Automatic evaluation of punning riddle template extraction

Try Agustini and Ruli Manurung
Faculty of Computer Science
Universitas Indonesia
Depok 16424, Indonesia
try.agustini@gmail.comandmaruli@cs.ui.ac.id

Abstract

This paper reports an empirical study to automatically
evaluate the ability of T-PEG (Hong and Ong 2009)
to extract joke templates by providing it with a cor-
pus of punning riddles produced by another system,
STANDUP (Manurung et al. 2008). This setup al-
lows us to compare the extracted templates against the
underlying data structures used by STANDUP in gen-
erating the corpus. In our setup, T-PEG is modified
with a generalization component that clusters extracted
templates based on structural similarity. These clusters
are then compared against the underlying rules used by
STANDUP to measure how well T-PEG is able to in-
duce the schema used by STANDUP to generate the
jokes. Whilst far from conclusive, an overall precision
of 0.61 and recall of 0.763 suggests that T-PEG is able
to extract some salient information regarding the under-
lying lexical relationships found within a punning rid-
dle.

Background

The automatic construction of jokes, specifically punning
riddles, as artefacts of linguistic creativity, has received quite
a bit of attention in recent years. See (Ritchie 2005) for
a good overview. Compared to other forms of linguistic
creativity, such as stories and poems, punning riddles obey
more formal structures, and hence are more amenable to au-
tomated construction.

Most of the existing systems such as JAPE (Binsted 1996)
and STANDUP (Manurung et al. 2008) work from a pre-
defined set of rules often called schemata, which forms the
foundation of a joke, and which arguably encodes the hu-
morous knowledge which makes the resulting text recogniz-
ably a joke. The schemata are typically handcrafted by the
researchers based on analysis and observation of collections
of exemplar jokes such as punning riddles.

T-PEG (Hong and Ong 2009) is a system which works
along similar lines, but with a crucial difference: the
schemata, or in T-PEG terms the ‘templates’, are automat-
ically extracted from a corpus of exemplar punning riddles.
Although (Hong and Ong 2009) report a manual evalua-
tion of the extracted templates, it is subjective in nature and
limited in scope. In this paper we present our work in au-
tomatically evaluating the template extraction functionality

International Conference on Computational Creativity 2012

of T-PEG by providing it with example jokes produced by
STANDUP, from which we can carry out a more extensive
empirical study due to the fact that we have access to the
underlying data structures used by STANDUP in generating
the samples.

The rest of the paper is structured as follows. We first
provide a brief overview of automatic punning riddle gener-
ation, describing the mechanisms of STANDUP and T-PEG,
before discussing our proposed setup of how to carry out
an automatic evaluation of the extracted templates. We then
present the results and discussion thereof.

Punning riddle generation
STANDUP

Riddle generation in systems such as JAPE and STANDUP
consists of several stages, where at each stage a particular
kind of rule is selected and instantiated, i.e. schemas, de-
scription rules, and templates. Instantiation is performed by
matching against a lexical database. In STANDUP, various
lexical resources are utilized, among others Unisyn' for pho-
netic information and WordNet (Fellbaum 1998) for lexical
semantic information.

A schema is composed of a header, which specifies a sym-
bolic label and its input parameters, a set of lexical precondi-
tions that specify phonetic, syntactic, and semantic relations
that must hold between key lexical items, and a question
and answer specification, which determines the output for
the next stage (Manurung et al. 2008).

For example, the newelan?2 schema is defined as fol-
lows:

e Header: newelan2 (NP, A, B, HomB)

Lexical preconditions: nouncompound (NP, A, B),
homophone (B, HomB) , noun (HomB)

Question specification:
HomB)

Answer specification: phrase (A, HomB)

shareproperties (NP,

It states that a punning riddle can be generated if a set of
four lexical items, i.e. NP, A, B, and HomB, can be found
within a lexical database such that A and B form the com-
pound noun NP, B is a homophone of HomB, and HomB is

"http://www.cstr.ed.ac.uk/projects/unisyn

134

a noun. For examplez, an instantiation in which NP = com-
puter screen, A = computer, B = screen, and HomB = scream’
could give rise (after the two further stages) to a riddle such
as “What do you call a shout with a window? A computer
scream.”

