
code.sd

2011 - August.2021

http://code.sd/

Introduction

This book is written for programmers who want to learn the Object Pascal Language. It is also suitable
as a first programming book for new students and non-programmers. It illustrates programming
techniques in general in addition to the Object Pascal Language.

The Object Pascal Language

The first appearance of the Pascal Language supporting Object Oriented programming was in 1983 by
Apple computer company. After that Borland supported Object Oriented programming for their famous
Turbo Pascal line.

Object Pascal is a general purpose hybrid (structured and object oriented programming) language. It
can be used for a vast range of applications, like learning, game development, business applications,
Internet applications, communication applications, tools development, and OS kernels.

Delphi

After the success of Turbo Pascal, Borland decided to port it to Windows and introduced component
driven technology to it. Soon Delphi became the best RAD (Rapid Application Development) tool at
that time.

The first version of Delphi was released in 1995 with a rich set of components and packages that
supported Windows and Database applications development.

Free Pascal

After Borland dropped support for the Turbo Pascal line, the Free Pascal team started an open source
project to write a compatible compiler for Turbo Pascal from scratch, and then make it compatible with
Delphi. This time the Free Pascal compiler was targeting additional platforms and operating systems
like Windows, Linux, Mac, ARM, and WinCE.

Version 1.0 of the Free Pascal compiler was released in July 2000.

Lazarus

Free Pascal is a compiler, and it lacks an Integrated Development Environment (IDE) similar to the
Delphi IDE for Windows. The Lazarus project was started to provide an IDE for Free Pascal. It
provides a source code editor, debugger, and contains a lot of frameworks, packages, and component
libraries similar to the Delphi IDE.

Version 1.0 of Lazarus has released on August 2012, but there are a lot of applications developed with
beta versions of Lazarus. A lot of volunteers write packages and components for Lazarus, and the
community is growing.

Object Pascal features

Object Pascal is a very easy and readable language for beginners, its compilers are very fast, and the
applications it produces are reliable, fast and can be compared with C, and C++. You can write robust
and large applications with its IDEs (Lazarus and Delphi) without complexity.

Author: Motaz Abdel Azeem

I am graduated from Sudan University of Science and Technology in 1999. and I started learning
Pascal as a second language after BASIC. Since then, I've been using it continuously, and I found it a
very easy and powerful tool, specially after I studied C, and C++. Then I moved to Delphi. I have
developed using Delphi for long time. Later I have studied Java and Go and I'm using them specially
for web services, and Free Pascal/Lazarus for desktop applications.

I live in Khartoum. My current job is a software architect.

First Editor

Pat Anderson graduated from Western Washington State College in 1968 and Rutgers Law School in
1975. He works as the City Attorney of Snoqualmie, Washington. Pat began programming on a Radio
Shack TRS-80 Model III in 1982 with the built-in BASIC interpreter, but soon discovered Turbo
Pascal. He has owned all versions of Turbo Pascal from 4.0 to 7.0, and every version of Delphi from
1.0 to 4.0. Pat took a hiatus from programming from 1998 until 2009, when he came upon Free Pascal /
Lazarus, which reignited his passion for programming.

Second Editor

Jason Hackney is a graduate of Western Michigan University's
College of Aviation. He works full-time as a professional pilot for a
power company based in southeast Michigan. Jason has been a casual

programmer since his first exposure to the Commodore 64 around 1984.
Briefly introduced to Turbo Pascal in 1990, he recently rekindled
latent programming interest after discovering Linux, Lazarus, and Free
Pascal.

License:

The License for this book is Creative Commons.

Environment for book examples

We will use Lazarus and Free Pascal for all the examples in this book. You can get the Lazarus IDE,
including the Free Pascal compiler, from this site: http://lazarus.freepascal.org.

If you are using Linux, then you can get Lazarus from the software repository. In Ubuntu you can use
the command:

sudo apt-get install lazarus

In Fedora you can use the command:

yum install lazarus

Lazarus is a free and open source application. And it is available on many platforms. Applications
written in Lazarus can be re-compiled on another platform to produce executables for that platform. For
example if you write an application using Lazarus in Windows, and you want to produce a Linux
executable for that application, you only need to copy your source code to Lazarus under Linux, then
compile it.

