
Implementation of an Anti-Plagiarism Constraint Model
for Sequence Generation Systems

Janita Aamir, Paul Bodily
Computer Science Department

Idaho State University
Pocatello, ID 83209 USA

aamijani@isu.edu, bodipaul@isu.edu

Abstract

Sequence generation models are heavily used in com-
putational creative systems in natural language, music
composition, and other creative domains. One of the
biggest challenges that come with sequence generation
models is that, because they learn from existing
resources, products from these models often exhibit
varying degrees of plagiarism. Papadopoulos, Roy,
and Pachet (2014) have, in previous work, presented
a max-order Markov automaton to avoid plagiarism
in generative sequence models. However, the original
publication presented only the algorithmic pseudocode
without providing a working implementation. In this
replication study, we present a working implementation
of the max-order Markov automaton designed to be
integrated into sequence generation models for avoid-
ing plagiarism. We use our working implementation
to generate new results that verify the efficacy of this
approach to avoiding plagiarism. We illustrate how
the max-order Markov automaton can be integrated
effectively to avoid plagiarism in CC systems using a
lyrical music composition system, Pop*, as an example.
Source code:
https://github.com/aamijani/
Anti-Plagiarism_Constraint_Model

Introduction
Research into the development of generative sequence mod-
els have been foundation to much of the advancements in
computational creativity (CC) across the domains of music
and natural language. As these computationally creative sys-
tems gain more attention from the wider population, it be-
comes crucial for these systems to be aware of and avoid pla-
giarism (i.e., generation of subsequences longer than some
pre-specified length that are copied verbatim from a training
corpus). Most of the computationally creative models learn
from existing resources to produce new outputs. It is there-
fore not uncommon for these models to occasionally exhibit
plagiarism. Besides the obvious negative impacts that pla-
giarism can have on the novelty of generative CC systems,
the problem of plagiarism also raises an ethical dilemma.
The problem of plagiarism in sequence generation models
is an imminent problem that must be addressed if CC is to
broaden its appeal and relevance beyond being merely an
academic pursuit.

Our interest in this study is to replicate the results of
Avoiding Plagiarism in Markov Sequences Generation (Pa-
padopoulos, Roy, and Pachet 2014). The approach presented
in this paper is an effective way to avoid plagiarism. To
our knowledge, no one, including the original author, has
published an open-source implementation of the model that
is available for use. The implementation we present here
has been made publicly available. It is implemented using
generic type variables allowing for new types to be spec-
ified later without need to modify the original codebase.
This facilitates integration with Markov generative systems
in a variety of domains. A strength of Markov generative
systems is that, when combined with constraints (e.g., anti-
plagiarism constraints), they are capable of guaranteeing the
strict enforcement of those constraints.

Much state-of-the-art sequence generation is currently
done both in and out of CC with transformer and LSTM
models. For example, ChordAL (Tan 2019) is a system built
using Bi-LSTMs that composes melodies. DeepJ (Mao,
Shin, and Cottrell 2018) is a generative model that uses
LSTMs and is capable of composing music conditioned on
a specific mixture of composer styles. GLACNet (Kim et
al. 2018) generates visual stories by making use of bi-
directional LSTMs. These models have been found to be
particularly difficult to constrain. One of the more success-
ful attempts has the Anticipation-RNN model (Hadjeres, Pa-
chet, and Nielsen 2017). However, even this model allows
a percentage of generated sequences that do not satisfy con-
straints and thus still does not make guarantees (Hadjeres
and Nielsen 2020).

There have been several Markov generation systems pre-
sented in the CC field. For example, Pop* (Bodily and Ven-
tura 2022) is a music generation Markov model that uses
Twitter as an inspiration to produce music. SMUG (Scirea
et al. 2015) is a system which utilizes Markov chains and
works by using academic papers as an inspiration to com-
pose lyrics and melodies. EMILY (Shihadeh and Ackerman
2020) is a system that aims to create original poems in the
style of renowned poet Emily Dickinson. It makes use of
Markov Chains to produce these poems. LyricJam (Vechto-
mova, Sahu, and Kumar 2021) is another generative system
that uses live instrumental music to generate lyrics. In order
for these and other systems to gain traction beyond merely
academic exercises, they need to avoid plagiarism. The suc-



cess of these and other generative systems depends on their
ability to avoid plagiarism.

The study done by Papadopoulos, Roy, and Pachet is im-
portant because of how many systems there are that pro-
duce music. Moreover, our published model is generalized
and is able to not only avoid plagiarism in music genera-
tion systems, but also other systems like short-story writ-
ing, slogans, etc. In the paper, (2014) introduce a max-order
Markov automaton in the framework of constraints satisfac-
tion (CSP). This automaton ensures that sequences gener-
ated by a Markov model do not contain subsequences longer
than a specified maximum order. Besides its use for avoiding
plagiarism, this model can also be used to detect plagiarism
in existing artifacts (e.g., rhythms, lyrics, etc.).