Once a schema has been instantiated as above, the ques-
tion and answer specifications are non-deterministically
matched against a set of description rules, which encode lin-
guistic variations that are warranted given the schema in-
stantiation. These rules have a structure similar to schemas,
in that they have a header, some preconditions, and an out-
put expression called the template specifier. For example,
one description rule is:

e Header: shareproperties (X, Y)

e Preconditions: meronym (X, MerX), synonym(Y,
SynY)

e Template specifier: merHyp (MerX, SynY)

In the example joke given above, the question speci-
fication shareproperties (computer screen,
scream) would match the header for this rule, where the
values (computer screen, scream) would be bound
to the local variables X, Y of the rule. Subsequently, the
preconditions check further lexical relations to determine
whether the rule is applicable. It may also instantiate
additional variables, e.g. MerX and SynY, where in the
example above MerX is bound to window, a meronym of
computer screen, and SynY is bound to shout, a
synonym of scream.

The answer specification phrase (A, HomB) trivially
concatenates the instantiations, e.g. computer scream.

Finally, all these instantiations are passed on to
the template-filling stage, where the template spec-
ifier merHyp (MerX, SynY) 1is non-deterministically
matched against a set of canned text such as “What do you
call a *with a * ?” where * indicates a slot to be filled with
the instantiated words.

T-PEG

In the preceding section, we can see that the role of schemas,
description rules, and templates is crucial in defining the
humorous effect of the resulting riddle. In both JAPE and
STANDUP, these rules were manually handcrafted. For in-
stance, STANDUP has 11 schemas. (Hong and Ong 2009)
present T-PEG (Template-based Pun Extractor and Gener-
ator), a system that generates punning riddles in a manner
similar to JAPE and STANDUP, i.e. working from a set of
symbolic rules that define a punning riddle, it instantiates
certain key variables by selecting appropriate sets of words
from a combination of lexical resources. The crucial differ-
ence is that whereas the symbolic rules used by JAPE and
STANDUP were manually crafted, T-PEG relies on tem-
plates that are automatically extracted from a collection of
exemplar jokes.

2The following worked example is taken from (Manurung et al.
2008).

3Homophony can be generalized to include pairs of words
whose phonetic similarity is above a certain threshold.

International Conference on Computational Creativity 2012

Given a sample punning riddle, T-PEG constructs a tem-
plate by firstly identifying nouns, verbs, and adjectives with
the help of a part-of-speech tagger, and replacing them with
what they term regular variables. Additionally, similar-
sound variables are identified as words that are homophones
of regular variables. Regular variables follow a naming con-
vention where Xn indicates the n-th word in the question
part and Y'n indicates the n-th word in the answer part.
Similar-sound variables are indicated by appending a dash
and a number. All pairs of variables are then checked against
a lexical resource to detect whether any semantic relations
hold between them. In T-PEG, the lexical resources used are
Unisyn, WordNet, and ConceptNet (Liu and Singh 2004).

For example, given the joke “How is a window like a
headache? They are both panes”, T-PEG can extract the
template “How is a <X3> like a <X6>? They are both
<Y3>", where the following word relations must hold:

e Y3-0 SoundsLike Y3

e X3 ConceptuallyRelatedTo Y3

e Y3 ConceptuallyRelatedTo X3

e Y3 PartOf X3

e X6 ConceptallyRelatedTo Y3-0
e X6 IsA Y3-0

e Y3-0 ConceptuallyRelatedTo X6

From the example above we can see that the notion of
a template in T-PEG is equivalent to the conflation of a
schema, description rule, and template in STANDUP.

