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Abstract

Although there is vigorous debate around definitions of
creativity, there is general consensus that creativity i)
has multiple facets, and ii) inherently involves a sub-
jective value judgment by an evaluator. In this paper,
we present evaluation of creative artifacts and computa-
tional creativity systems through a multiattribute prefer-
ence modeling lens. Specifically, we introduce the use
of multiattribute value functions for creativity evalua-
tion and argue that there are significant benefits to ex-
plicitly representing creativity judgments as subjective
preferences using formal mathematical models. Various
implications are illustrated with the help of examples
from and inspired by the creativity literature.

Introduction
Computational creativity (henceforth CC) is an interdisci-
plinary field that studies the role of computers in the creative
process. Several success stories in domains such as visual
art, music, literature, humor, science and mathematics have
already been noted (Buchanan 2001; Cardoso, Veale, and
Wiggins 2009; Colton and Wiggins 2012). One of the is-
sues that has plagued the research community, analogous to
the broader field of artificial intelligence, is around pinning
down what it means to be creative. This is of course not
surprising as creativity is often considered the pinnacle of
human intelligence. Taylor (1988) summarizes several early
definitions of creativity from the psychology literature.

Although there is significant debate around defining cre-
ativity, there appears to be general agreement about at least
two aspects. First, creativity seems to involve ‘novelty and
more’, i.e. there are multiple facets to creative artifacts and
it is not enough to only be original to be considered creative.
Second, creativity is a subjective judgment that is not mean-
ingful without an evaluator of creative value.

In this paper, we frame evaluation in CC and creativity
studies in general through a multiattribute preference mod-
eling lens that embraces the subjectivity that is inherent in
judging creative value, while effectively capturing the no-
tion of creativity involving multiple facets. According to
this framework, a (human or machine) evaluator’s prefer-
ences are modeled using preference functions. There is a
rich literature in formal mathematical models of preferences,
mainly in fields that pertain to prescriptive decision making,

and we believe there are significant benefits from applying
these techniques to the field of CC.

The preference modeling framework is applied to eval-
uate artifacts as well as CC systems, and we explore the
implications of various modeling assumptions through illus-
trative examples. For instance, creativity researchers and
practitioners should be aware of the implications of taking
weighted averages of scores along multiple criteria – we ar-
gue that such an approach need not always be appropriate in
CC, or at the very least, the underlying assumptions should
be appreciated. We begin by motivating our research effort.

Evaluating Creative Value
Evaluation, evaluation, evaluation! Evaluating creative ar-
tifacts and systems that produce them is to the field of CC
what location is to real estate. We distinguish between eval-
uation of creative artifacts vs. CC systems, like in Pease and
Colton (2011). In this section, we provide some background
to motivate a multiattribute preference view of creativity.

Novelty and More
Attempts at defining creativity or towards identifying its
properties can be seen in the early literature on artificial in-
telligence. Newell et al. (1958) opined that creative products
needed to have novelty and value. Boden (1990) echoed this
thought, suggesting that creativity involves generating ideas
that are both novel and valuable. Mayer (1999) refers to
these two facets as originality and usefulness, citing several
alternatives for the latter term, including utility, adaptive-
ness, appropriateness and significance.

We will avoid the terms ‘value’ and ‘utility’ in how they
have been used in the creativity literature because we re-
serve them for specific concepts from the preference mod-
eling domain. (Our notion of creative value includes nov-
elty.) Instead, we will use the term ‘quality’ to refer to non-
novelty related aspects of creative artifacts (Ritchie 2001;
Pease, Winterstein, and Colton 2001). Evaluation could in
general involve several (> 2) attributes that sufficiently span
novelty/originality as well as quality/usefulness.

