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Abstract

Music is a phenomenon that can be represented in
various data modalities, such as MIDI, musical score,
graphic score and audio. Connecting these modalities
in an informative and intelligent way is important, es-
pecially for multi-modal music generation systems. In
this study, we present a novel self-supervised represen-
tation learning approach that can be applied to finding a
mapping between audio and graphic scores in a gen-
erative context. Our approach consists of two varia-
tional autoencoder-based generators and a contrastive
learning mechanism. We demonstrate this technique us-
ing György Ligeti’s Artikulation, which is an electronic
music composition with a graphic score. In initial ex-
periments, given manually designed graphic score ex-
cerpts in the style of Artikulation, we generated good
quality audio correspondents with our model. We fur-
ther suggest some ways of improving our approach and
discuss some future directions for our work.

Introduction
Music can be represented in audio and symbolic (e.g. musi-
cal score, MIDI, or graphic score) domains. Commonly in
generative music studies, just one of these data modalities is
targeted and the generative system is specifically designed
for the selected domain (Oord et al. 2016) (Payne 2019).
While there are studies that focus on connecting some of
these modalities (Wang and Yang 2019), the full potential
of multi-modal representations has not been fully explored
in generative contexts yet. This is especially true for a wide
range of sonic and timbral options and various music repre-
sentations. Connecting these different music representations
is beneficial in an end-to-end multi-modal music generation
pipeline, where the generation starts in the symbolic music
domain, and then symbolic material is converted into audio
via a mapping between symbolic and audio representations.
In this multi-modal setting, we benefit from the advantages
of both worlds, where the symbolic representation enables
us to control the generation process in terms of some high-
level musical attributes such as tonality, harmony and rhyth-
mic complexity, and provides us with a confined format;
while the audio representation allows us to introduce ex-
pressive, textural and complex elements in a sonic domain,
where we appreciate music as people.

Figure 1: Legend for sonic objects in the graphic score of
György Ligeti’s Artikulation.

It has become clear recently that self-supervised represen-
tation learning can be highly effective, as highlighted by the
success of the CLIP model (Radford et al. 2021) for map-
ping both images and text into the same latent space. Such
contrastive learning can then be used in generative meth-
ods, for instance with CLIP being used to guide GAN im-
age generation, such as with BigGAN (Brock, Donahue, and
Simonyan 2018) or VQGAN (Esser, Rombach, and Om-
mer 2021). Inspired by these successes, we believe self-
supervised representation learning approaches for connect-
ing symbolic music and audio domains could enhance the
creative potential of generative music models.

In the matter of symbolic music representations, tradi-
tional musical scores might be limited in terms of expressing
the actual music itself, specifically in scenarios such as elec-
troacoustic and acousmatic music. In contemporary classi-
cal music (Spencer 2015), graphic scores act as alternative
music notations, and allow more expressive performance de-
tails to be represented, particularly for subtle and continuous



Figure 2: Graphic score fragment from Ligeti’s Artikulation.

changes. Such scores engage performers to follow abstract
visual mappings, which can be attractive to manipulate for
inexperienced practitioners, e.g., for those without formal
training on traditional Western scores. Graphic scores are
not universal, however, and their organisation depends a lot
on the unique mappings given in a legend, as in Figure 1;
deciphering graphic scores is a challenging task. One well-
known graphic score is for Artikulation by György Ligeti,
designed by Rainer Wehinger, who first listened to the piece
and then constructed coherent abstractions to illustrate the
musical entities presented. An example of this score is de-
picted in Figure 2. In the organisation of this graphic score,
the horizontal axis represents time, the vertical axis repre-
sents pitch and coloured shapes represent unique sonic enti-
ties that are used in the piece as themes and musical ideas.

In this study, we present a self-supervised representation
learning framework to connect audio and graphic score do-
mains, and demonstrate a creative composition use case that
allows practitioners to compose in the style of Artikulation
utilising its visual and sonic universe. Without such an ap-
proach, this task might not be possible, as it is challenging to
separate and re-synthesize the complex textures in Artikula-
tion by listening to the piece and looking at the graphic score
and its abstract legend. Practically, in our use case, our sys-
tem allows us to generate new audio segments, which are
conditioned on manually created graphic score excerpts that
are not part of the original graphic score, but in its graphical
style. Demonstrating this feature, we exhibit some manu-
ally created graphic score fragments and their synthesised
correspondents within the aesthetics of the piece. To con-
clude, we address potential ways of improving this system
and some future directions for this study.

Data Processing
The original graphic score of Artikulation is presented in
fragments of 5 to 10 seconds duration. First, we cropped
these fragments and manually processed them to get rid of
the time axis lines and canvas contours, then merged these
processed fragments into a single long image file constitut-
ing the whole graphic score for the piece. Then, we extracted
graphic score excerpts using 2 seconds of windows, where
the stride amount is 1 second. As the piece is 227 seconds
long, this excerpt extraction process gave us 226 windows
in total. Then, we further processed these extracted images
to restrict their palettes to 10 discrete colours to make the
learning procedure easier. One caveat is that this proce-

dure gets rid of the grey shaded regions in the original score,
which represent the effect of reverb. In our future work, we
will further experiment with graphic score excerpts that have
such reverb regions.