The constructed templates are then filtered based on a
graph-connectedness heuristic, i.e. if the variables are nodes
and the word relationships are edges, a template must form
a connected graph to be deemed a valid template.

Once the template has been extracted, generation pro-
ceeds in a similar fashion to STANDUP. In this paper we
are less interested in the generation aspect of T-PEG, as it
is largely similar to JAPE and STANDUP, and more inter-
ested in its ability to automatically learn or extract templates.
Specifically, we are interested in assessing the ability of T-
PEG to correctly identify the necessary and sufficient condi-
tions for generating punning riddles. (Hong and Ong 2009)
report a manual evaluation where a subset of the extracted
templates was manually assessed by a linguist, whose job
was to determine if the extracted templates were able to cap-
ture the ‘essential word relationships in a pun’. The evalu-
ation criteria are based on the number of incorrect relation-
ships as identified by the linguist, and includes missing re-
lationship, extra relationship, or incorrect word pairing. A
scoring system from 1 to 5 is used, where 5 means there is
no incorrect relationship, 4 means there is one incorrect re-
lationship, and so on. They report an average score of 4.0
out of a maximum 5.

Automatic evaluation of template extraction

There are two issues concerning the manual evaluation of
template extraction presented in (Hong and Ong 2009).

135

Firstly, we believe this evaluation is rather subjective. Al-
though punning riddles are relatively simple and straight-
forward to analyse, the linguists were not the original au-
thors of the jokes, and thus there is room for misinterpre-
tation or incorrect emphasis. Furthermore, it is unquestion-
able that relying on the manual judgment of a linguist is both
time-consuming and costly. The manual evaluation reported
in (Hong and Ong 2009) was carried out on 27 templates
generated from 27 jokes, which is a rather small sample from
which to draw any conclusion.

Our observation is that if one had access to a large corpus
of punning riddles that had somehow been annotated with
the ‘correct’ word relationships that underlie the joke, one
could assess T-PEG’s template extraction functionality by
comparing the resulting template against the reference word
relationships. Unfortunately, we know of no such annotated
resource that currently exists. However, we can use an exist-
ing punning riddle generator such as STANDUP to produce
an approximation of such a resource, since we can access the
underlying data structure of a generated punning riddle. In
the joke generation module of STANDUP, the JokeGraph
object of a generated punning riddle provides full access to
the underlying lexical relationships.

Another issue we attempt to address is the fact that T-PEG
makes no attempt at generalization of the extracted tem-
plates. Given fifty exemplar punning riddles, it will attempt
to construct fifty templates. Hong and Ong state that this is
beneficial ‘to increase coverage’. However, we contend that
if we are interested in building systems that computationally
model the mechanisms of linguistic humor, coverage is not
enough. A creative generative system should be able to gen-
erate artefacts from a limited set of symbolic rules. Thus,
T-PEG should be able carry out some abstraction over the
extracted templates, to yield a set of highly-productive pat-
terns.

These two goals form the rationale of our proposed setup,
which we discuss in the next section.

Proposed setup

As discussed above, the purpose of our experiment is to au-
tomatically evaluate the ability of T-PEG to correctly ex-
tract templates that underlie a collection of punning riddles.
The proposed setup is as follows. Firstly, STANDUP is
used to generate a large number of punning riddles. For
each riddle, we note the actual rules used by STANDUP to
generate them, which are used during the evaluation phase.
The riddles are then given to T-PEG, which yields a tem-
plate for each riddle. These templates are then organized
into clusters using agglomerative clustering by calculating
the similarity between templates using a structural similar-
ity metric based on the semantic similarity evaluation func-
tion presented in (Manurung, Ritchie, and Thompson 2012).
We then apply a simple majority rule to label the clusters,
and then evaluate the template extraction process using the
widely-used notions of precision and recall.

To achieve this, T-PEG first had to be modified by replac-
ing its lexical and conceptual resources with those that were
used in STANDUP, thus ensuring that the template extrac-

International Conference on Computational Creativity 2012

tion module would be able to identify the original lexical
relationships in STANDUP.