Subjectivity in Evaluation
Various definitions of creativity explicitly acknowledge
the relationship between the creator/creation and an ob-
server (Wiggins 2006) and how a creative artifact must be

57 

52Proceedings of the Seventh International Conference on Computational Creativity, June 2016



Genera&on	
  of	
  
results	
  

Originality	
  

Value/
usefulness	
  

Involvement	
  &	
  
persistence	
  

Dealing	
  with	
  
uncertainty	
  	
  

Independence
&	
  freedom	
  

Inten&on	
  &	
  
emo&on	
  

Progression	
  &	
  
development	
  

Spontaneity	
  

Thinking	
  &	
  
evalua&on	
  

Variety	
  &	
  
divergence	
  

Domain	
  
competence	
  

General	
  
intellect	
  

interac&on/	
  
communica&on	
  

Builds	
  crea,ve	
  
products	
  

Undergoes	
  crea,ve	
  
processes	
  

Has	
  relevant	
  knowledge	
  
&	
  abili,es	
  

Interacts	
  effec,vely	
  
with	
  the	
  environment	
  

Computa,onal	
  crea,vity	
  system	
  

Figure 1: An example of objectives for a computational creativity system, with attributes from Jordanous (2012).

judged or deemed to be creative (Sawyer 2012). The line of
research that deals with creativity assessment goes back at
least around a hundred years (Cattell, Glascock, and Wash-
burn 1918) and includes popular methods like the consen-
sual assessment technique where artifacts are rated by two
or more experts in the field (Amabile 1982).

Assessing a creative artifact is necessarily a cognitive
task that involves several complex processes (Varshney et
al. 2013). In this paper, we attempt to model an eval-
uator’s (subjective) preferences for a creative artifact –
one approach to understanding these preferences is directly
through an overall creativity rating; another is to break down
the assessment along multiple attributes. We consider the
second approach and adopt the view that the evaluator’s
preferences can be captured, at least approximately, through
some abstract mathematical representation.

Multiattribute Preference Models: A Review
Decision analysis is an approach to prescriptive decision
making that applies the norms of decision theory to prac-
tical decision situations, tracing its roots to stalwarts such
as Bernoulli, Laplace and Pascal. The field explicitly mod-
els decision makers’ subjective beliefs and preferences; the
latter aspect has spawned the overlapping fields of mul-
tiattribute utility theory (MAUT) and multi-criteria deci-
sion making (MCDM). Here we provide a brief summary
of relevant concepts, mainly using terminology from the
seminal Keeney and Raiffa (1976), but the reader is en-
couraged to peruse related work (Belton and Stewart 2002;
Wallenius et al. 2008).

Preliminaries
A formalization of preferences is useful in the spirit
of breaking a larger unmanageable problem into smaller
pieces. An objective indicates the ‘direction’ in which one
strives to do better. It is often convenient to generate objec-
tives by organizing them in a hierarchy, thereby meaning-
fully structuring them. Attributes (or criteria) are measures
that adequately determine how well an objective has been
met. Figure 1 shows an example objectives hierarchy (with
only one level) for a CC system: four high-level objectives
are spanned by fourteen attributes from Jordanous (2012).

There are several desirable properties of attributes: they
should be complete (sufficiently capture degree to which ob-
jectives are met), operational (meaningful and understand-
able), nonredundant (double counting should be avoided)
and minimal (with manageable problem dimension).

Making a judgment about how much to give up on an
objective for another is the essence of a trade-off, and this
is represented by a functional form over attributes. There
are two types of preference functions: utility functions and
value functions, also referred to as cardinal and ordinal
utility functions: the distinction between them is whether
uncertainty is involved or not, respectively. A utility func-
tion thus captures both a decision maker’s strength of pref-
erence as well as their attitude towards risk. In this pa-
per, we focus solely on value functions as all of the situ-
ations that are studied are those of certainty, but the con-
cepts apply broadly. Also, we do not expound upon how
preference functions are elicited/assessed here – instead, we
refer the reader to the literature (Keeney and Raiffa 1976;
von Winterfeldt and Edwards 1986).

