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Abstract

Creative problem solving (CPS) is a skill that can greatly
improve resourcefulness and adaptability of existing arti-
ficial intelligence (AI) systems. In this paper, we discuss
how CPS leverages theoretical aspects from Computa-
tional Creativity (CC) and planning in AI. We present
a definition of CPS, and discuss how CPS is achieved
using aspects of CC and problem solving in AI.

Introduction
The Apollo 13 incident of 1970 is an example of how human
ingenuity and creativity saved the lives of the three astronauts
on-board. In order to combat the increasing carbon diox-
ide levels in the spacecraft, the astronauts crafted a carbon
dioxide filter using available objects (Cass 2005). Similar
capabilities are currently beyond the scope of existing arti-
ficial agents. In this paper, we focus on Creative Problem
Solving (CPS) - a skill that can greatly improve resource-
fulness of existing artificial intelligence (AI) systems. We
discuss how CPS adapts theoretical aspects from Computa-
tional Creativity (CC) and general problem solving in AI,
thus combining the two. We focus specifically on agents
that plan and learn over states and actions, in the context of
creative problem solving. We adapt terminologies frequently
used in the planning and learning literature in AI, and link
them to theoretical aspects in CC. While there have been
existing efforts at formalizing CPS, the formalizations have
focused specifically on either AI (such as classical planning
(Sarathy 2018; Erdogan and Stilman 2013)), or perspectives
in CC (such as concept re-representation (Olteţeanu 2015;
2014)). In contrast, we present a formalization of CPS by
adapting aspects of problem solving from both AI and CC.
This interdisciplinary approach allows us to take a holistic
perspective on CPS, to stimulate further research in the area.

Definition of Creative Problem Solving
We begin by defining the components of a problem to be
solved by an agent acting in its environment through planning
or learning. The planning or learning problem specification
in AI typically consists of a task goal G to be accomplished,
given a set of environment states S and agent actions A. The
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Figure 1: Creative Problem Solving (CPS) occurs when the
initial conceptual space of the agent is insufficient to com-
plete the task, and the agent needs to expand its conceptual
space to achieve the task goal. Traditional planning or learn-
ing in AI would return a failure in such scenarios.

agent produces a task plan or policy ⇧ over the states and
actions, in order to accomplish a goal. Thus, ⇧ : S ! A,
represents a mapping from the set of environment states, to
the set of actions.

In creative problem solving, we broadly define the notion
of a concept, as a state, action, or a task plan or policy. More
specifically, depending on the problem formulation, concepts
could refer to the actions that an agent can perform (e.g.,
“open”, or “close”), the task plan or policy generated via
planning or learning approaches, or the state space including
states of objects in the agent’s environment (e.g., “clean”,
“dirty”), and the state of the agent (e.g., configuration of the
agent’s joints). While existing problems in AI focus on one
or more of these aspects (actions, states, task plan or policy),
grouping them under the term “concepts” allows us to unify
the range of problem formulations within a single definition.

More generally, we denote concepts as cX , and conceptual
space CX as the set of all concepts cX , where X is one
of {⇧, S, A}. More specifically, C⇧ denotes the set of all
task plans or policies c⇡, CS denotes the set of all states
cS , and CA denotes the set of actions cA. Furthermore, let
CX⇤

denote the universal set of concepts cX , such that CX⇤

contains every possible concept that the agent could know,
e.g., the set of all possible actions. In this work, we assume
that the initial conceptual space CX ⇢ CX⇤

, i.e., the agent’s
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initial knowledge is limited. Note that CX = CX⇤
is often

not a practical assumption for real-world agents, since it
implies that the agent knows every concept possible.

A crucial aspect of CPS that differentiates it from gen-
eral problem solving is that the initial conceptual space CX

known to the agent is insufficient to accomplish the task goal.
Traditional planning or learning approaches in AI often yield
a failure in these circumstances. For example, the agent
might need to learn about a completely new state or action to
be able to accomplish the task. Thus, CPS is characterized
by its flexibility or adaptability to handle novel problems
(Guilford 1967). We formally define CPS as (See figure 1):

Definition 1 Creative problem solving is defined as the pro-
cess by which the agent discovers new concepts that were
not in the initial conceptual space of the agent, allowing it
to accomplish a previously impossible goal. Formally, CPS
refers to the process by which the agent discovers new con-
cepts c0X 2 C 0X , where C 0X * CX , such that C 0X enables
the agent to solve a task that was previously unsolvable when
only CX was known.

In other words, the space of concepts that is explicitly
represented by the agent defines the boundaries of what the
agent can plan to accomplish. Creativity arises when the
agent uses what it already knows, to discover something
new. In the context of problem solving, the newly discovered
knowledge is applied to solve a previously impossible task.
In the following sections, we expand upon our definition,
highlighting the theoretical aspects in CC that apply to CPS.