Template clustering

The agglomerative clustering process starts with all tem-
plates belonging to singleton clusters. The distance of each
cluster to all other clusters is then computed. The distance
between two clusters is defined as the average distance of
each pair of elements contained within the two clusters, also
known as average linkage clustering. The two clusters with
the shortest distance are then merged together. This process
is repeated until £ clusters remain, where & is provided as an
input parameter.

In defining the notion of distance between two templates,
we turn to the structure-mapping work of (Love 2000)
and (Falkenhainer, Forbus, and Gentner 1989) that has de-
fined a computational model of semantic similarity in terms
of conceptual and structural similarity. Structural similarity
measures the degree of isomorphism between two complex
expressions. Conceptual similarity is a measure of related-
ness between two concepts.

More specifically, we use the semantic similarity evalu-
ation function used in (Manurung, Ritchie, and Thompson
2012), which implements a greedy algorithm based on Gen-
tner’s structure mapping theory (Falkenhainer, Forbus, and
Gentner 1989). It takes two complex expressions, in our
case two T-PEG extracted templates, and attempts to ‘align’
them in an optimal manner. It then applies a scoring function
based on Love’s computational model of similarity (Love
2000) to compute a score based on various aspects of the
alignment. This function yields a distance of zero between
two conceptually and structurally identical templates, and
further distances for increasingly different template pairs.

Cluster labeling

We then automatically label the clusters using a simple ma-
jority rule. First, we define the underlying schema of a tem-
plate to be the label of the STANDUP schema that was used
to generate the punning riddle from which the template was
extracted.

A cluster is then automatically labelled by identifying the
underlying schemas of all its member templates, and simply
choosing the schema that created the majority of templates
within that cluster. If there are several underlying schemas
that produced the same number of templates in a cluster, one
is randomly selected. As an example, if a cluster contains 10
templates whose underlying schema is lotus, and 6 templates
whose underlying schema is newelanl, then that cluster is
labelled as representing the lotus schema.

Precision and recall

Using these cluster labels, we can compute measures which
correspond to the widely-used notions of precision and re-
call in pattern recognition. In classification tasks, these mea-
sures are defined as follows:

_t
tp+ fp

tp

Recall = ———
tp+ fn

Precision =

136

where in our case, given a cluster ¢ with label [, tp (true
positive) is the number of extracted templates that appear
as members of ¢ whose underlying schemas are [, fp (false
positive) is the number of templates in ¢ whose underlying
schemas are not [, and fn (false negative) is the number of
templates not in ¢ but whose underlying schemas are [.

Precision and recall can be computed for each cluster, or
as an aggregate measure over all resulting clusters.

Experimental setup

The experimental setup is as follows. Firstly, STANDUP is
used to generate 20 jokes for each of 10 schemas, namely
bazaar, lotus, doublepun, gingernutpun,
rhyminglotus, newelanl, newelan2, phonsub,
poscomp, and negcomp, resulting in a collection of 200
exemplar jokes. These jokes are then analysed by T-PEG,
which yields 200 joke templates.

We then apply agglomerative clustering until 10 clusters
are formed (since 10 STANDUP schemas are used). Our
hypothesis is that for T-PEG to be deemed successful in ex-
tracting templates, it should be able to correctly organize
the 200 templates into 10 clusters that correspond to the
10 STANDUP schemas. The precision and recall metrics
should provide appropriate quantitative measures as to this
goal.

Results and discussion

Table 1 shows the results of applying agglomerative clus-
tering on the 200 templates into 10 clusters. The first col-
umn indicates the cluster number. The second and third
columns specify the cluster membership, by indicating the
number of templates with a given underlying STANDUP
schema found within that cluster. The fourth column in-
dicates the cluster size. The last column indicates the la-
bel assigned to that cluster using the majority rule described
above. For example, cluster 1 contains 21 templates, 19 of
which have rhyminglotus as their underlying schema,
and 2 of which have bazaar as their underlying schema.
Accordingly, it is assigned the label rhyminglotus.