Replication
The approach outlined by Papadopoulos, Roy, and Pachet
(2014) is broken into two algorithms which we refer to as
Algorithms 1 and 2. We give a high-level overview of these
algorithms below. Our publicly available implementation of
these two algorithms can be readily applied to generate se-
quences of natural language, music, rhythms, etc. In the
following sections, we illustrate results of our working im-
plementation in two natural language domains.

Automaton
The base model underlying both a Markov and a max-order
Markov model is the finite automaton. A finite automaton
A = {Q,Σ, δ, q0, F} is a 5-tuple with elements defined as
follows:

• Q is a finite non-empty set of states;

• Σ, the alphabet, is a finite non-empty set of symbols;

• q0 ∈ Q is the initial state of the automaton;

• δ : Q × Σ → Q is the transition function which maps a
state to its successors for a given symbol;

• F ⊆ Q is the set of final or accepting states.

Markov Automaton (Algorithm 1)
The Markov Property states that only the present state (in-
dependent of how this state was reached) is the determin-
ing factor for the probability of future states. The output
of the Markov automaton algorithm is an automaton that
recognizes all valid Markovian sequences; i.e., sequences
where any two successive N -grams correspond to a (N+1)-
gram of the training corpus (for a Markov order of N ) (Pa-
padopoulos, Roy, and Pachet 2014). A Markov automaton
maintains the property that for each a ∈ Σ there exists a
unique qa ∈ Q and all transitions in δ transitioning via a
map to the state qa.

Fig. 1 shows the 1st-order Markov automaton constructed
using ‘KALIKIMAKA’ as its input dataset. The strength
of this (intermediate) model is that it accepts valid Markov
strings such as ‘MALI’ and ‘LIMA’. The weakeness of this
model is that it also accepts the full original string ‘KA-
LIKIMAKA’. For the purposes of eliminating plagiarism,
we need to modify the automaton to disallow substrings

Figure 1: A Markov automaton for letters. This automaton
accepts all valid Markov strings that can be generated from
a 1st-order Markov model trained on ‘KALIKIMAKA’. All
nodes are accept nodes.

above a defined length that, albeit valid Markov strings, are
also exact substrings of the training set. Thus our Markov
automaton is the input to our second algorithm.

Max-Order Markov Automaton (Algorithm 2)
Algorithm 2 modifies the Markov automaton to remove from
the set of accepted strings any sequence containing a ‘no-
good’ subsequence, i.e., a sequence above some length L
that appears verbatim in the corpus. This is accomplished by
first creating a trie of all no-goods in which all states but the
ones corresponding to a full no-good are accept states. This
guarantees that a no-good cannot be accepted by the model.
Next edges are added for overlapping prefixes. For example,
if ABCD and BCEF are no-goods, then the prefixes ABC
and BCEF share an overlapping prefix (i.e., BC). Adding
edges for overlapping prefixes ensures that the automaton
will not only reject ABCD and BCEF but also that is will
reject ABCEF, as well. Algorithm 2 uses an adaptation of
the Aho and Corasick (1975) string-matching algorithm to
form these cross-prefix transitions.

Fig. 2 shows the resulting max-order Markov automaton
derived from the Markov automaton in Fig. 1 with L = 4.

Easy reuse in new domains
Our implementation of the max-order Markov automaton
uses generics to allow anti-plagiarism constraints to be read-
ily applied to sequence generation models in any domain.
Whereas our previous examples demonstrated the construc-
tion a max-order Markov automaton for constraining se-
quences of letters, we demonstrate here the application of
our implemented model to constrain sequences of words.
Fig. 3 shows the Markov automaton derived from the train-
ing sequence ‘can you can a can as a canner can can a can’.
A expected, the model accepts valid Markov strings such as



Figure 2: A max-order Markov automaton for letters. This
automaton accepts the same set of strings as the automaton
in Fig. 1 minus strings of length ≥ 4 that contain exact sub-
strings of (i.e., plagiarize) the training sequence ‘KALIKI-
MAKA’. All nodes are accept nodes.

Figure 3: A Markov automaton for words. This automaton
accepts all valid Markov sequences that can be generated
from a 1st-order Markov model trained on ‘can you can a
can as a canner can can a can’. All nodes are accept nodes.

‘you can can a canner’ and ‘can a canner can you’ as well as
the full original sequence.

Figure 4: A max-order Markov automaton for words. This
automaton accepts the same set of sentences as the automa-
ton in Fig. 3 minus sentences of ≥ 4 words that contain exact
phrases from (i.e., plagiarize) the training sequence ‘can you
can a can as a canner can can a can’. All nodes are accept
nodes.

Integrated Visualization Feature
Our implementation of the algorithms for constructing max-
order Markov automata includes a feature allowing graphs
of the finite automata to be visualized at each intermedi-
ate algorithmic step and/or in their final form. This enables
users to better see and understand the process of how the
automata are built and to verify the model’s results. The
feature saves graphs in .dot format.