Value functions

Let X1, . . . , XM be a set of M attributes where lower case
xi denotes the score/consequence along attribute Xi. We use
the notation X̄i to refer to the complement set of attributes to
Xi, and x∗

i and x0
i for the best and worst scores of attribute

Xi. A preference structure is defined over the domain of
attributes if all points in the domain are comparable and no
intransitivities exist. In that case, if x = {x1, . . . , xM} and
y = {y1, . . . , yM} are two alternatives, then a (measurable)
value function v(·) (Dyer and Sarin 1979) is one such that
v(x) ≥ v(y) if and only if x � y, where the symbol �
reads ‘preferred or indifferent to’.

A preference structure over attributes is determined by in-
difference curves, i.e. complete sets of points in the domain
of attributes where the decision maker is indifferent. It can
be shown that monotonic transformations of value functions
do not change the preference structure, and it is often con-
venient to normalize value functions between most and least
preferred alternatives such that v(x0) = 0 and v(x∗) = 1.
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Additive value functions The simplest and most widely
used value function is the additive function, of the form:

v(x1, . . . , xM ) =
M∑
i=1

λivi(xi), (1)

where λi ≥ 0 ∀i are the weights,
∑M

i=1 λi = 1, and vi(·)
are marginal (one-dimensional) value functions bounded be-
tween 0 and 1. The additive value function is thought to
be fairly robust (Stewart 1996) and is extremely popular in
practice, but unfortunately it is often misused. This is be-
cause its proponents often forget or are unaware that it ap-
plies if and only if there is mutual preferential indepen-
dence among attributes (for M > 2). This condition holds
if every Y ⊂ {X1, . . . , XM} is preferentially independent
of its complement, i.e. the preference structure over Y does
not depend on the scores of the attributes in the complement
set. The following example illustrates the implications.
Example 1. [Evaluating cartoon captions]

Sternberg et al. (2006) performed creativity assessments
on captions provided by students for cartoons from the New
Yorker. These were adjudicated based on three attributes:
cleverness, humor and originality, all scored on a 5 point
scale, and the total creativity score was computed by sum-
ming up the three scores. From a preference modeling per-
spective, this procedure implicitly assumes that preferences
for these cartoon captions, when viewed as creative artifacts,
follow an additive value function. This in turn implies mu-
tual preferential independence among attributes. We pose
the question – is this condition appropriate?

Consider indifference curves for humor and originality,
given a cleverness score. If the score on cleverness is high,
then it seems reasonable that the evaluator may generally be
willing to give up a large score of humor for some origi-
nality. The rationale behind this claim is that the evaluator
may view cleverness and humor as two attributes for a higher
level objective (quality), and may be willing to compensate
one for the other. On the other hand, if the cleverness score
is low, the evaluator may no longer be willing to give up as
much humor for the same score increment on originality.

These (hypothetical) preferences are clearly inconsistent
with mutual preferential independence, which in a three at-
tribute problem enforces identical indifference curves for ev-
ery pair of attributes, conditional on the score of the third
attribute. This would make the additive value function in-
appropriate in this case. Our conjecture is that preferences
of this sort are probably commonplace for creative artifacts.
Understanding the preferential assumptions behind implicit
functional forms could be broadly beneficial to the creativity
community.

Value copulas The value function v(·) can take any form,
including one that does not need to subscribe to indepen-
dence assumptions. A recent approach to modeling po-
tentially complex preference functions is that of copulas,
and although they were introduced to model utility func-
tions (Abbas 2009), they can also be used for value func-
tions. A copula Cλ (z1, . . . , zM ) is a multivariate function
that is a continuous mapping from the hypercube [0, 1]M

to the interval [0, 1], normalized such that C(0) = 0 and
C(1) = 1 (Sklar 1959). It is non-decreasing in each of its
arguments zi, and for each argument, there exists some ref-
erence scores of the complement attributes for which it is an
affine function. A value function can be constructed from a
copula as follows:

v(x1, . . . , xM ) = Cλ

(
v1(x1|x̄λ1

1 ), . . . , vM (xM |x̄λM

M )
)
,

(2)
where Cλ(·) is a copula and vi(xi|x̄λi

i ) are normalized con-
ditional value functions, defined as:

vi(xi|x̄λi
i ) =

vi(xi, x̄
λi
i )− vi(x

0
i , x̄

λi
i )

vi(x∗
i , x̄

λi
i )− vi(x0

i , x̄
λi
i )

, (3)

with x̄λi
i denoting a particular reference score for the set of

complement attributes to Xi. Assessing a conditional value
function therefore entails determining the marginal rate of
value for an attribute when all other attributes are set to some
reference scores. It is typical to assess this function at the
complementary maximum (x̄∗

i ) or minimum (x̄0
i ) scores.