Table 2 shows the precision and recall values computed
for the clustering results. The first two columns indicate the
cluster numbers and assigned labels, which correspond to
the information in Table 1, and the last two columns indi-
cate the precision and recall values computed for each clus-
ter. Finally, the last row indicates the overall precision and
recall. This aggregate result take into account the weighted
averages given the different cluster sizes. Note that we col-
lapsed clusters 1 and 6 because they were both labeled as
rhyminglotus, and similarly, clusters 2 and 3 are col-
lapsed due to the fact that they are both labeled as bazaar.

Finally, Table 3 shows the confusion matrix of how
the templates are classified according to their underlying
schema. The rows indicate the original underlying schemas,
and the columns indicate the cluster labels. For example,
of the 20 templates extracted from punning riddles gen-
erated using the bazaar schema, 14 are correctly found
within a cluster labeled bazaar, 2 are found in a cluster la-
beled rhyminglotus, and 4 are found in a cluster labeled
lotus.

International Conference on Computational Creativity 2012

No. Schema Amount Total Label
1 rhyg;;ag;;)tus 129 21 rhyminglotus
2 bazaar 11 11 bazaar
3 bazaar 3 3 bazaar
lotus 20
newelanl 19
ingernutpun 17
4 ® ngwelanPZ 16 89 lotus
doublepun 13
bazaar 4
doublepun 7
5 newelan2 4 14 doublepun
gingernutpun 3
6 rhyminglotus 1 1 rhyminglotus
7 newelan| 1 1 newelan|
8 phonsub 20 20 phonsub
9 poscomp 20 20 poscomp
10 negcomp 20 20 negcomp
Table 1: Results of agglomerative clustering
No. Label Precision Recall
1 & 6 rhyminglotus 20/22=0.91 20/20=1
2&3 bazaar 14/14=1 14/20=0.7
4 lotus 20/89=0.225 20/20=1
5 doublepun 7/14=0.5 7/20=0.35
7 newelan] 1/1=1 1/20=0.05
8 phonsub 20/20=1 20/20=1
9 poscomp 20/20=1 20/20=1
10 negcomp 20/20=1 20/20=1
Overall 0.61 0.763

Table 2: Precision and recall measures

From these results, we can see that only templates with
phonsub, poscomp, and negcomp as their underlying
schemas are perfectly identified. Templates with the un-
derlying schemas rhyminglotus and lotus are cor-
rectly clustered together, but suffer some impurities with
other templates also being deemed to belong to their clus-
ters. Most notably, the cluster labeled 1otus contains a
very large number of templates from other schemas such
as bazaar, doublepun, gingernutpun, newelanl,
and newelan2. The cluster labeled newelanl con-
tains only one template. No clusters were labeled as
gingernutpun and newelan2.

A purely random baseline, in which the 200 extracted
templates are randomly assigned to 10 different clusters,
would yield an expected precision and recall of 0.1. Whilst
this is an artificially low baseline, the results of an overall
precision of 0.61 and recall of 0.763 suggests that T-PEG
is able to extract some salient information regarding the un-
derlying lexical relationships of a pun. However, certain un-
derlying schemas are very difficult to distinguish from each
other.

