
Spring 2017 :: CSE 506

Page Cache
Nima Honarmand

Spring 2017 :: CSE 506

The Address Space Abstraction
• Unifying abstraction:

• Each file has an address space (0 – file size)

• So do block devices that cache data in RAM (0 – dev size)

• The (anonymous) virtual memory of a process has an
address space (0 – 4GB on 32-bit x86)

• In other words, all page mappings can be thought
of as an (object, offset) tuple

Spring 2017 :: CSE 506

Recap: Anonymous Mapping
• “Anonymous” memory — no file backing it

• E.g., the stack or heap of a process

• Can be shared between processes

• How do we figure out virtual to physical mapping?
• Just walk the page tables!

• Linux doesn’t do anything outside of the page
tables to track this mapping

Spring 2017 :: CSE 506

File Mappings
• A VMA can also represent a memory mapped file

• A VMA may map only part of the file

• VMA includes a struct file pointer and an offset into file
• Offset must be at page granularity

• The kernel can also map file pages to service
read() or write() system calls

• Goal: We only want to load a file into memory
once!

Spring 2017 :: CSE 506

Logical View

Disk

Foo.txt
inode

?
Process A

Process B

Process C

File
Descriptor

Table

Hello!

struct file

Object

Spring 2017 :: CSE 506

Tracking In-memory File Pages

• What data structure to use for a file?
• E.g., what page stores the first 4k of file “foo”?

• No page tables for files

• What data structure to use?
• Hint: Files can be small, or very, very large

Spring 2017 :: CSE 506

The Radix Tree

• A prefix tree
• Rather than store entire key in each node, traversal of

parent(s) builds a prefix, node just stores suffix

• “Key” at each node implicit based on position in tree

• More important: A tree with a branching factor k > 2
• Faster lookup for large files (esp. with tricks)

• Does this remind you of another data structure we
have already seen?
• Yes, page table itself

• Similar problem: supporting both small and big address spaces

• Similar solution: A radix tree

Spring 2017 :: CSE 506

Radix Tree Structure

Source: Understanding

Linux kernel, 3rd Ed

Spring 2017 :: CSE 506

Using Radix Tree for File Address Space

• Each address space for a file cached in memory includes a
radix tree
• Radix tree is sparse: pages not in memory are missing

• What’s the key?
• Offset of the file

• What’s the value stored in a leaf?
• Pointer to physical page descriptor

• Assume an upper bound on file size when building the radix
tree (rebuild later if wrong)

• Example: Max size is 256k, branching factor (k) = 64

• 256k / 4k pages = 64 pages
• So we need a radix tree of height 1 to represent these pages

Spring 2017 :: CSE 506

Increasing Tree Height
• If the file size grows beyond max height, must grow

the tree

• Relatively simple: Add another root, previous tree
becomes first child

• Scaling in height:
• 1: 2^((6*1) + 12) = 256 KB

• 2: 2^((6*2) + 12) = 16 MB

• 3: 2^((6*3) + 12) = 1 GB

• 4: 2^((6*4) + 12) = 16 GB

• 5: 2^((6*5) + 12) = 4 TB

Spring 2017 :: CSE 506

Logical View

Disk

Hello!

Address Space

Radix

Tree

Foo.txt
inode

Process A

Process B

Process C

Spring 2017 :: CSE 506

Tracking Dirty Pages
• Radix tree also supports tags (such as dirty)

• A tree node is tagged if at least one child also has the tag

• Example: I tag a file page dirty
• Must tag each parent in the radix tree as dirty

• When I am finished writing page back, I must check all
siblings; if none dirty, clear the parent’s dirty tag

Spring 2017 :: CSE 506

sync() System Calls

• Most OS don’t write file updates to disk immediately
• OS tries to optimize disk arm movement
• Application can force write back using sync system calls

• sync() – Flush all dirty buffers to disk

• syncfs(fd) – Flush all dirty buffers to disk for FS
containing fd

• fsync(fd) – Flush all dirty buffers associated with
this file to disk (including changes to the inode)

• fdatasync(fd) – Flush only dirty data pages for this
file to disk
• Don’t bother with inode, unless critical metadata changed

Spring 2017 :: CSE 506

How to implement sync()?
• Each file system has a superblock

• Superblock keeps global meta data about the file system
such as size, list of inodes, list of free and used blocks, etc.

• All superblocks in a list in the kernel

• Each superblock keeps a list of dirty inodes

• inode has a pointer to the address space (including
the radix tree)

• Radix tree tracks dirty pages

Spring 2017 :: CSE 506

FS Organization

SB
/

SB
/floppy

SB
/d1

One
Superblock

per FS

inode

Dirty list

Dirty list of
inodes

Inodes and radix
nodes/pages
marked dirty

separately

Spring 2017 :: CSE 506

Asynchronous Flushing

• Kernel thread(s): pdflush
• Kernel thread: task that only runs in kernel’s address space

• 2 – 8 pdflush threads, depending on how busy/idle threads
are

• When pdflush runs, it is given a target number of pages
to write back
• Kernel maintains a total number of dirty pages

• Administrator configures a target dirty ratio (say 10%)

• Same traversal as sync() + a count of written pages
• Until the target is met

Spring 2017 :: CSE 506

Synthesis: read() syscall
int read(int fd, void *buf, size_t bytes);

• fd: File descriptor index

• buf: Buffer kernel writes the read data into

• bytes: Number of bytes requested

• Returns: bytes read (if >= 0), or -errno

Spring 2017 :: CSE 506

Simple steps
• Translate fd to a struct file (if valid)

• Increase reference count

• Validate that sizeof(buf) >= bytes requested
• and that buf is a valid address in user space

• Search the radix tree for the appropriate page of data

• If not found, or PG_uptodate flag not set, re-read from
disk
• read_cache_page()

• Copy into the user buffer
• up to inode->i_size (i.e., the file size)

Spring 2017 :: CSE 506

Requesting a page read

• Allocate a physical page to hold the file content

• First, the physical page must be locked
• Atomically set a lock bit in the page descriptor

• If this fails, the process sleeps until page is unlocked

• Once the page is locked, double-check that no one
else has re-read from disk before locking the page

• Invoke address_space->readpage() (set by
FS)

Spring 2017 :: CSE 506

Generic readpage()
• Recall that most disk blocks are 512 bytes, yet

pages are 4k

• If the blocks are contiguous on disk, read entire
page as a batch

• If not, read each block one at a time

• These block requests are sent to the backing device
I/O scheduler

Spring 2017 :: CSE 506

After readpage()
• Mark the page accessed (for LRU reclaiming)

• Unlock the page

• Then copy the data, update file access time,
advance file offset, etc.

Spring 2017 :: CSE 506

Copying data to user
• Kernel needs to be sure that buf is a valid address

• Remember: buf is a pointer in user space

• How to do it?
• Can walk appropriate page table entries

• What could go wrong?
• Concurrent munmap from another thread

• Page might be lazy allocated by kernel

Spring 2017 :: CSE 506

Trick
• What if we don’t do all of this validation?

• Looks like kernel had a page fault

• Usually REALLY BAD

• Idea: set a kernel flag that says we are in
copy_to_user()

• If a page fault happens for a user address, don’t panic
• Just handle demand faults

• If the page is really bad, write an error code into a
register so that it breaks the write loop; check after
return

Spring 2017 :: CSE 506

Benefits
• This trick actually speeds up the common case

(where buf is ok)

• Avoids complexity of handling weird race
conditions

• Still need to be sure that buf address isn’t in the
kernel