The model of equation (2) represents any value function
that is continuous, bounded, non-decreasing in each argu-
ment, and strictly increasing with each argument for at least
one reference score of the complement attributes. The power
of the copula is that like the additive function, it models a
high-dimensional function by aggregating one-dimensional
functions, yet allows for a much wider class of functions.

An example of a copula where conditional value functions
are assessed at the maximum scores of the complement of
each attribute is the extended Archimedean copula:

E(z1, . . . , zM ) = aψ−1

[
M∏
i=1

ψ(li + (1− li)zi)

]
+ b, (4)

where li ∈ [0, 1), a = 1/
(
1− ψ−1

[∏M
i=1 ψ(li)

])
, b =

1 − a, and the generating function ψ has the same math-
ematical properties as a strictly increasing cumulative prob-
ability distribution function. A special case occurs when
li = 0 ∀i and the generating function is linear, ψ(zi) = zi,
resulting in the multiplicative form:

v(x1, . . . , xM ) =

M∏
i=1

vi(xi|x̄∗
i ). (5)

Both additive and copula value functions will be applied
in subsequent sections.

A Two-Attribute Model for Artifacts
As we highlighted earlier, maximizing novelty (or original-
ity) as well as quality (or usefulness) are reasonable high-
level objectives for creative artifacts. The simplest prefer-
ence model therefore involves two attributes: novelty XN

and quality XQ. In this section, we first discuss some poten-
tial value functions over these two attributes and then con-
sider a scenario that explores the implications of potentially
mis-characterizing a user’s value function.
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Figure 2: Some example value functions over novelty and quality: Left) additive with λ = 0.7 and power function marginals,
βN = βQ = 2; Middle) multiplicative with linear conditionals at maximum reference points; Right) copula with exponential
generating function, δ = −5, and power function conditionals at maximum reference points, βN = βQ = 2.

Value functions for novelty and quality
An evaluator’s preferences for an artifact with novelty xN

and quality xQ can be represented by v(xN , xQ). If the at-
tributes are bounded, then they can be normalized to lie in
[0, 1]. Assuming that v(·) is bounded, and since value func-
tions are unique up to monotonic transformations, we set
v(0, 0) = 0 and v(1, 1) = 1.

Applying the additive value function from equation (1):

v(xN , xQ) = λvN (xN ) + (1− λ) vQ(xQ), (6)

where λ ∈ [0, 1] is the weight for novelty and vN (·) and
vQ(·) are marginal value functions bounded between 0 and
1. If more of an attribute is preferred to less, its marginal
value function must be increasing. An example is the power
function, where vj(xj) = x

βj

j for attribute j. βj > 1 implies
marginally increasing value – this seems like a reasonable
form for creative artifacts, for instance, the user may deem
that increasing novelty from say 0.8 to 0.9 is more valuable
than from 0.2 to 0.3. βj = 1 represents a linear marginal
value function, i.e. vj(xj) = xj for attribute j.

Figure 2 (left) plots an additive value function over the
entire domain, with weight on novelty λ = 0.7 and power
marginal value functions with βN = βQ = 2. Four indif-
ference curves are highlighted, equally spaced between the
worst (0) and best (1) value. Note that when the quality
score is 0 and novelty score is 1, the value is as high as 0.7,
because the weight on novelty is 0.7.