Adaptations of Aspects in Computational
Creativity to Creative Problem Solving

Although there is no widely accepted singular definition for
computational creativity (Jordanous 2012), there do exist gen-
erally accepted aspects. In this section, we review four major
aspects of CC, and their inheritance and adaptations to cre-
ative problem solving. The aspects listed below are grouped
into two categories; output-based aspects and process-based
aspects. These categorizations are not meant to divide types
of systems, but rather, to group key aspects.

Output-based Aspects
In output-based aspects, the focus is on evaluating the
creativity of a system by determining whether the output
produced in a task is considered to be creative. These
systematic outputs, referred to as artefacts in the CC
community, may take physical and/or non-physical form
(e.g. paintings, songs, recipes). The first aspect (Novelty and
Value) describes two key characteristics of a creative output,
whereas the second aspect (Evaluative Methods) describes
methods for making the evaluations.

Novelty and Value: This first aspect stems from the work
of Margaret Boden, who proposed that creativity necessitates
both novelty and value (Boden 1998). Novelty guarantees
that the generated outputs of a creative process are in some
way original, whereas the value criteria ensures that the
generated outputs are not just random generations, but in

some way geared towards a creative goal. Both novelty
and value have contextual considerations. For example, an
agent may produce a novel painting, but in the context of a
scenario which calls for a creative recipe, the novel painting
would not be considered valuable (Sosa and Gero 2016;
Varshney, Wang, and Varshney 2016).

Evaluative Methods: In evaluative methods, the creativity
of a system is evaluated by judging the output of its pro-
cesses, deeming them to be creative or not creative. Sim-
ilar in nature to the Turing test, these methods focus on
using the judgement of an observer on the product of a cre-
ative process. The evaluation can either happen computation-
ally (Colin et al. 2016; Colton, Wiggins, and others 2012;
Varshney, Wang, and Varshney 2016), from a human eval-
uator (Bishop and Boden 2010; Guckelsberger, Salge, and
Colton 2017), or from a social group (Varshney, Wang, and
Varshney 2016). The nature of these evaluations vary, where
in some cases the output is compared to a human’s creative
output, and in others, the output is judged in a social context.
Additionally, the evaluation of a creative output can be deter-
mined by the agent’s ability to explain its own intentions and
motivations to a human (Cook et al. 2019).

CPS Adaptation of Output-based Aspects: In the con-
text of problem solving, the novelty criteria is fully inherited.
Creative solutions may not be completely original themselves,
but rather in their application to the problem. For example,
using Tupperware as a container may not be original in itself,
but using Tupperware as a replacement for a soap dish may
be considered a creative solution to a problem. Formally, a
concept c0X is said to be novel when it is not contained within
the initial conceptual space CX of the agent for that problem,
i.e., c0X /2 CX . The second criteria in CC is that creativ-
ity necessitates value. In the context of CPS, this criteria is
inherited as usefulness or utility. That is, does the solution
actually solve the problem? A conceptual space C 0

X is said
to be useful, when the goal state G can be accomplished via
concept(s) c0X 2 C 0

X .
CPS does not directly inherit evaluative methods. This is

because the output of a CPS process is simply evaluated as ei-
ther successful or not successful, based on its ability to solve
the problem. As such, a successful solution to a problem
which necessitates CPS is inherently creative. Thus, evalua-
tion in CPS involves evaluating whether the new conceptual
space C 0

X is sufficient to accomplish the current goal.

Process-based Aspects
Process-based aspects focus on the method by which creative
output is generated. Contrary to output-based, process-based
aspects are concerned with the question of how outputs are
produced as opposed to the evaluation of what is produced.
The first aspect (Procedural Methods) reviews existing
methods for synthesizing the creative process, whereas the
second aspect (Boden’s Types of Creativity) reviews three
ways of implementing procedural methods.

Procedural Methods: In procedural methods, the focus
lies on evaluating creativity based on the method by which
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it systematically generates its creative output. These
methods have been explored across many processes, ranging
from machine learning approaches (Toivonen and Gross
2015), to associative algorithms (Varshney, Wang, and
Varshney 2016), and autonomous evaluation algorithms
(Jennings 2010). A popular approach in CC is a two part
method, consisting of an expansion phase where the agent
synthesizes a large set of possible outputs for a creative
process, and a contraction phase where the agent processes
the candidate outputs in order to select valuable output.
Analogous conceptualizations of the expansion phase include
divergent thinking, generative thinking, and defocused
attention. Analogous conceptualizations of the contraction
phase include convergent thinking, evaluative thinking, and
focused attention (Guilford 1967; Pereira and Cardoso 2002;
Zhang, Sjoerds, and Hommel 2020; Sarathy 2018).

