Synthesis of Scientific Algorithms based on Evolutionary
Computation and Templates

Oleg Monakhov and Emilia Monakhova

{MONAKHOV,EMILIA } @RAV.SSCC.RU

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Pr. Lavrentieva, 6, Novosibirsk,

630090, Russia

Abstract

This work describes a new approach for the
synthesis of algorithms based on given tem-
plates and a set of input-output pairs using
evolutionary computation. The presented al-
gorithm of evolutionary synthesis integrates
the advantages of the genetic algorithms and
genetic programming and was applied for au-
tomatically rediscovery and discovery of sev-
eral computational, combinatorial and graph
algorithms.

1. Introduction

In this work the problem of synthesis of an algorithm A
is considered as a problem of searching for the param-
eters and functions of the given template 7" of an algo-
rithm with the aim of optimization of a given objective
function F' characterized as a quality of the algorithm
A. The template (skeleton (Cole, 1989; Mirenkov
& Mirenkova, 1996), design pattern (Gamma et al.,
1994)) is a parameterized control structure of the al-
gorithm. The template describes a scanning order of
data structures of the algorithm and defines the com-
putational dynamics of the algorithm in space-time co-
ordinates. The template T of the algorithm A contains
parameters P = {p;}, £ > 0, which describe the val-
ues of input and local variables, parameters of the data
structures, constants and some primitive operations of
the algorithm. The template T also contains a set of
functions (formulas) FM = {f,}, n > 0, of the algo-
rithm A. When giving the values of the parameters
P and defining the functions F'M in the template T,
the algorithm A(T, P, FM) is obtained. The objective
function F' estimates the discrepancy between the ob-
served output data of algorithm Y, = A(T, P, FM, X;)
and the given expected values Y; for the given input
values X;, 1 < ¢ < N. The function F also should es-
timate the complexity of the algorithm A(T, P, FM).

Thus, for the given template T and the given input-

output values {X;,Y;}, 1 < i < N, a problem of al-
gorithm discovery is to find the parameters P* and to
determine the functions F M* in the template T' defin-
ing of the algorithm A*(T, P*, FM*) such that

F(A*(T,P*,FM*,X;)) < F(A(T,P,FM, X;))
forall1<i< N, Pé€ Dom(P), FM € Dom(FM).

As a solution to the problem, a new template-based
evolutionary approach is proposed for computer dis-
covery (synthesis) of algorithms optimizing a given
objective function. This approach integrates the tem-
plates, genetic algorithms (GA) (Goldberg, 1989), ge-
netic programming (GP) (Koza, 1992) and obtains
some new properties: more complex loop structure
and recursion of the created algorithms than in ge-
netic programming, and synthesis of new functions and
predicates that the genetic algorithms can not cre-
ate. These properties of the approach are based on
the background knowledge and generalization of the
expected algorithm and application field included in
the template. The traditional genetic programming
(GP) suffers from weak-restricted blind search in huge
spaces for real-world problems and has the high time
efforts. This work investigates the use of templates of
algorithms to restrict the search space to admissible
models and structures of solutions.This approach rep-
resents the flexible and direct way to incorporate ex-
pert knowledge about parameters, variables, functions
and structures of the problems into being developed
computation models. In the extreme cases, on the one
hand, if we do not know a template of the algorithm,
this approach gives us the traditional genetic program-
ming. On the other hand, if we know a full structure
of the algorithm and do not know only some param-
eters, this approach gives us the traditional genetic
algorithm for searching of the optimal parameters.

A practical approach to a hybrid GA/GP search with-
out templates and multiple trees was used in (Andre,
1994; Nguyen & Huang, 1994; Lee, Hallam & Lund,
1996). The GA performs the search to find the right

Synthesis of Scientific Algorithms based on Evolutionary Computation and Templates

values for the constants, while the GP searches the
space of parse trees. The chromosome representation
contains both the parse tree and the constant values,
and there are different genetic operators for manipu-
lating the parse trees and the constants. Another in-
teresting approach in (Olsson, 1998) to the synthesis
of scientific algorithms and programs is based on evo-
lutionary computation but without genetic operations
and templates.