Lazarus produces applications that are native to each operating system, and it does not require any
additional libraries or virtual machines. For that reason, it is easy to deploy and fast in execution.

Using Text mode

All examples in the first chapters of this book will be console applications (text mode applications/
command line applications), because they are easy to understand and standard. Graphical user interface
applications will be introduced in later chapters.

http://lazarus.freepascal.org/

ContentsContents
Introduction...2

The Object Pascal Language...2

Delphi..2

Free Pascal..2

Lazarus..3

Object Pascal features...3

Author: Motaz Abdel Azeem..3

First Editor..3

Second Editor...3

License:..4

Environment for book examples..4

Using Text mode...4

Chapter OneChapter One

Language BasicsLanguage Basics
Our First Application...10

Other examples..12

Variables..14

Sub types..18

Conditional Branching..19

The If condition..19

Air-Conditioner program:...19

Weight program..21

Case .. of statement..24

Restaurant program...24

Restaurant program using If condition..25

Students' Grades program...26

Keyboard program...26

Loops..28

For loop...28

Multiplication Table using for loop...29

Factorial program...30

Repeat Until loop...31

Restaurant program using Repeat loop...31

While loop..33

Factorial program using while loop..33

Strings..35

Copy function...38

Insert procedure...39

Delete procedure..40

Trim function..40

StringReplace function...41

Arrays..43

Records..46

Files...48

Text files...49

Reading text file program..49

Creating and writing into text file..51

Appending to a text file..54

Add to text file program...54

Random access files...55

Typed files..55

Marks program..55

Reading student marks...56

Appending student marks program..57

Create and append student marks program...58

Cars database program...59

File copying...61

Copy files using file of byte..61

Untyped files..63

Copy files using untyped files program...63

Display file contents program..65

Date and Time..67

Date/time comparison..69

News recorder program...70

Constants...72

Fuel Consumption program...72

Ordinal types..74

Sets...76

Exception handling..78

Try except statement..78

Try finally...79

Raise an exception...80

Chapter TwoChapter Two

 Structured Programming Structured Programming
Introduction...83

Procedures...83

Parameters...84

Restaurant program using procedures...85

Functions...86

Restaurant program using functions..87

Local Variables..88

News database application..89

Functions as input parameters..92

Procedure and function output parameters...93

Calling by reference...94

Units...96

Units in Lazarus and Free Pascal...98

Units written by the programmer...98

Hejri Calendar...99

Procedure and function Overloading..102

Default value parameters..103

Sorting..104

Bubble sort algorithm..104

Sorting students' marks..106

Selection Sort algorithm..107

Shell sort algorithm...109

String sorting..111

Sorting students name program..111

Sort algorithms comparison...112

Chapter ThreeChapter Three

The Graphical User InterfaceThe Graphical User Interface
Introduction..117

Our First GUI application...117

Second GUI application..122

ListBox application..124

Text Editor Application..125

News Application...127

Application with a Second form...128

Chapter FourChapter Four

Object OrientedObject Oriented

ProgrammingProgramming
Introduction...130

First example: Date and Time...130

News application in Object Oriented Pascal...135

Queue Application...141

Object Oriented File..145

Copy files using TFileStream...146

Inheritance...147

Chapter OneChapter One

Language BasicsLanguage Basics

Our First ApplicationOur First Application

After installing and running Lazarus, we can start a new program from the main menu:

Project/New Project/Program

We will get this code in the Source Editor window:

program Project1;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

{$IFDEF WINDOWS}{$R project1.rc}{$ENDIF}

begin
end.

We can save this program by clicking File/Save from the main menu, and then we can name it, for
example, first.lpi

Then we can write these lines between the begin and end statements:

 Writeln('This is Free Pascal and Lazarus');
 Writeln('Press enter key to close');
 Readln;

The complete source code will be:

program first;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

{$IFDEF WINDOWS}{$R first.rc}{$ENDIF}

begin
 Writeln('This is Free Pascal and Lazarus');
 Writeln('Press enter key to close');
 Readln;
end.