The evaluator may however deem that there is no creative
value (i.e. it equals 0) if either novelty or quality are at their
lowest scores. Additive value functions do not support such
a condition. Another aspect that additive functions fail to
capture sufficiently is that of the confluence effect: much
like how creativity in people involves more than a simple
sum of their level on separate skills/abilities (Sternberg and
Lubart 1991), we hypothesize that the value in a creative ar-
tifact, as deemed by an evaluator, often arises from the con-
fluence of scores along attributes. Extended Archimedean
copulas from equation (4) are examples of copulas that could
potentially be used to model both these effects.

Figure 2 (middle) depicts the multiplicative form from
equation (5) with linear conditional value functions at maxi-
mum reference points. The function is grounded, i.e. equals

0 when either novelty or quality is 0, and increases only
when both attributes score high together. The confluence ef-
fect is heightened even further in Figure 2 (right), depicting
a value copula with an exponential generating function:

ψ(zi) =
1− e−δzi

1− e−δ
. (7)

The parameter δ models value dependence among attributes;
δ = −5 was chosen here. The figure indicates a low value
for a significant region of the domain, and the value in-
creases only for significantly high scores on both novelty
and quality. A value function model should of course reflect
the evaluator’s preferences as much as possible.

A CC recommender scenario
A CC system should ideally cater to the user’s preferences
for artifacts/items – but what is the impact of a potential mis-
characterization of the user’s value function? Let us study
this question using an illustrative scenario where the CC sys-
tem either recommends one artifact or a list of artifacts.

Suppose there are N items produced with novelty xi
N and

quality xi
Q of the ith item. The standard approach in many

creativity studies is to average out the scores to rate artifacts;
the implicit value function in such a situation is additive with
λ = 0.5 and marginal value functions that are linear.

If the system provides the user with the top candidate from
the N items as determined by the mean rating, and if the user
has value function v(·), then the loss in value is:

Loss = max
i

[
v(xi

N , xi
Q)

]
− v(xi∗

N , xi∗
Q), (8)

where i∗ is the item index with the highest mean rating, or

formally, i∗ = argmaxi
xi
N+xi

Q

2 .
If the user is instead presented with an ordered ranking of

items, then the discrepancy between the optimal rank order-
ing and the one suggested by the system is:

Rank dist. = D
[
r
(
i : v

(
xi
N , xi

Q

))
, r

(
i :

xi
N+xi

Q

2

)]
,

(9)
where r

(
i : Ci

)
denotes the rank ordering over items i

based on condition Ci, and D is some distance metric. The
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Figure 3: The two metrics in Example 2 for N = {2, · · · , 20} as a function of parameters β and λ. Left (both a and b):
Sensitivity to β for λ = 0.5; Right (both a and b): Sensitivity to λ for β = 1.

following numerical example provides some insights into
the implications of a potential discrepancy.

Example 2. [Sensitivity to additive function parameters]

Suppose a CC system draws items independently and uni-
formly from the unit cube: Xi

N and Xi
Q ∼ U(0, 1) ∀i. Fur-

thermore, suppose that the user’s value function is additive
with weight on novelty λ and where marginal value func-
tions are power functions. For simplicity, consider the case
where parameters for the marginal functions are identical,
i.e. βN = βQ = β. Simple probabilistic analysis reveals
that the mean ratings of items follow a triangular distribution
from 0 to 1 with mode at 0.5. One can compute the expected
loss in value and expected rank distance using Monte Carlo
simulations over the metrics in equations (8) and (9).

Figure 3(a) plots the % expected loss against the number
of artifacts N for various parameter values of β and λ. This
metric first increases with N but then decreases, after the
mean rating approach has more items from which to select
one that is closer in value to the optimal as per v(·). The
figure indicates that when a parameter is significantly mis-
characterized by the mean rating approach (after fixing the
other parameter at its reference value), the potential % loss
in value could be around 10− 12%. The loss in value could
be even higher if β and λ are jointly mis-specified. Due
to the model assumptions, the results are symmetric around
λ = 0.5 but not around β = 1.