Upon further analysis, we can see that the problems arise
from the fact that the templates extracted by T-PEG conflate

137

E . 2
.2 = — (o]
§ £ 3 2 2 & £ § 2 &
& £ =2 S8 =w & & & & &8
bazaar 14 2 4
rhyminglotus 20
lotus 20
doublepun 13
gingernutpun 17 3
newelanl 19 1
newelan2 16 4
phonsub 20
poscomp 20
negcomp 20

Table 3: Confusion matrix of clustering results

the various rules in STANDUP, i.e. schemas, description
rules, and canned text templates. To illustrate the issues,
observe the following two jokes, both generated using the
lotus schema, and their resulting extracted templates:

Joke 1:

What do you call a cross between a firearm and a first step?
A piece initiative
The resulting template is:

What do you call a cross between a <X8> and a <X11> <X12>?
A <YI> <Y2>

with the following word relationships:
e I[sCompoundNoun(X11, X12)

e IsCompoundNoun(Y1-0, Y2)

e Synonym(X8, Y1)

e Synonym(Y2, X11:X12)

e Hypernym(X11:X12, Y1-0:Y2)

e Homophone(Y1-0, Y1)

From the joke we can see that the instantiations for
the regular variables are X8=firearm, X1 1=first, X12=step,
Yl=piece, and Y2=initiative. Furthermore, the similar-
sound variable Y 1-0 is bound to peace, because in WordNet,
“peace initiative” is an instance of an initiative.

Thus, the word relationships state that “first step” and
“peace initiative” are compound nouns, firearm is a syn-
onym of piece, initiative is a synonym of “first step”, which
in turn is a hypernym of “peace initiative”, and that lastly,
peace and piece are homophones.

Joke 2:

What do you call a cross between an 1 and a correspondent?
A litre writer.

The resulting template is:

What do you call a cross between an <X8> and a <X11>7?
A <Y1> <Y2>

with the following word relationships:

International Conference on Computational Creativity 2012

e [sCompoundNoun(Y1-0, Y2)
e Synonym(X8, Y1)

e Synonym(X11, Y1-0:Y2)

e Homophone(Y1-0, Y1)

From the joke, we can see that the instantiations for the
regular variables are X8=I, X11=correspondent, Y 1=litre,
and Y2=writer. Furthermore, the similar-sound variable Y1-
0 is bound to letter, because in WordNet, “letter writer” is a
synonym for “correspondent”.

Thus, the word relationships state that “letter writer” is a
compound noun, 1 is a synonym of litre, correspondent is a
synonym of letter writer, and litre and letter are deemed to
be homophones.

From these two jokes and their resulting extracted tem-
plates, we can make several observations. Firstly, T-PEG
correctly extracts the core lexical preconditions stated for the
lotus schema, in that the ’punchline’ must contain a com-
pound noun Y1-0:Y2 (“peace initiative” and “letter writer”,
respectively), where the first word is replaced with a homo-
phone, Y1 (in the first joke, piece, and in the second, litre).

However, the two jokes use different description rules for
the question part. Whereas the former joke used a synonym
(firearm) and a hypernym (first step) to describe the punch-
line, the latter used two synonyms, namely | and correspon-
dent. Since T-PEG makes no distinction between word re-
lationships arising from schemas or description rules, the
choice of description rule, which is a somewhat trivial
linguistic variation, leads the agglomerative clustering to
falsely conclude that two jokes from different underlying
schemas in fact use the same pattern.

Additionally, T-PEG extracted ‘noisy’ word relationships
that play no part in the joke construction. Whereas the word
relationships of the extracted template for the second joke
capture exactly the necessary and sufficient conditions, in
the former joke, nothing hinges on the fact that a “first step”
is a compound noun, nor that initiative is a synonym of “first
step”. Such extraneous word relationships further pull the
templates into wrong clusters.

From this experiment, we can conclude that although T-
PEG may be successful at learning some joke templates
given sample punning riddles, it is still making faulty asser-
tions as to the constraints that specify what makes the riddle
‘work’ as a joke.

However, we speculate that much work can be done to
repair such errors. The data redundancy contained within the
specific templates that are clustered together, for instance,
can be further analysed to form core relationships that are at
the heart of the punning riddle structure. This is an avenue
of future work that we intend to explore.