The Writeln statement displays the text on the screen (Console window). Readln halts execution to let
the user read the displayed text until he/she presses enter to close the application and return to the
Lazarus IDE.

Then press F9 to run the application or click the button:

After running the first program, we will get this output text:

This is Free Pascal and Lazarus
Press enter key to close

Press Ctr+Alt+O to see the output window, or click on the main menu: View/Debug Windows/Console
In/Output

If we are using Linux, we will find a new file in a program directory called (first), and in Windows we
will get a file named first.exe. Both files can be executed directly by double clicking with the mouse.
The executable file can be copied to other computers to run without the need of the Lazarus IDE.

Other examples

In the previous program change this line:

 Writeln('This is Free Pascal and Lazarus');

to this one:

 Writeln('This is a number: ', 15);

Then press F9 to run the application.

You will get this result:

This is a number: 15

Change the previous line as shown below, and run the application each time:

Code:

 Writeln('This is a number: ', 3 + 2);

Output:

This is a number: 5

Code:

 Writeln('5 * 2 = ', 5 * 2);

Output:

5 * 2 = 10

Code:

 Writeln('This is real number: ', 7.2);

Output:

This is real number: 7.2000000000000E+0000

Code:

 Writeln('One, Two, Three : ', 1, 2, 3);

Output:

One, Two, Three : 123

Code:

 Writeln(10, ' * ', 3 , ' = ', 10 * 3);

Output:

10 * 3 = 30

We can write different values in the Writeln statement each time and see the result. This will help us
understand it clearly.

Variables

Variables are data containers. For example, when we say that X = 5, that means X is a variable, and it
contains the value 5.

Object Pascal is a strongly typed language, which means we should declare a variable's type before
putting values into it. If we declare X as an integer, that means we should put only integer numbers into
X during its life time in the application.

Examples of declaring and using variables:

program FirstVar;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

var
 x: Integer;
begin
 x:= 5;
 Writeln(x * 2);
 Writeln('Press enter key to close');
 Readln;
end.

We will get 10 in the application's output.

Note that we used the reserved word Var, which means the following lines will be variable
declarations:

 x: Integer;

This means two things:
1. The variable's name is X; and
2. the type of this variable is Integer, which can hold only integer numbers without a fraction. It

could also hold negative values as well as positive values.

And the statement:

 x:= 5;

means put the value 5 in the variable X.

In the next example we have added the variable Y:

var
 x, y: Integer;
begin
 x:= 5;
 y:= 10;
 Writeln(x * y);
 Writeln('Press enter key to close');
 Readln;
end.

The output of the previous application is:

50
Press enter key to close

50 is the result of the formula (x * y).

In the next example we introduce a new data type called character:

var
 c: Char;
begin
 c:= 'M';
 Writeln('My first letter is: ', c);
 Writeln('Press enter key to close');
 Readln;
end.

This type can hold only one letter, or a number as an alphanumeric character, not as value.

In the next example we introduce the real number type, which can have a fractional part:

var
 x: Single;
begin
 x:= 1.8;
 Writeln('My Car engine capacity is ', x, ' liters');
 Writeln('Press enter key to close');
 Readln;
end.

To write more interactive and flexible applications, we need to accept input from the user. For example,
we could ask the user to enter a number, and then get this number from the user input using the Readln
statement / procedure:

var
 x: Integer;
begin
 Write('Please input any number:');
 Readln(x);
 Writeln('You have entered: ', x);
 Writeln('Press enter key to close');
 Readln;
end.

In this example, assigning a value to X is done through the keyboard instead of assigning it a constant
value in the application.

In the example below we show a multiplication table for a number entered by the user:

program MultTable;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

var
 x: Integer;
begin
 Write('Please input any number:');
 Readln(x);
 Writeln(x, ' * 1 = ', x * 1);
 Writeln(x, ' * 2 = ', x * 2);
 Writeln(x, ' * 3 = ', x * 3);
 Writeln(x, ' * 4 = ', x * 4);
 Writeln(x, ' * 5 = ', x * 5);
 Writeln(x, ' * 6 = ', x * 6);
 Writeln(x, ' * 7 = ', x * 7);
 Writeln(x, ' * 8 = ', x * 8);
 Writeln(x, ' * 9 = ', x * 9);
 Writeln(x, ' * 10 = ', x * 10);
 Writeln(x, ' * 11 = ', x * 11);
 Writeln(x, ' * 12 = ', x * 12);
 Writeln('Press enter key to close');

 Readln;
end.

