapping Theory (SMT). The 

algorithm finds analogous relationship pairs, and the anal-

ogies are composed of a pair of mapping concepts and a set 

of supporting evidence, i.e., analogous relationship pairs.  

An essential step in the algorithm is inferring pairs of 

analogous relationships. The algorithm computes how 

analogous two relationships are based on the topological 

similarity of their adjacent concepts and relationships. Si 



and Carlson compute four sets of relationship differences 

between the linked-from concept and the targeting concept:  

 

1. Gain – what relationships are associated with the 

targeting concept but not the linked-from concept; 

2. Loss – what relationships are associated with the 

linked-from concept but not the targeting concept; 

3. Same – what relationships are associated with both 

the targeting concept and the linked-from concept; 

4. Diff – the combination of the gain and the loss sets. 

 

The differences among these sets are used to generate a 

unique index (embedding) for each relationship (Si & Carl-

son, 2017).  

This relationship embedding serves as the basis for con-

structing analogies. If two concepts have many relation-

ships that are analogous/similar to each other, the two con-

cepts are regarded as being analogous. For example, Punk 

Rock is analogous to LPC (a programming language) be-

cause “the stylistic origin of Punk Rock is Garage Rock, 

Glam Rock, and Surf Music, just like LPC is influenced by 

Lisp, Perl, and C,” and “Punk Rock is a music fusion genre 

of Celtic Punk, just like LPC influences Pike.” Here, the 

analogy between Punk Rock and LPC is supported by 

mapping the “stylistic origin” of a music genre to the “in-

fluenced by” relationship among programming languages, 

and the “fusion genre” relationship among music genres to 

the “influence” relationship among programming lan-

guages. This approach mimics how structural mapping 

works in a weaker form. 

 

Approach 

This work explores an alternative approach for computing 

the embedding of relationships. Because the word2vec 

algorithm has been widely used for creating word embed-

ding (Mikolov et al., 2013), we propose an algorithm that 

uses word2vec to compute the relationships embedding.  

Our proposed approach contains three main steps, as il-

lustrated in Figure 3. It first constructs a knowledge graph 

by crawling information from Wikidata. We use Wikidata 

instead of DBpedia to construct the knowledge graph. 

For computing word embedding using word2vec, the 

words must appear in the input data many times. Only then 

the word2vec algorithm can learn their relationships with 

nearby words. Unfortunately, most concepts in Wikidata 

are unique, i.e., there is only one entry for each concept. 

Therefore, the word2vec algorithm cannot be directly ap-

plied. On the other hand, the relationships in Wikidata are 

rarely unique. E.g., “Give Name” is a popular relationship 

that connects many pairs of concepts. Therefore, in the 

second step, we construct a reversed knowledge graph 

where the relationships are nodes and the concepts are 

edges, as shown in Figure 4. And finally, we compute the 

embedding for the relationships using this reversed 

knowledge graph. 

Construct Knowledge Graph 

For getting information from Wikidata, we used a web 

crawler, which stores concepts and their relationships in a 

network structure. For creating the knowledge graph we 

used in this work, we used 18 seed words, and did a 

breadth-first search around each of them until at least 1000 

nodes had been reached. Then we merged all the data col-

lected. The resulting knowledge graph contains 219691 

entities and 1540 unique relationships. 

 

 
Figure 3: Workflow. 

 

For computing the embedding for the relationship, we 

built a reversed graph where the relationships are nodes, 

and the entities are links. For example, in Wikidata, 

“member of political party” is the relationship between 

“Armen Sarkissian” and “independent politician.” In this 

reversed graph, relationships such as “member of political 

party” and “given name” become nodes, and the entities 

become edges. We then apply the node2vec algorithm on 

this graph to obtain the embedding for the relationships 

(Grover & Leskovec, 2016). 

 

 

 
Figure 4: Reversed Knowledge Graph. 

 

Node2vec 

Node2vec is an embedding algorithm developed by Grover 

& Leskovec (2016). This algorithm can convert nodes in a 

graph into numerical representations, i.e., embedding. 

Node2vec works in two steps. The first step uses a second-

order random walk on the graph to generate transaction 

samples. These samples are equivalent to the text input to 



word2vec, and the second step uses word2vec to compute 

the embedding. Take Figure 4, for example; the random 

walk algorithm would visit each note multiple times, and 

randomly follow a link to move to the next node each time. 

After sampling, the graph is essentially converted to a list 

of linear transactions, each of them contains a list of nodes, 

e.g. [given name, member of political party …]. These 

linear transactions become the corpus for word2vec. 

Example Output 

Like regular word embedding, the relationship embedding 

computed in this work allows us to calculate the distance 

between two relationships and find the most similar rela-

tionships. We also implemented the algorithm from (Si & 

Carlson, 2017) and compared these two embeddings.  

Both embeddings are not perfect but can provide some 

insightful results. Moreover, their results read more like 

figurative language than a simple word association. For 

example, Tables 1 and 2 list the top 10 closest relationships 

to two relationships we used for testing. The closest ones 

are on the top.  

 
Table 1: Results for “member of political party”. 

(Si & Carlson, 2017) Node2Vec 
Work location Family name 

Military rank 

Position held 

Military branch 

Sibling 

Spouse 

Moth 

Native language 

Educated at 

Sex or gender 

Place of birth 

Place of death 

Language used 

Official Language 

Residence 

Place of burial 

Educated at 

Parent astronomical body 

Country of citizenship 

 

 

Table 2: Results for “architectural style”. 

(Si & Carlson, 2017) Node2Vec 
Origin of the watercourse Architect 

Heritage designation located on 

street 

Drainage basin 

Material used 

Legal form 

Located on terrain feature 

Located in time zone mouth of 

the watercourse 

Contain settlement 

Director/Manager 

Material used 

Occupant 

Lyrics by 

Anthem 

Legislative body 

Legal form 

Currency 

Industry 

 

In Table 1, both embeddings suggest “Educated at” 

could be an analogy to “member of political party.” And in 

Table 2, both suggest “Legal form” could be an analogy to 

“architectural style.” We think these suggestions are pretty 

creative. 

Note that compared to WikiData itself, our crawled da-

taset is tiny and sparse. Therefore, these suggested rela-

tionships are not necessarily the best analogies from peo-

ple’s points of view. Nevertheless, most proposed relation-

ships convey meaning more or less similar to the source 

concept. 

Discussion and Future Work 

We aim to create analogies where the relationship mapping 

itself is analogous. Though the process of computing how 

analogous two relationships are to each other leverages the 

idea of computing structural similarity, we suspect the re-

sults presented here are different from results produced by 

SME or other systems that infer analogies solely based on 

structural similarities. Using SME, the symbolic meanings 

of the relationships are discarded, and only the structural 

alignment between the two groups of concepts is consid-

ered. Two relationships both named involving do not make 

them more analogous to each other than two relationships 

with different names. In our results, the meanings of the 

relationships are undoubtedly important. We plan to ex-

plore this phenomenon and exam further to what degree 

the embedding we computed is independent of the relation-

ships' symbolic meanings in the future.  

The current work finds analogous relationships, but does 

not use them to find analogous concepts yet. We will ex-

plore this direction in future work. We are also interested 

in computing the relationship embedding using a larger 

knowledge graph and seeing whether that improves the 

results.   
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