2. Template-based Evolutionary
Algorithm for Automatic Discovery

The automatic discovery algorithm is based on evolu-
tionary computation and the simulation of the sur-
vival of the fittest in a population of individuals,
each being presented by a point in the space of so-
lutions of the optimization problem. The individu-
als are presented by data structures Gen - chromo-
somes. Each chromosome contains underdeterminated
parameters py and functions (formulas) f,, of the tem-
plate: Gen = {P, FM}: {pl,pg, weny PR fl, fg, ey fn},
k,n > 0. These parameters and functions determine
the required algorithm A(T, Gen) based on the given
template T and the chromosome Gen.

Each population is a set of chromosomes Gen and
determines a set of algorithms A(T,Gen) generated
based on the template T'.

The main idea of the discovery algorithm consists in
the evolutionary transformations over sets of the chro-
mosomes (parameters and formulas of the template)
based on a natural selection: ”the strongest” survive.
In our case these individuals are algorithms giving the
best possible value of the objective (fitness) function.
In the algorithm the starting point is the generation
of the initial population. All individuals of the pop-
ulation are created at random, the best individuals
are selected and saved. To create the next generation,
new solutions are formed through genetic operations
named selection, mutation, crossover and adding new
elements.

The function F' named as fitness function evaluates
the sum of quadratic deviations of output data of al-
gorithm Y/ = A(T, Gen, X;) from the given expected
values Y; for the given input values X;, 1 <i < N:

N
F =Y (A(T,Gen, X;) - Y;)* + C(A(T, Gen)),

i=1

where C'(A(T, Gen)) is an estimation of the complex-
ity of the algorithm A (a time of execution, a number

of iterations, a complexity of formulas). In practice,
we use a number of iterations for the estimation of the
complexity in the case of synthesis of iterative algo-
rithms, otherwise we use the sum of number of nodes
(length) of formulas. The purpose of the discovery al-
gorithm is to search for a minimum of F'.

3. Data representation

Basic data structures in our program realizing the evo-
lutionary algorithm are the chromosomes Gen.

In this work a new approach for representation of the
chromosomes Gen is proposed. The chromosome Gen
is based on an integration of a linear structure of the
chromosome for representation of parameters py (as in
genetic algorithms (Goldberg, 1989)) and a multi-tree
structure of the chromosome for representation of func-
tions (formulas) f, (as in genetic programming (Koza,
1992)). The linear structure of a chromosome is used
for representation of the following parameters py of
the given template T': values of integer and real vari-
ables and constants; values of indices, increments and
decrements; signs of variables, logic operations and re-
lations, types of rounding.

The multi-tree structure of a chromosome is used for
representation of the functions (formulas) f, of the
given template T. The tree corresponds to the parse
tree of the function. The variables and constants
of the formula f, are represented by terminal nodes
TS of the tree. The operations and primitive func-
tions used in the formula f, are represented by non-
terminal nodes NS of the tree. Each operation (prim-
itive function) of the formula and its operands (the
arguments of the primitive function) are represented
by a node and its descendant nodes in the tree. For
example, in Fig. 1 the tree representation for the for-
mula f,= (z + 2)/v/a *xz — 5 has the following nodes:
TS: {m7a1275}1 N‘S: {+a_a*7/’\/_}'

Using the template T and generating the chromosomes
Gen, we create an analytical expression for each func-
tion f, and determine a value for each parameter py
and, after that, we can already produce all evaluations
and modifications of the algorithm A(T,Gen). Thus,
for the known values of the functions f, and param-
eters py we can calculate the output values Y] of the
algorithm A(T', Gen, X;) generated by evolution of the
chromosomes Gen based on the given template T for
the given input values X;, 1 < i < N. After evalua-
tion of the algorithms A we obtain the values of the
fitness function F' and select the best algorithms in the
population.

Synthesis of Scientific Algorithms based on Evolutionary Computation and Templates

Figure 1. Tree representation of formula.

4. Operators of the Algorithm

The mutation operator is applied to the individuals
(chromosomes) chosen randomly from the current pop-
ulation with a probability p,, € [0,1]. Mutation rep-
resents a modification of an individual whose number
is randomly selected. The modification of the linear
structure of the chromosome is understood as a re-
placement of a randomly chosen parameter p; by an-
other value selected at random from a set of admis-
sible values. The modification of the tree structure
of the chromosome is performed by a replacement of
the value of a randomly chosen node in the tree rep-
resentation of function f; by another value selected at
random from the set of admissible values.