Note that in the previous example all the text between single quotation marks (') is displayed in the
console window as is, for example:

 ' * 1 = '

Variables and expressions that are written without single quotation marks are evaluated and written as
values.

See the difference between the two statements below:

 Writeln('5 * 3');
 Writeln(5 * 3);

The result of first statement is:

5 * 3

Result of the second statement is evaluated then displayed:

15

In the next example, we will do mathematical operations on two numbers (x, y), and we will put the
result in a third variable (Res):

var
 x, y: Integer;
 Res: Single;
begin
 Write('Input a number: ');
 Readln(x);
 Write('Input another number: ');
 Readln(y);
 Res:= x / y;
 Writeln(x, ' / ', y, ' = ', Res);
 Writeln('Press enter key to close');
 Readln;
end.

Since the operation is division, it might result in a number with a fraction, so for that reason we have
declared the Result variable (Res) as a real number (Single). Single means a real number with single
precision floating point.

Sub types

There are many sub types for variables, for example, Integer number subtypes differ in the range and
the number of required bytes to store values in memory.

The table below contains integer types, value ranges, and required bytes in memory:

Size in BytesMax ValueMin valueType

12550Byte

1127-128ShortInt

232767-32768SmallInt

2655350Word

42147483647-2147483648Integer

42147483647-2147483648LongInt

442949672950Cardinal

89223372036854775807-9223372036854780000Int64

We can get the minimum and maximum values and bytes sizes for each type by using the Low, High,
and SizeOf functions respectively, as in the example below:

program Types;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes;

begin
 Writeln('Byte: Size = ', SizeOf(Byte),
 ', Minimum value = ', Low(Byte), ', Maximum value = ',
 High(Byte));

 Writeln('Integer: Size = ', SizeOf(Integer),
 ', Minimum value = ', Low(Integer), ', Maximum value = ',
 High(Integer));

 Write('Press enter key to close');
 Readln;
end.

Conditional Branching

One of the most important features of intelligent devices (like computers, programmable devices) is
that they can take actions in different conditions. This can be done by using conditional branching. For
example, some cars lock the door when the speed reaches or exceeds 40 K/h. The condition in this case
will be:

If speed is >= 40 and doors are unlocked, then lock door.

Cars, washing machines, and many other gadgets contains programmable circuits like micro
controllers, or small processors like ARM. Such circuits can be programmed using assembly, C, or Free
Pascal according to their architecture.

The If condition

The If condition statement in the Pascal language is very easy and clear. In the example below, we want
to decide whether to turn on the air-conditioner or turn it off, according to the entered room
temperature:

Air-Conditioner program:Air-Conditioner program:

var
 Temp: Single;
begin
 Write('Please enter Temperature of this room :');
 Readln(Temp);
 if Temp > 22 then
 Writeln('Please turn on air-condition')
 else
 Writeln('Please turn off air-condition');

 Write('Press enter key to close');
 Readln;
end.

We have introduced the if then else statement, and in this example: if the temperature is greater than 22,
then display the first sentence::

Please turn on air-conditioner

else, if the condition is not met (less than or equal to 22) , then display this line:

Please turn off air-conditioner

We can write multiple conditions like:

var
 Temp: Single;
begin
 Write('Please enter Temperature of this room :');
 Readln(Temp);
 if Temp > 22 then
 Writeln('Please turn on air-conditioner')
 else
 if Temp < 18 then
 Writeln('Please turn off air-conditioner')
 else
 Writeln('Do nothing');

You can test the above example with different temperature values to see the results.