We recorded the audio file of Artikulation while streaming
the piece online from YouTube at 44.1kHz sampling rate and
applied a similar data processing where 2 seconds of audio
fragments were extracted, again with the stride amount of 1
second. These audio fragments were paired with their corre-
sponding graphic score excerpts. Then, we used constant-q
transform (CQT) (Schörkhuber and Klapuri 2010), which is
a wavelet-based time-frequency transform, to generate spec-
trograms for each audio file, to be used in the learning pro-
cess.

Model Architecture
Our architecture consists of three main sub-parts, which are
an audio pipeline, a graphic score pipeline, and a contrastive
learning block for self-supervised representation learning, as
illustrated in Figure 3. Both the audio and graphic score
pipelines utilise a variational autoencoder (VAE) architec-
ture (Kingma and Welling 2013) and our contrastive learn-
ing mechanism is based on the cosine similarity between au-
dio/graphic score latent representations using a duplet loss.

In the audio pipeline, we have an encoder-decoder ar-
chitecture, which is taken from (Tatar, Bisig, and Pasquier
2021) and the audio data is presented to the network in CQT
spectrogram format (Schörkhuber and Klapuri 2010). The
encoder part has two consecutive 4096-dimensional dense
layers that are followed by two parallel 4096-dimensional
dense layers embedding in two 512-dimensional spaces,
which are for the mean and the variance of variational sam-
pling to a 512-dimensional space. The decoder part has
three dense layers with 4096 dimensions. During the train-
ing procedure, we use the Adam optimiser (Kingma and Ba
2014) where the learning rate is 0.0001, β1 is 0.9 and β2 is
0.999. As per the typical configuration of VAEs, the loss
function of this encoder-decoder architecture has two parts,
namely the reconstruction loss and regularisation loss, and a
mean squared error loss function is used for the reconstruc-
tion part, where KL-divergence (Kullback and Leibler 1951)
is used for the regularisation. In this pipeline, our decoder
generates CQT spectrograms, which are then converted into
audio files using fast Grifin-Lim phase reconstruction as in
(Tatar, Bisig, and Pasquier 2021).



Figure 3: Architecture schematic for the two VAEs and contrastive learning block.

The graphic score pipeline also uses an encoder-decoder
architecture, which directly takes and generates RGB im-
ages on both sides. The encoder here first flattens the RGB
image, then passes it through a 2048-dimensional dense
layer, which is followed by two parallel 2048-dimensional
dense layers. The embedding space has 512 dimensions sim-
ilar to the audio pipeline. The decoder part consists of two
2048-dimensional dense layers, which are followed by a de-
flattening procedure, which converts single stream decoder
outputs into three channel RGB images. An adam optimiser
is used as in the audio pipeline with the same parameters.
Similar to the case above, we use mean squared error and
KL-divergence for reconstruction and regularisation losses,
respectively.

The contrastive learning block aims to make the corre-
sponding embeddings of the graphic score and audio pairs
as close to each other as possible, using cosine similarity be-
tween their mean and variance latent vectors in variational
autoencoders. The training procedure utilises a multi-task
optimisation process, where we train the VAE architectures
for reconstruction and the contrastive learning block for self-
supervised representation learning using a unified loss, si-
multaneously. Since we have two main objectives, which
are the reconstruction quality of VAEs and creating a struc-
tured embedding space, we weight our VAE and contrastive
losses. Based on our initial experiments, which suggest that
audio reconstruction might be a more challenging task in
this setting and require more attention, VAE losses for the
graphic scores and audio are weighted as 10% and 90% with
respect to each other. We also downscale the cosine similar-
ity loss between 512-dimensional latent vectors by a factor
of 50, in order to make it aligned with the VAE losses and
have 0,0x decimal numbers for each of our losses at the be-
ginning of our training procedure. We trained our complete
model for 200 epochs with a batch size of 32.

We use this architecture in a multi-modal generative set-
ting, where a user-designed graphic score is encoded into the
embedding space and its latent vector is decoded using the
audio decoder. Graphic score and audio embeddings share
the same latent space due to the contrastive learning strategy,

thus, the latent vector of a given graphic score can be inter-
preted keeping the semantic connections between two data
modalities. This shared embedding space approach has been
successfully demonstrated in the CLIP model (Radford et al.
2021), which uses text and image data, but CLIP requires
a separate generator to create artefacts. In our approach,
we combine the self-supervised representation learning and
generation tasks in the same model and training procedure,
and utilise this technique with graphic scores and audio,
which allow us to create a generative universe in the style
of a piece or a composer.