Figure 3(b) repeats the exercise using a discrepancy in
rankings where D is the normalized Kendall tau distance.
This distance metric normalizes the number of swaps re-
quired to convert one rank order to another, such that iden-
tical orders result in 0 distance whereas an order and its re-
verse have distance 1. The rank distance increases with N
and can reach distances of around 0.4 − 0.5, implying that
the system could potentially provide a user with a rank order
of artifacts significantly different from the optimal order.

In this example, the user’s value function was assumed to
be additive. Even in this case, where the functional form is
the same as the mean rating approach, not fully appreciating
the user’s strength of preferences over attributes could result
in CC systems providing lower value artifacts to users.

A Three-Attribute Model for Sets of Artifacts
Ritchie (2001; 2007) introduced an evaluation framework
for a CC system that assesses the set(s) of artifacts it pro-
duces, where each artifact is associated with two measures:
typicality T ∈ [0, 1] and quality Q ∈ [0, 1]. The distinction
between these two measures, for example, is how typical a
joke is vs. how funny it is. Here we consider a preference
model with three attributes based on this framework.

Consider a CC system that produces a large set of artifacts
where the T and Q measures of each artifact are generated
from a joint probability density function (pdf) fT,Q(t, q).
Ritchie proposed several criteria based on these measures.
We formulate a model with three attributes of a set of ar-
tifacts: novelty XN and conformance XC , both properties
of the typicalities of the artifacts in the set – the idea is
that some artifacts should conform to item type whereas oth-
ers should be ‘atypical’ and therefore deemed novel – along
with the quality XQ of the set. We define these attributes
based on the fraction of artifacts that are less or greater than
specified thresholds. For a large enough set, these can be
approximated as: XN ≈

∫ αN

0
fT (t)dt (fraction such that

T ≤ αN ), XC ≈
∫ 1

αC
fT (t)dt (fraction such that T > αC),

XQ ≈
∫ 1

αQ
fQ(q)dq (fraction such that Q > αQ), where

fT (t) and fQ(q) are marginal pdfs for each artifact’s T and
Q measures. Clearly, only the marginal pdfs of the generat-
ing distribution of typicality and quality matter here.

If the system builder can adjust the parameters θ of the
generating distribution f(·), and if the user’s value function
over the three attributes of the set of artifacts is v(·), then the
optimal parameters are:

θ∗ = argmax
θ

[v (xN (θ), xC(θ), xQ(θ))]. (10)

The reader should note that according to this three-attribute
formulation, a large fraction of highly typical artifacts re-
sults in low novelty in the set – but other interpretations of
Ritchie’s model are possible; for instance, an artifact may be
considered typical in its form but novel in its content. Con-
sider the following illustrative numerical example.

Example 3. [System design: Typicality vs. quality]
Suppose the typicality and quality of each artifact of a

CC system are generated from independent truncated Gaus-
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Figure 4: Value of a set of artifacts from Example 3 as a
function of parameters µT and σ. Top: Mean rating value
function; Bottom: Multiplicative value copula.

sian distributions with parameters µT , σT and µQ, σQ re-
spectively. To examine a specific simple case, suppose
σT = σQ = σ, and thresholds αN = 1− α, αC = αQ = α
for α = 0.7. Furthermore, suppose the system builder(s) can
choose the mean typicality but they would need to sacrifice
it for mean quality – formally, they can determine µT under
the constraint µT + µQ = 1. How should they choose µT ?

Figure 4 (top) helps analyze this problem for a user with
a mean rating value function, which is the additive function
from equation (1) with equal weights and linear marginal
value functions: v(xN , xC , xQ) =

xN+xC+xQ

3 . Clearly, the
optimal µT ∗ = 0 for all the displayed σ curves. Although
a low mean typicality results in poor conformance, it yields
both high novelty and quality, and the additive function will-
ingly sacrifices conformance for the other two attributes.

Figure 4 (bottom) repeats the analysis for a user with a
multiplicative value copula from equation (5) with linear
conditional value functions: v(xN , xC , xQ) = xN ∗xC∗xQ.
The solution is no longer straightforward because poor per-
formance on any individual attribute needs to be avoided.
As σ decreases, a more intermediate µT that effectively bal-
ances the three attributes should be chosen. This example
highlights how the user’s value function can (and should)
impact a CC system builders’ decisions.