The crossover operator is applied to the two individ-
uals (parents) chosen randomly from the current pop-
ulation with a probability p. € [0,1]. The crossover
consists of the generation of two new individuals by ex-
changing the parts of the chromosomes of the parents.
For the linear (or tree) structures of the chromosomes
the crossover is performed by replacing a randomly
chosen linear substructure (subtree) of one parent by
a linear substructure (subtree) from the other parent.

The creation of a new element is the generation of
random parameters p; and functions f, for the chro-
mosomes. It allows for the adding of a diversification
to the elements of a population.

The selection operator realizes the principle of the sur-
vival of the fittest individuals. It selects the best indi-
viduals with the minimum fitness function in the cur-
rent population.

Note, only simple genetic operators were used in the
algorithm, but this approach can use more complex
operators developed for GP and GA.

5. Iteration Process

In the search for the optimum of the fitness function
F' the iteration process in the computer discovery al-
gorithm is organized in the following way.

First iteration: a generation of the initial population.
It is realized as follows. All individuals of the popula-
tion are created by means of the operator new element
(with a test and rejection of all ”impractical” indi-
viduals). After filling the whole population, the best
individuals are selected and saved in an array best.

One iteration: a step from the current population to-
wards the next population. The basic step of the al-
gorithm consists of creating a new generation on the
basis of selection, mutation, crossover and also adding
some new elements.

After evaluation of fitness function for each individual
of the generation, a comparison of the value of this
function to values of fitness function of those individ-
uals which are saved in the array best is executed. In
this case, if an element from the new generation is bet-
ter than an element best[i], for some i, we locate the
new element on place i and shift all remaining ones
per a unit of downwards. Thus, the best element is
located at the top of the array best.

Last iteration (the termination criterion): the itera-
tions are finished either after a given number of steps
T = t or after finding optimal algorithm A(T,Gen)
(with the given value of fitness function).

By producing a given amount of the basic steps of
the template-based evolutionary algorithm, we obtain
a set of algorithms A(T, Gen) containing an algorithm
A*(T,Gen) with the minimum fitness function F' in
the element best[0].

6. Experimental Results

The template-based evolutionary approach was ap-
plied for rediscovery of the following algorithms: com-
putation of the power and factorial of a natural num-
ber, finding the least (largest) element of an array,
computation of the sum of the squares of elements
of an array, computation of the dot product of two
vectors, finding the formulas for the Fibonacci (Tri-
bonacci) sequence, computation of the sum of matri-
ces, bubble, merge and Shell sort, finding the roots of
an equation, load balancing in parallel system, finding
the single source shortest paths and minimal spanning
tree in a graph. The approach was also applied for dis-
covery of analytical descriptions of new dense families
of optimal regular networks (Monakhov & Monakhova,
2003) and a distance function of circulant graphs with

Synthesis of Scientific Algorithms based on Evolutionary Computation and Templates

degree four.

The realization of the template-based evolutionary al-
gorithm has been implemented in the C programming
language and templates have been presented in this
language. The number of iterations and population
size were chosen by an experimental way based on pa-
rameters from (Goldberg, 1989),(Koza, 1992).

6.1. Finding the roots of the second-order
equations

For the first example, the process of rediscovery of
algorithms for finding the roots of the second-order
equations: f(z) = ax® + br + ¢ = 0 is presented.
Let 20 of input-output pairs {X;,Y;} be given, where
X; = (a;,bi,c;) are the coefficients of the equations,
Y; = (rl;,r2;) are roots of the equations (for sim-
plicity, we will consider only real roots), 1 < i < N,
N = 20. The following two templates are used: the
first template T} is given as the following formula:

2= fl(aab:c) + fg(a,b,C) .

Note that the unknown functions are shaded.

The second template T4 of an approximation algorithm
is given as the following iterative loop:

1 {k =052 = Tpegy;

2 do {zpt1 = filwe, flzw), f'(ze) s K=k +1;}

3 while ((f'(zx) = € > 10" ")&(k < 500));

4 return z},

with a limited number of iterations it < 500, with
a given precision of approximation € < 10~7 and an
initial point xpe4, With a procedure for calculation of
derivative f'(z).

The terminal nodes for Ty are T'S; = {a,b,c,Cr},
and for Ty are T'Sy = {xy, f(zx), f'(zk), Cr}, where
Cr is a set of random natural constants. The set
of operations used for synthesis of the formulas is
NS ={+,—%/,\/> 22} for the both templates.