We can make conditions more complex to be more useful:

var
 Temp: Single;
 ACIsOn: Byte;
begin
 Write('Please enter Temperature of this room : ');
 Readln(Temp);
 Write('Is air conditioner on? if it is (On) write 1,',
 ' if it is (Off) write 0 : ');
 Readln(ACIsOn);

 if (ACIsOn = 1) and (Temp > 22) then
 Writeln('Do nothing, we still need cooling')
 else
 if (ACIsOn = 1) and (Temp < 18) then
 Writeln('Please turn off air-conditioner')
 else
 if (ACIsOn = 0) and (Temp < 18) then
 Writeln('Do nothing, it is still cold')
 else
 if (ACIsOn = 0) and (Temp > 22) then
 Writeln('Please turn on air-conditioner')
 else
 Writeln('Please enter a valid values');

 Write('Press enter key to close');
 Readln;

end.

In the above example, we have used the new keyword (and) which means if the first condition returns
True (ACIsOn = 1), and the second condition returns True (Temp > 22), then execute the Writeln
statement. If one condition or both of them return False, then it will go to the else part.

If the air-conditioner is connected to a computer via the serial port for example, then we can turn it
on/off from that application, using serial port procedures/components. In this case we need to add extra
parameters for the if condition, like for how long the air-conditioner was operating. If it exceeds the
allowable time (for example, 1 hour) then it should be turned off regardless of room temperature. Also
we can consider the rate of losing coolness, if it is very slow (at night), then we could turn if off for
longer time.

Weight programWeight program

In this example, we ask the user to enter his/her height in meters, and weight in Kilos. Then the
program will calculate the suitable weight for that person according to the entered data, and then it will
tell him/her the results:

program Weight;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 Height: Double;
 Weight: Double;
 IdealWeight: Double;
begin
 Write('What is your height in meters (e.g. 1.8 meter) : ');
 Readln(Height);
 Write('What is your weight in kilos : ');
 Readln(Weight);
 if Height >= 1.4 then
 IdealWeight:= (Height - 1) * 100
 else
 IdealWeight:= Height * 20;

 if (Height < 0.4) or (Height > 2.5) or (Weight < 3) or
 (Weight > 200) then
 begin
 Writeln('Invalid values');
 Writeln('Please enter proper values');
 end
 else
 if IdealWeight = Weight then
 Writeln('Your weight is suitable')
 else
 if IdealWeight > Weight then
 Writeln('You are under weight, you need more ',
 Format('%.2f', [IdealWeight - Weight]), ' Kilos')
 else
 Writeln('You are over weight, you need to lose ',
 Format('%.2f', [Weight - IdealWeight]), ' Kilos');

 Write('Press enter key to close');
 Readln;
end.

In this example, we have used new keywords:

1. Double: which is similar to Single. Both of them are real numbers, but Double has a double
precision floating point, and it requires 8 bytes in memory, while single requires only 4 bytes.

2. The second new thing is the keyword (Or) and we have used it to check if one of the conditions
is met or not. If one of condition is met, then it will execute the statement. For example: if the
first condition returns True (Height < 0.4), then the Writeln statement will be called:
Writeln('Invalid values'); . If the first condition returns False, then it will check the second one,
etc. If all conditions returns False, it will go to the else part.

3. We have used the keywords begin end with the if statement, because if statement should
execute one statement. Begin end converts multiple statements to be considered as one block
(statement), then multiple statements could be executed by if condition. Look for these two
statemetns:

 Writeln('Invalid values');
 Writeln('Please enter proper values');

 It has been converted to one statement using begin end:

 if (Height < 0.4) or (Height > 2.5) or (Weight < 3) or
 (Weight > 200) then
 begin
 Writeln('Invalid values');
 Writeln('Please enter proper values');
 end

4. We have used the procedure Format, which displays values in a specific format. In this case we
need to display only 2 digits after the decimal point. We need to add the SysUtils unit to the
Uses clause in order to use this function.

What is your height in meters (e.g. 1.8 meter) : 1.8
What is your weight in kilos : 60.2
You are under weight, you need more 19.80 Kilos

Note:
This example may be not 100% accurate. You can search the web for weight calculation in detail. We
meant only to explain how the programmer could solve such problems and do good analysis of the
subject to produce reliable applications.