Applications in CC Systems
Our primary motivation for being able to generate max-
order Markov automata is to incorporate anti-plagiarism
constraints into Pop*, a CC lyrical music composition sys-
tem built using constrained Markov models (Bodily and
Ventura 2022). The model uses Markov models to generate
interdependent harmonic, melodic, rhythmic, and lyrical se-
quences. Like several other generative models (cf. (Fargier
and Vilarem 2004; Papadopoulos et al. 2015)), Pop* defines
and integrates constraints in the form of finite automata. For
example, Fig. 5) illustrates a finite automaton constructed
to enforce a rhyming constraint between the first and fourth
words in a four-word lyrical sequence. Automata such as
these are then compiled with Markov models to probabilis-
tically generate sequences that adhere to constraints.

Computational theory informs us that regular languages
are closed under intersection, and indeed algorithms have
been presented that, given two automata A and B, create a
third automata C, such that the set of sequences accepted
by C is the intersection of the sets accepted by A and B
(Sipser 1996). By combining max-order Markov automata
with the automata already in use to constrain the generation
of Pop*, we immediately inherit the ability to constrain our
compositions against plagiarism—across all aspects of the



Figure 5: Shown is an automaton designed to enforce a rhyming constraint, ρ, between the first and last positions, X1 and
X4, in the Markov generation of a four-word sentence in the CC music composition system Pop*. Generative systems like
Pop* that define constraints using automata are particularly well-suited for easy integration of max-order Markov automata for
constraining against plagiarism. Figure originally from (Bodily and Ventura 2022).

composition.

Conclusion
We have presented an implementation of an anti-plagiarism
model first presented by Papadopoulos, Roy, and Pachet
(2014). The model works by utilizing a max-order Markov
automaton that only accepts non-plagiaristic sequences
based on a specified corpus. We illustrated through exam-
ples how, through the use of generics, this model can be
applied with constrained sequence generation in novel CC
domains, and highlighted, in particular, its envisioned inte-
gration into a lyrical music composition system. Whether
the goal be to achieve greater novelty or to show increased
respect to the ethics of avoiding plagiarism, the implemented
model we have presented will serve to aid CC practitioners
to achieve greater and more ambitious milestones in the pur-
suit of computational creativity.

Author Contributions
Both authors contributed to all aspects of the work, includ-
ing ideation, narrative/position development and writing.

Acknowledgments
The authors have no acknowledgments.

References
Aho, A. V., and Corasick, M. J. 1975. Efficient string match-
ing: an aid to bibliographic search. Communications of the
ACM 18(6):333–340.

Bodily, P., and Ventura, D. 2022. Steerable music generation
which satisfies long-range dependency constraints. Trans-
actions of the International Society for Music Information
Retrieval 5(1).

Fargier, H., and Vilarem, M.-C. 2004. Compiling csps into
tree-driven automata for interactive solving. Constraints
9(4):263–287.

Hadjeres, G., and Nielsen, F. 2020. Anticipation-rnn: En-
forcing unary constraints in sequence generation, with ap-
plication to interactive music generation. Neural Computing
and Applications 32(4):995–1005.

Hadjeres, G.; Pachet, F.; and Nielsen, F. 2017. Deep-
bach: a steerable model for bach chorales generation. In In-
ternational Conference on Machine Learning, 1362–1371.
PMLR.

Kim, T.; Heo, M.; Son, S.; Park, K.; and Zhang, B. 2018.
GLAC net: Glocal attention cascading networks for multi-
image cued story generation. CoRR abs/1805.10973.

Mao, H. H.; Shin, T.; and Cottrell, G. 2018. Deepj: Style-
specific music generation. In 2018 IEEE 12th International
Conference on Semantic Computing (ICSC), 377–382.

Papadopoulos, A.; Pachet, F.; Roy, P.; and Sakellariou, J.
2015. Exact sampling for regular and markov constraints
with belief propagation. In International Conference on
Principles and Practice of Constraint Programming, 341–
350. Springer.

Papadopoulos, A.; Roy, P.; and Pachet, F. 2014. Avoid-
ing plagiarism in markov sequence generation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 28.



Scirea, M.; Barros, G. A.; Shaker, N.; and Togelius, J. 2015.
Smug: Scientific music generator. In ICCC, 204–211.
Shihadeh, J., and Ackerman, M. 2020. Emily: An emily
dickinson machine. In ICCC, 243–246.
Sipser, M. 1996. Introduction to the theory of computation.
ACM Sigact News 27(1):27–29.
Tan, H. H. 2019. Chordal: A chord-based approach for
music generation using bi-lstms. In ICCC, 364–365.
Vechtomova, O.; Sahu, G.; and Kumar, D. 2021. Lyricjam:
A system for generating lyrics for live instrumental music.
arXiv preprint arXiv:2106.01960.