In the case of the first template the template-
based evolutionary algorithm rediscovered the follow-
ing known formula: r1 5 = —b/2a + Vb?> — 4ac/2a. In
the case of the second template the discovery algo-
rithm found the following expression: zpy; = zj —
f(zr)/f'(zr). This result corresponds to the known
formula of Newton’s method (method of tangents).
The first result has been found after 10216 iterations
(for time 70 sec.) with a population of 200. The sec-
ond result has been found after 360 iterations (for time
10 sec.) with a population of 200.

6.2. Finding the recursive functions for the
Fibonacci and Tribonacci numbers

The second example shows how the recursive function
for the Fibonacci numbers can be generated from the
given template and the first eight numbers with index
1 <14 < 8. We use the following template:

F(i) = f3 (F(f1(9)), F(f2(d)))-

With the set of operations NS = {+, —, %, /} and set
of terminals T'S = {i, Cr} the template-based evolu-
tionary algorithm defined f;(i) =i — 1, fo(i) =i — 2
and f3(x1,x2) = 1 + z2 after 411 iterations (for time
12 sec.) with a population of 3000.

Tribonacci numbers can be generated from the follow-
ing template:

F(i) = fa (F(f1(9)), F(fa(@)), F(f3(3)).

The template-based evolutionary algorithm defined
Fili)) = i—1, fo0i) = i—2, f3(i) = i — 3 and
fa(z1,20,23) = x + x2 + z3 after 461 iterations
(for time 209 sec.) with a population of 30000, with
the set of operations NS = {4, —}, set of terminals
TS = {i,Cr} and with the given first ten numbers
with index 1 < ¢ < 10.

6.3. Finding the distance function of circulant
graphs with degree four

For this example, the distance function of circulant
graphs with degree 4 is created. The class of circu-
lant networks (Bermond, Comellas & Hsu, 1995; Mon-
akhov & Monakhova, 2000; Hwang, 2003) plays an
important role in the design and implementation of
interconnection networks. A circulant graph, having
the parametric description, is defined as follows. A
circulant is an undirected graph G(N;si,S2,...,Sn)
with a set of nodes V' = 0,1,2,...,N — 1, having
it s1,iE8y,...,its, (mod N) nodes, adjacent to
each node i.

The numbers S = (s;) (0 < 81 < ... < s, < N/2)
are generators of the finite Abelian group of auto-
morphisms connected to the graph. Circulant graphs
G(N;1,sa,...,8,), with the identity generator, are
known as loop networks (Bermond, Comellas & Hsu,
1995). The degree of a node in circulant graph G is 2n,
where n is the dimension. We will consider loop net-
works with degree 4, i.e. circulant networks of the form
G(N;1,s). For example, a circulant graph C(14;1,6)
with degree 4, N = 14,51 = 1, s5 = 6 is shown in Fig.
2.

The diameter of G is defined as d(N;S) =
maxy yev D(u,v), where D(u,v) (the distance func-

Synthesis of Scientific Algorithms based on Evolutionary Computation and Templates

0
13 1
12 2
10 4
9 5
& 6
7

Figure 2. Circulant C(14;1,6).

tion) is the length of a shortest path between nodes u
and v in G. Because of the symmetry in circulants it
is enough to consider the problem of finding a short-
est path from 0 to an arbitrary node v. The distance
function for nodes 0 and v in circulant C(200;1, s),
N =200, for 0 < s < N/2 and 0 < v < N/2 is shown
in Fig. 3.

Distance D{200; 1, s)
] .

Figure 3. Distance function of circulant C(200;1, s).

For finding the distance function D(0,v) we will con-
sider the following consideration. For any node w we
define +s and —s links from node w depending on
whether they are used to go to node (w + s)mod N

(in clockwise direction) or (w — s)mod N (in counter-
clockwise direction). Similarly, we define +1 and —1
links. Note that in circulant graphs a shortest path
from 0 to v would be using at most either (+s, +1) or
(+s,—1) or (—s,+1) or (—s, —1) links. Therefore fur-
ther we will consider such combinations of links only.
Let (+s,+1)-path be a path from 0 to v using +s
and +1 links only. For other combinations of links
we define the analogous notations. In what follows
x/s = |x/s], 2%s = x mod s.

In order to go to node v from 0 by means of four pos-
sible ways we have to use

1) (+s,+1)-path: using v/s number of +s links and
v%s number of +1 links;

2) (+s,—1)-path: using v/s + 1 number of +s links
and s — v%s number of —1 links;

3) (—s,—1)-path: using (N — v)/s number of —s
links and (N — v)%s number of —1 links;

4) (—s,+1)-path: using (N —v)/s+ 1 number of —s
links and s — (N — v)%s number of +1 links.