Case .. of statement

There is another method for conditional branching, which is the Case .. Of statement. It branches
execution according to the case ordinal value. The Restaurant program will illustrate the use of the
case of statement:

Restaurant programRestaurant program

var
 MyOrder: Byte;
begin

 Writeln('Welcome to Pascal Restaurant. Please select your order');
 Writeln('1 - Chicken (10$)');
 Writeln('2 - Fish (7$)');
 Writeln('3 - Meat (8$)');
 Writeln('4 – Salad (2$)');
 Writeln('5 - Orange Juice (1$)');
 Writeln('6 - Milk (1$)');
 Writeln;
 Write('Please enter your selection: ');
 Readln(MyOrder);

 case MyOrder of
 1: Writeln('You have ordered Chicken,',
 ' this will take 15 minutes');
 2: Writeln('You have ordered Fish, this will take 12 minutes');
 3: Writeln('You have ordered meat, this will take 18 minutes');
 4: Writeln('You have ordered Salad, this will take 5 minutes');
 5: Writeln('You have ordered Orange juice,',
 ' this will take 2 minutes');
 6: Writeln('You have ordered Milk, this will take 1 minute');
 else
 Writeln('Wrong entry');
 end;
 Write('Press enter key to close');
 Readln;
end.

If we write the same application using the if condition, it will become more complicated, and will
contain duplications:

Restaurant program usingRestaurant program using If conditionIf condition
var
 MyOrder: Byte;
begin
 Writeln('Welcome to Pascal restaurant, please select your order');
 Writeln('1 - Chicken (10$)');
 Writeln('2 - Fish (7$)');
 Writeln('3 - Meat (8$)');
 Writeln('4 - Salad (2$)');
 Writeln('5 - Orange Juice (1$)');
 Writeln('6 - Milk (1$)');
 Writeln;
 Write('Please enter your selection: ');
 Readln(MyOrder);

 if MyOrder = 1 then
 Writeln('You have ordered Chicken, this will take 15 minutes')
 else
 if MyOrder = 2 then
 Writeln('You have ordered Fish, this will take 12 minutes')
 else
 if MyOrder = 3 then
 Writeln('You have ordered meat, this will take 18 minutes')
 else
 if MyOrder = 4 then
 Writeln('You have ordered Salad, this will take 5 minutes')
 else
 if MyOrder = 5 then
 Writeln('You have ordered Orange juice,' ,
 ' this will take 2 minutes')
 else
 if MyOrder = 6 then
 Writeln('You have ordered Milk, this will take 1 minute')
 else
 Writeln('Wrong entry');

 Write('Press enter key to close');
 Readln;
end.

In the next example, the application evaluates students' marks and converts them to grades: A, B, C, D,
E, and F:

Students' Grades programStudents' Grades program

var
 Mark: Integer;
begin
 Write('Please enter student mark: ');
 Readln(Mark);
 Writeln;

 case Mark of
 0 .. 39 : Writeln('Student grade is: F');
 40 .. 49: Writeln('Student grade is: E');
 50 .. 59: Writeln('Student grade is: D');
 60 .. 69: Writeln('Student grade is: C');
 70 .. 84: Writeln('Student grade is: B');
 85 .. 100: Writeln('Student grade is: A');
 else
 Writeln('Wrong mark');
 end;

 Write('Press enter key to close');
 Readln;
end.

In the previous sample we have used a range, like (0 .. 39), which means the condition will return True
if the Mark value exists in this range.

Note:
The Case statement works only with ordinal types like Integers, char, but it doesn't work with other
types like strings, and real numbers.

Keyboard programKeyboard program

In this example, we will get a character from keyboard and the application will tell us the row number
of the entered key on the keyboard:

var
 Key: Char;
begin
 Write('Please enter any English letter: ');
 Readln(Key);
 Writeln;

 case Key of
 'q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p':

 Writeln('This is in the second row in keyboard');

 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l':
 Writeln('This is in the third row in keyboard');

 'z', 'x', 'c', 'v', 'b', 'n', 'm':
 Writeln('This is in the fourth row in keyboard');
 else
 Writeln('Unknown letter');
 end;

 Write('Press enter key to close');
 Readln;
end.