Boden’s Types of Creativity: Boden proposed three cate-
gories that describe the process of generating creative outputs,
namely, combinational creativity, transformational creativ-
ity, and exploratory creativity (Boden 1998). Combinational
creativity involves taking known or familiar information, and
combining it in a way that generates a novel output (Pereira
and Cardoso 2002; Lieto et al. 2019). Transformational cre-
ativity involves transforming one or more dimensions of the
solution/output space to provide the means for new struc-
tures to emerge in the transformed space. Lastly, exploratory
creativity involves an exhaustive search of a solution/output
space to find a novel solution.

CPS Adaptation of Process-based Aspects: Creative
problem solving directly utilizes process-based approaches.
CPS is typically triggered by an impasse moment, where
the agent detects that nominal problem solving techniques
are insufficient for accomplishing the goal (Knoblich et al.
1999). Impasse is followed by a period of incubation, where
the agent generates the solution space, synthesizing pos-
sible ways of solving the problem using a relaxed repre-
sentation of the problem and domain. Once a viable so-
lution is found in this space, the agent is said to reach its
insight or “Aha!” moment (Colin and Belpaeme 2019),
wherein the agent proceeds to use the solution to solve
the problem. We call this process the impasse-incubation-
insight process. While there exist other general formal-
izations of the creative process (Mumford et al. 1991;
1997), we use the impasse-incubation-insight paradigm to
facilitate our adaptations. The impasse-incubation-insight
process can be implemented using the two part method of
expansion and contraction in the following manner – the im-
passe moment triggers incubation, where the agent enters the
expansion phase and generates a new conceptual space C 0

X
from CX . This is followed by the contraction phase, wherein
the agent applies the newly discovered concepts c0X 2 C 0

X to
generate a plan for accomplishing the goal (insight moment).

Boden’s types of creativity are inherited into creative prob-
lem solving by providing three ways to expand an agent’s
initial conceptual space. Thus, Boden’s types of creativity
can be applied to manipulate the initial conceptual space CX

of the agent, in order to come up with a new conceptual space

C 0X * CX for solving the problem.
Combinational methods involve combining existing in-

formation in an agent’s conceptual space to generate a novel
conceptual space for solving the problem. The agent creates
new concepts c0X 2 C 0X by combining existing concepts in
CX . We define a function f that combines concepts in CX

to create the new conceptual space, such that f(cXi ) = cXi ,
when more than one concept is not combined:

f : CX ! C 0X | c0X = f(cX1 , ...cXk );

cX1 , ...cXk 2 CX , C 0X * CX

If cX1 , ...cXk 62 CX , we can redefine a new conceptual space
of

Sk
i=1 c

X
i , where combinational creativity applies. In CPS,

combinational creativity can be observed when learning new
behaviors or skills as a composition of previously known
behaviors (Hangl et al. 2020), or constructing new tools by
combining objects (Nair, Balloch, and Chernova 2019).

Transformational methods involve transforming the
problem representation in some way to generate a novel and
previously unknown representation of the same problem, i.e.,
the agent transforms the initial conceptual space CX into a
new conceptual space C 0X . The set of concepts c0X 2 C 0X

can be represented as follows:
f : CX ! C 0X | c0X = f(cX) 8 cX 2 CX , C 0X * CX

Thus, f denotes a surjective function that maps every concept
in cX 2 CX to a new concept c0X 2 C 0X . Transformational
creativity involves a mapping from the initial conceptual
space to a new conceptual space, via an appropriate transform,
e.g., rotations or translations (Fitzgerald, Goel, and Thomaz
2017), and segmentations (Gizzi, Castro, and Sinapov 2019).

Exploratory methods involve searching the universal con-
ceptual space CX⇤

, to discover a novel solution. The agent
may discover a new conceptual space C 0X ⇢ CX⇤

either
via random exploration of its environment (i.e., babbling),
or guided exploration using heuristics or loss or reward
functions. If the agent uses a loss function, the concepts
c0X 2 C 0X can be represented as follows:

{c0X = argmincX⇤L(cX
⇤
) s.t. cX

⇤
2 CX⇤

},
where L denotes an appropriate loss function, and C 0X con-
tains novel concepts from the universal conceptual space
such that C 0X * CX . In general, approaches that explore
the state space to derive a solution, e.g., reinforcement learn-
ing (with reward functions), search through planning spaces
(Erdogan and Stilman 2013), and motor babbling (Sinapov
and Stoytchev 2007), fall into this type. In large conceptual
spaces, this form of creativity can be prohibitive.

Conclusion
In this paper, we presented a formal definition of creative
problem solving as the intersection of computational creativ-
ity and problem solving in AI. We specified key aspects of
CC systems, and formalized their adapted inheritance into
CPS. Research in creative problem solving has taken place
mostly within the confines of the artificial intelligence com-
munity, and we believe that highlighting this problem in the
CC community will enable necessary, and more aggressive
advancements in developing computational methods for CPS.
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