This corresponds to one loop travelled in clockwise di-
rection and one loop travelled in counterclockwise di-
rection (¢ = 0). Generalizing this process for ¢ > 0, we
obtain for node v :

1) all (+s,+1)-paths: using (v + tN)/s number of
+s links and (v 4+ tN)%s number of +1 links;

2) all (+s, —1)-paths: using (v+tN)/s+1 number of
+s5 links and s — (v + ¢IV)%s number of —1 links;

3) all (—s, —1)-paths: using ((¢+1)N —v)/s number
of —s links and ((t + 1)N — v)%s number of —1
links;

4) all (—s,+1)-paths: using ((¢+1)N —v)/s+1 num-
ber of —s links and s — ((t + 1) N — v)%s number
of +1 links.

Note that because of the symmetry of circulants the
(=s,+1) and (—s, —1)-paths from 0 to v + tN can be
changed to the (+s,—1) and (+s, +1)-paths, respec-
tively, from 0 to node (t + 1)N — v, t > 0.

It is necessary to find the shortest paths of all the four
types and the shortest of the four will give us a global
shortest path between 0 and v. The number of loops
t < s because v%s < s for any 0 < v < N.

Based on background knowledge of circulant proper-
ties the following template T for the distance function

Synthesis of Scientific Algorithms based on Evolutionary Computation and Templates

dist = D(0,v) of circulant C(N;1,s) is used:

1 int t,k, k2,7,72,d,d1,d2,dist = N;

2 for(t=0;t<s;t=t+1)

3 {k=@W+txN)/s;r=(v+txN)%s;

4 BR=(0+D*xN—-0v)/s:12=((t+1)*xN —0v)%s;
5 dl= fi(k,r,s);d2= fi1(k2,r2,s);

6 d= min(dl,d2); if (dist > d) dist = d; }

7 return dist

In the line 1 of the template the needed local variables
are defined. In the line 2 we have the operator for with
the limited number of loops t < s. In the lines 3 and 4
the variables k and r define the numbers of +s and +1
links, respectively, for path from 0 to v in clockwise
direction, and, similarly, the variables k2 and r2 de-
fine the numbers of —s and +1 links for path from 0 to
v in counterclockwise direction. In the line 5, for the
current loop ¢, the undefined function f;(k,r,s) has
to calculate the length d1 of the shortest path from 0
to v in clockwise direction, and, similarly, f; (k2,72 s)
calculates the length d2 of the shortest path in coun-
terclockwise direction. In the line 6 the length d (dist)
of the shortest path from 0 to v for the current loop ¢
(for all loops ' < t) is defined. In the line 7 we have
the result: dist = D(0,v).

The terminal nodes for the undefined function
fi(x1,xa, x3) are local variables {k, k2,r,r2}, a global
{s} and {Cr} (aset of random natural constants). The
set of operations used for synthesis of the formula f;
is NS = {+, —,min, [z] }.

For this template the template-based evolution-
ary algorithm found the following expression:
fi(z1,z0,23) = min((z1 + z2),(z1 + 1 + 23 — 2)).
The function fi(k,r,s) calculates the length of the
shortest path from 0 to v in clockwise direction as the
minimum of the lengths (k+7) and ((k+1)+ (s —r))
of the (+s,+1)- and (+s,—1)-paths, respectively,
and, similarly, the function f;(k2,72,s) calculates the
length of the shortest path from 0 to v in counter-
clockwise direction (both for the current loop ¢). The
result has been found for the given 99 input-output
pairs {v, D(0,v)}, 1 < v <99, for graph C(200;1, s)
after 127 iterations (for time 270 sec.) with a pop-
ulation of 500. The correctness for computation of
the distance function D(u,v) of circulant based on
template T and formula f; was proved experimentally
and theoretically.

The upper estimate of ¢ (equal to s in the line 2 of the
above template) can be decreased.

Lemma 1 The number of loops in the algorithm
defining the distance function (the line 2 of the above
template) may not exceed the following value: |(s/2 +

1)/IN/s]].
As a result we have

Lemma 2 The computation of the distance function
D(0,v), 0 <wv < N, for loop network C(N;1,s) based
on template T, formula fi and with the number of
loops defined by Lemma 1 is correct.