The bottom figure also reveals that a higher standard
deviation improves value to the user, because it increases
the fraction of the set of artifacts above or below specified
thresholds. In other words, more randomness in the system
is preferable; some may view this result as antithetic to the
notion of CC. Several cases have been made against focus-
ing solely on the properties of products generated by a CC
system, without making other considerations – for instance,
there is an argument that creative artifacts will eventually
be produced by a random generation system that is “nearly
equivalent to the proverbial room full of monkeys pounding
on typewriters” (Ventura 2008).

Multiple Attributes for CC Systems
The preference modeling techniques discussed for artifacts
and sets of artifacts also apply more generally to CC sys-
tems. Naturally, the context in which a CC system operates
should have an impact on the system builders’ objectives and
therefore decisions. For instance, the objectives of a CC sys-
tem that provides a user with a joke every morning would be
substantially different from a culinary CC system attempting
a ‘moonshot’ recipe like the next Oreo cookie. In the previ-
ous section, we formulated a model that evaluated CC sys-
tems based on the set(s) of artifacts produced, disregarding
the process by which they were created. Significant research
has been pursued on frameworks that also incorporate the
processes involved (Pease, Winterstein, and Colton 2001;
Colton 2008; Colton, Charnly, and Pease 2011).

It is not our intention here to identify the appropriate at-
tributes for CC systems; there is vibrant discussion in the
community on such matters. Instead, we merely highlight
that the preference modeling view is entirely consistent with
calls for making the criteria of judging CC systems ex-
plicit (Jordanous 2012). According to this view, the system
builder(s) should first deliberate over their objectives, build-
ing a hierarchy as necessary, and then identify a desirable
set of attributes that ideally satisfy the properties mentioned
earlier. The system builders’ preferences can be represented
by a value function over the attributes – this is where the
proposed approach goes above and beyond current guide-
lines for evaluating CC systems. The following numerical
example explores the use of value functions to evaluate CC
systems. It is intended mainly for illustrative purposes.

Example 4. [Comparing jazz improvization systems]
Jordanous (2012; 2013) compared three CC systems for

jazz improvization using scores from three judges on a scale
of 0− 10 across fourteen attributes. The attributes are orga-
nized by four high-level objectives, inspired by the four Ps
(product, process, person, press) model (Rhodes 1961), as
shown in Figure 1. A weighted average method was used to
compare the systems, but the attribute weights that were de-
termined for the analysis did not really reflect parameters of
a user’s additive value function. We will take the liberty of
making additional assumptions to craft the data further into
a hypothetical example, so as to illustrate some implications
of taking a preference modeling approach.

First, we assume that the three CC systems’ scores for
each attribute are the mean values of the three judges’ scores,
normalized to between 0 and 1. Next, we assume that each
high-level objective can be measured by a proxy attribute
that aggregates the corresponding attribute scores from the
lower level. Specifically, we assume that the value func-
tions for each of the four high-level objectives are additive
and equally weighted over the corresponding low-level at-
tributes. The underlying assumption is that there is mutual
preferential independence for each of the four high-level ob-
jectives. This effectively transforms the original fourteen
attribute problem into a four attribute problem. From a mod-
eling perspective, it is often helpful to construct preferences
in a hierarchical fashion, but such a dimensional reduction
is also useful for simplifying preference assessments.
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Attribute GAmprovising GenJam Voyager
‘Product’ 0.41 0.73 0.48
‘Process’ 0.34 0.70 0.38
‘Person’ 0.36 0.72 0.45
‘Press’ 0.40 0.55 0.57

Table 1: Scores for three jazz improvization systems.