Experiments
To demonstrate the reconstruction capability of our model,
we use four audio and four graphic score excerpts that are all
from Artikulation, originally. We reconstruct these excerpts
using our audio and graphic score pipelines that are trained
separately without the contrastive learning block. We also
reconstruct these original excerpts using our trained com-
plete architecture. All of the reconstructed graphic scores in-
cluding the originals are exhibited online (Figure 5, 6 and 7)1

and all the reconstructed and original audio files (Original 1-
4) are presented on a SoundCloud page2. For the separately
trained pipelines, as demonstrated with the figures and audio
files, reconstruction quality is high. For our trained complete
architecture, although the reconstruction quality slightly de-
creases compared to the separately trained pipelines, which
is expected due to introducing the contrastive learning block,
reconstructed graphic scores and audio files exhibit intelligi-
ble graphical objects and good quality sonic entities, respec-
tively.

In order to test our trained architecture in a multi-modal
generation scenario, we manually designed four different
graphic score fragments in the style of Artikulation, which
are not exactly the same as any of the original graphic score
fragments. This approach demonstrates the creative poten-
tial of the system, where creators can compose their own

1https://bit.ly/37A1CgV
2https://soundcloud.com/user-330551093/sets/audio-sym-ssrl



Figure 4: Four manually designed graphic score excerpts.

musical pieces by designing graphical scores in the universe
of Artikulation. Our expectation is that combined models
are able to generate an audio excerpt that sonically reflects
the material presented in the given graphic score fragment in
alignment with the characteristics of Artikulation. Our de-
signed graphic scores are presented in Figure 4 and we dis-
play their reconstructed versions generated using our com-
plete model via the same link1 (Figure 8). Even though
the reconstructed versions are lower in quality compared
to the originals, they are successful in terms of represent-
ing the graphical content, shapes and colours. We exhibit
the multi-modally generated audio files of four manually
designed graphic score excerpts on the same SoundCloud
page2. When we analyse these audio files, even though they
are not considered to be good quality regarding clear sonic
textures compared to Artikulation, the generated audio files
still exhibit the textures of the piece and are reflective in
terms of the visual composition.

When we evaluate these audio files in more detail, in the
beginning of generated audio for graphic score (a), we have
a sonic element with rising pitch similar to the curved or-
ange shape on its graphic score. Generated audio for excerpt
(b) demonstrates a similar rising pitch object, but lower in
pitch compared to excerpt (a), which can be associated with
the comb-shaped curvy figure on the lower side of the ver-
tical axis, which corresponds to musical pitch. In the audio
excerpt for graphic score (d), we have a unique and strong
sonic statement, which might be reflected in the horizontal
cone-like black figures. A similar sonic entity is repeated on
the second half of this audio excerpt, but differently, which
might correspond to the second set of black figures. The
difference can be due to having horizontal green and brown
shapes happening at the same time. In our future work, we
plan to quantitatively analyse generated audio files using au-
dio similarity metrics, to better evaluate the reflectiveness of
their given graphic scores and the style of Artikulation in
general.

Conclusions
In this study, we present a novel framework that connects
audio and graphic score domains using self-supervised rep-
resentation learning, which can be extended to other music

data modalities. We demonstrate its use case in a scenario
where we utilise Ligeti’s Artikulation represented in both a
graphic score and audio forms, and also exhibit the results
of our initial experiments with the system, which generates
music in audio format in the style of Artikulation based on
unseen but stylistically similar graphic score excerpts pre-
senting a creative use case of this generative system in the
context of human-machine co-creation. Even though the re-
sults are not perfect, we believe that this approach has valu-
able potential, especially to be utilised in multi-modal mu-
sic generation systems. Also, due to the artistic form of
this graphical music representation, we think that sonify-
ing visuals in a defined sonic and visual space is valuable
from a computational creativity perspective, as it might al-
low to further pieces with rich textures referencing a variety
of visual abstractions and reflecting complex styles of com-
posers.

In our future work, we plan to improve the quality of the
generated material as well as the generalisation capability
of the model by further experimenting with the architecture
and applying data augmentation both in visual and audio do-
mains. Also, besides our own subjective evaluation, we will
introduce numerical metrics which can evaluate the close-
ness of generated audio material to given graphic scores in
the context of Artikulation. To improve the match between
a given graphic score excerpt and its corresponding gener-
ated audio, we plan to experiment with introducing various
inductive biases to the model, which might ease the learn-
ing process and allow the model to learn a mapping be-
tween the graphic score and audio more effectively. Be-
sides Artikulation, we will experiment with other contem-
porary classical music pieces with graphic scores using our
approach. Additionally, we are interested in using this tech-
nique in other combinations of data modalities as well, such
as audio-MIDI. Moreover, we would like to build an online
tool based on this system, which can generate music using
graphic score excerpts specifically created by the users. Fur-
thermore, we plan to utilise this system in a scenario where
an audio excerpt in the style of Artikulation is provided and
the model is expected to generate its corresponding graphic
score (i.e., the reverse direction to the inference workflow
discussed here), which enhances the creative potential of this
approach.
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