This algorithm can be used to solve other problems in
loop networks of degree 4, such as the routing prob-
lem of finding a shortest path between two nodes, or
finding the diameter of a graph. For solving the first
problem it is sufficient to store numbers of steps and
signs of two generators giving a shortest path if the
operation dist = d was realized in the line 6 of the
above template T'.

In (Mukhopadhyaya & Sinha, 1995; Narayanan &
Opatrny, 1997; Robic & Zerovnik, 2000), the algo-
rithms of finding a shortest path between any pair of
nodes in loop networks of degree 4 are given. The
above algorithm generated by the template-based evo-
lutionary algorithm differs from all known algorithms
and its estimate is not worse.

7. Conclusions

The represented template-based evolutionary ap-
proach has been used successfully to automatically
invent computational algorithms and for discovery of
mathematical formulas for the given data sets and for
the given algorithm’s templates (e.g. iterations, recur-
sions, loops and cycles), which describe the scanning of
the complex data structures (matrixes, arrays, graphs,
trees) and which contain the formula templates in the
body. This approach can be used for synthesis of new
algorithms, functions, models and solutions, which af-
terwards can be theoretically investigated and justi-
fied.

References

Cole, M. (1989).
Management of Parallel Computation.
Press.

Algorithmic Skeletons: Structured
The MIT

Mirenkov, N., & Mirenkova, T. (1996). Multimedia
Skeletons and Filmification of Methods. Proc. of
The First International Conference on Visual In-
formation Systems (pp. 58—67). Victoria University,
Melbourne, Australia.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J.
(1994). Design Patterns: Elements of Reusable

Synthesis of Scientific Algorithms based on Evolutionary Computation and Templates

Object-Oriented Software.
ing, MA.

Addison-Wesley, Read-

Goldberg, D. E. (1989). Genetic Algorithms,
in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA.

Koza, J. (1992). Genetic Programming. Cambridge,
The MIT Press.

Andre, D. (1994). Automatically defined features: The
simultaneous evolution of 2-dimensional feature de-
tectors and algorithm for using them. In K. Kinnear
(Ed.), Advances in Genetic Programming (pp. 477-
494). MIT Press/Bradford Books.

Nguyen, T. & Huang, T. (1994). Evolvable 3D model-
ing for model-based object recognition systems. In
K. Kinnear (Ed.), Advances in Genetic Program-
ming (pp. 459-475). MIT Press/Bradford Books.

Lee, W.P., Hallam, J. & Lund, H. H. (1996). A Hybrid
GP/GA Approach for Coevolving Controllers and
Robot Bodies to Achieve Fitness - Specified Tasks.
Proc. of IEEFE International Conf. on Evolutionary
Computation. IEEE Press.

Olsson, J. R. (1998). Population management for auto-
matic design of algorithms through evolution, Proc.
of IEEFE International Conference on FEvolutionary
Computation, IEEE Press.

Monakhov, O. & Monakhova, E. (2003). An Algo-
rithm for Discovery of New Families of Optimal Reg-
ular Networks. Proc. of 6th Inter. Conf. on Discov-
ery Science (DS 2003), Oct. 17-20, 2003, Sapporo,
Japan, Lecture Notes in Artificial Intelligence, vol.
2843, (pp. 244-254). Springer- Verlag, Berlin Hei-
delberg.

Bermond, J.-C., Comellas, F. & Hsu, D.F. (1995). Dis-
tributed loop computer networks: a survey, J. Par-
allel Distributed Comput., 24, 2-10.

Monakhov, O. & Monakhova, E. (2000). Parallel Sys-
tems with Distributed Memory: Structures and Or-

ganization of Interactions, Novosibirsk, SB RAS
Publ. (in Russian).

Hwang, F.K. (2003). A survey on multi-loop networks.
Theoretical Computer Science, 2003, 299, 107-121.

Mukhopadhyaya, K. & Sinha, B.P. (1995). Fault-
tolerant routing in distributed loop networks. IEEE
Trans. Comput., 44(12), 1452-1456.

Narayanan, L. & Opatrny, J. (1997). Compact routing
on chordal rings of degree four. In D. Krizanc and

P. Widmayer, (Ed.), Sirocco 97, Carleton Scientific,
125-137.

Robic, B. & Zerovnik, J. (2000). Minimum 2-terminal
routing in 2-jump circulant graphs. Computers and
Artificial Intelligence, 19(1), 37-46.