The data that is generated through this transformation
is displayed in Table 1; for the original data, see Jor-
danous (2013), Ch. 6, Table 6.3. If the goal of the exercise is
to determine the best CC system then there is no need to go
further – system GenJam dominates system GAmprovising
by scoring higher on all four attributes, and almost domi-
nates system Voyager. GenJam is almost surely the most
preferred system, but it may be of interest to gauge how
valuable it is when compared with others, in which case one
needs to assess a value function over the four attributes.

We model a hypothetical value function over the four at-
tributes using a value copula (equation (2)) so as to capture
the confluence effect described earlier, where a CC system
exhibits higher value only when multiple effects ‘kick in’ to-
gether. Specifically, we consider an exponential generating
function (equation (7)) for an Archimedean copula (equa-
tion (4)) with li = 0 ∀i. The limiting case of δ = 0 makes
the generating function linear, resulting in the multiplicative
form (equation (5)). Conditional value functions v(xi|x̄∗

i )
are assumed to be power functions, and for simplicity we
assume they are identical, i.e. with the same parameter β.

Figure 5 compares the values of the three systems when
parameters β and δ of the value function are varied. The
reference case is where conditional value functions are lin-
ear (β = 1) and where the copula is multiplicative (δ = 0).
Here, GenJam has value 0.2 but still beats the other systems
by a significant margin. Increasing β makes the conditional
value functions at the margins more convex and therefore
decreases the value; there is not much difference between
the three systems for β > 2. Making the dependence pa-
rameter more negative strengthens the confluence effect and
decreases the value (compare the middle and right panels of
Figure 2 to observe this effect). A positive parameter makes
the function concave and increases value. In all cases, Gen-
Jam dominates the other systems, and even though this was
evident without the need for formulating a value function,
the function (and the chosen model) clearly has an impact
on the value of the systems.

Conclusions
It can be challenging to deliberate over the most pertinent
objectives and attributes in many real-world decision situa-
tions, and perhaps it is even harder to identify attributes that
sufficiently characterize ones preferences for creative arti-
facts. As Boden (1998) muses: “It is ... difficult to ex-
press (verbally or computationally) just what it is that we
like about a Bach fugue, or an impressionist painting, ...
And to say what it is that we like (or even dislike) about
a new, or previously unfamiliar, form of music or painting

Figure 5: Value of three jazz improvization systems from
Example 4 as a function of parameters β and δ. Top: Sensi-
tivity to β for δ = 0; Bottom: Sensitivity to δ for β = 1.

is even more challenging.” However, if creativity is inher-
ently subjective and involves a user’s preference judgment,
then understanding these preferences is a crucial aspect of
CC, regardless of how challenging the task may be and how
it is conducted, i.e. whether they are assessed through sur-
veys or estimated through machine learning and related tech-
niques (Fürnkranz and Hüllermeier 2010).

We introduced a preference modeling perspective for
evaluating creative artifacts as well as systems – specifically,
we formulated various multiattribute value function mod-
els. We focused primarily on additive and copula functions,
stressing on the importance of the latter family of mod-
els and highlighting their potential advantages for creativ-
ity evaluation with the help of several illustrative examples.
We argue for the explicit study of attributes, including the
modeling of preference functions, over ad-hoc analyses that
neglects to consider the implications of various assumptions.

There are various benefits to formulating preference mod-
els for CC. At an operational level, models that accurately
reflect users’ preferences can help in the generation of ideas
and artifacts, for instance, they could improve search tech-
niques in the conceptual space. A better understanding of
preferences would also result in more effective optimization
methods for CC. Furthermore, we have demonstrated that a
careful consideration of the objectives of a CC system could
help system builders make better strategic decisions. A CC
system that could generate new attributes for meeting higher
level objectives would be particularly powerful.

There are also potential limitations to using preference
models in CC. Although they allow flexibility, more com-
plex models require more parameters, and it can be far from
trivial to accurately assess a complicated value function. It
remains to be seen how easy or difficult it is for people to re-
spond to preference elicitation schemes that assess multiat-
tribute preference functions for creative artifacts. However,
there is little doubt that it is essential for the best empirical
research methods to effectively understand how creativity is
evaluated in products, processes and ideas.
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