Summary

The manually constructed rules of STANDUP are specif-
ically designed to maximize generative powers whilst re-
taining a fairly limited set of symbolic rules. T-PEG, on
the other hand, tries to address the issue of having to hand-
craft rules by automatically extracting templates from exam-
ple jokes. However, the evaluation of this functionality was

138

fairly limited given the difficulty and cost of manual eval-
uation. This paper has attempted to carry out a fairly novel
methodology of automatically evaluating the performance of
one creative system (T-PEG) using another creative system
(STANDUP) to produce sample data with complete under-
lying annotations for comparing against. Although the re-
sults are far from conclusive, it corroborates the results of
the manual evaluation in (Hong and Ong 2009) that claims
T-PEG was successful in extracting templates from sample
jokes. Furthermore, the experiment could shed more light
on where T-PEG was still lacking in its ability to extract the
underlying generative rules of the punning riddles.

Furthermore, the benefit is twofold: the template cluster-
ing process proposed in this work has attempted to address
the generalizability of T-PEG. It is not sufficient to say that
a huge number of templates will ensure maximum coverage.
For a generative system to be deemed creative, it should be
able to generate a high ratio of good quality artefacts from a
limited set of symbolic rules.

By breaking down the patterns into schemas, description
rules, and templates, and by stating the conditions when they
can be composed together, STANDUP is able to produce a
very wide range of different jokes, and in some sense can
“explain” the craftsmanship behind its joke production fa-
cilities, as each individual component represents a specific
function of the joke. T-PEG’s templates, on the other hand,
are monolithic structures that cannot be broken down into its
functional components. This distinction is to be expected,
given that the rules found within STANDUP were manu-
ally constructed, whereas T-PEG rules are automatically ex-
tracted. Nevertheless, this points towards a promising direc-
tion of future work in the automatic extraction of rules from
creative artefacts.

As stated in the previous section, we believe that the tem-
plate clustering process opens up the possibility of future
work, i.e. by further leveraging the data redundancy con-
tained with the resulting clusters. Further still, given that the
clustering process makes use of the notion of distances be-
tween templates and clusters, one could imagine a technique
that selects the template closest to the centroid of the cluster
as being the most representative template for further gener-
ation. Finally, we would like to explore more sophisticated
generalization techniques that would enable us to tease out
the distinctions between component rules such as schemas,
description rules, and canned text templates.

Acknowledgments

We would like to thank the creators of the STANDUP and T-
PEG systems for making their software available for further
experimentation and development. We would also like to
thank the anonymous reviewers for their feedback and sug-
gestions.

References

Binsted, K. 1996. Machine Humour: An Implemented
Model of Puns. Ph.D. Dissertation, Department of Artificial
Intelligence, University of Edinburgh, Edinburgh, UK.

International Conference on Computational Creativity 2012

Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1989. The
structure-mapping engine: Algorithm and examples. Artifi-
cial Intelligence 41:1-63.

Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database. MIT Press.

Hong, B. A., and Ong, E. 2009. Automatically extracting
word relationships as templates for pun generation. In Pro-
ceedings of the 1st Workshop on Computational Approaches
to Linguistic Creativity (CALC-09).

Liu, H., and Singh, P. 2004. Conceptnet: A practical
commonsense reasoning toolkit. BT Technology Journal
22(4):221-226.

Love, B. C. 2000. A computational level theory of similarity.
In Proceedings of the 22nd Annual Meeting of the Cognitive
Science Society, 316-321.

Manurung, R.; Ritchie, G.; Pain, H.; Waller, A.; O’Mara, D.;
and Black, R. 2008. The construction of a pun generator for
language skills development. Applied Artificial Intelligence
22(9):841-869.

Manurung, R.; Ritchie, G.; and Thompson, H. 2012. Using
genetic algorithms to create meaningful poetic text. Jour-
nal of Experimental & Theoretical Artificial Intelligence
24(1):43-64.

Ritchie, G. 2005. Computational mechanisms for pun gen-
eration. In Proceedings of the 10th European Natural Lan-
guage Generation Workshop, 125-132.

139