Note that we have used a new technique in the case condition, which is a set of values:

 'z', 'x', 'c', 'v', 'b', 'n', 'm':

which means execute case branch statement if the Key was one of these values set:
z, x, c, v, b, n or m

We can also mix ranges with values set like this:

 'a' .. 'd', 'x', 'y', 'z':

which means execute the statement if the value falls between a and d, or equal to x, y or z.

Loops

Loops are used to execute certain parts of code (statements) for a specific number of times, or until a
condition is satisfied.

For loop

You can execute for statements for a specific number of cycles using a counter like this example:

var
 i: Integer;
 Count: Integer;
begin
 Write('How many times? ');
 Readln(Count);
 for i:= 1 to Count do
 Writeln('Hello there');

 Write('Press enter key to close');
 Readln;
end.

We should use ordinal types like Integer, Byte, and Char in for loop variables. We call this variable a
loop variable or loop counter. The value of loop counter can be initialized with any number, and we
can also determine the last value of loop counter. For example, if we need to count from 5 to 10, then
we can do this:

 for i:= 5 to 10 do

We can display loop counter in every cycle of the loop, as in the modified example below:

var
 i: Integer;
 Count: Integer;
begin
 Write('How many times? ');
 Readln(Count);
 for i:= 1 to Count do
 begin
 Writeln('Cycle number: ', i);
 Writeln('Hello there');
 end;

 Write('Press enter key to close');
 Readln;
end.

Note that this time we need to repeat two statements, and for that reason we have used the begin . . end
keywords to make them one statement.

Multiplication Table using for loop

The for loop version of the Multiplication Table program is easier and more concise:

program MultTableWithForLoop;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

var
 x, i: Integer;
begin
 Write('Please input any number: ');
 Readln(x);
 for i:= 1 to 12 do
 Writeln(x, ' * ', i, ' = ', x * i);

 Writeln('Press enter key to close');
 Readln;
end.

Instead of writing the Writeln statement 12 times, we write it once inside a loop which is executed 12
times.

We can make the for loop statement iterate in a backward direction using downto keyword instead of
to keyword using this syntax:

 for i:= 12 downto 1 do

Factorial programFactorial program
Factorial in mathematics is the multiplication of a number by each one of its predecessors down to the number 1.
For example, 3! = 3 * 2 * 1 = 6.

var
 Fac, Num, i: Integer;
begin
 Write('Please input any number: ');
 Readln(Num);
 Fac:= 1;
 for i:= Num downto 1 do
 Fac:= Fac * i;
 Writeln('Factorial of ', Num ,' is ', Fac);

 Writeln('Press enter key to close');
 Readln;
end.

Repeat Until loop

Unlike the for loop which repeats for a specific number of cycles, the Repeat loop has no counter. It
loops until a certain condition occurs (Returns True), then it will go to the next statement after the loop.

Example:

var
 Num : Integer;
begin
 repeat
 Write('Please input a number: ');
 Readln(Num);
 until Num <= 0;
 Writeln('Finished, please press enter key to close');
 Readln;
end.

In the previous example, the program enters the loop, then it asks the user to enter a number. If the
number is less than or equal to zero, it will exit the loop. If the entered number is greater than zero, the
loop will continue.

Restaurant program using Repeat loopRestaurant program using Repeat loop

var
 Selection: Char;
 Price: Integer;
 Total: Integer;
begin
 Total:= 0;
 repeat
 Writeln('Welcome to Pascal Restaurant. Please select your order');
 Writeln('1 - Chicken (10 Geneh)');
 Writeln('2 - Fish (7 Geneh)');
 Writeln('3 - Meat (8 Geneh)');
 Writeln('4 – Salad (2 Geneh)');
 Writeln('5 - Orange Juice (1 Geneh)');
 Writeln('6 - Milk (1 Geneh)');
 Writeln('X - nothing');
 Writeln;
 Write('Please enter your selection: ');
 Readln(Selection);
 Price:= 0;
 case Selection of
 '1': begin
 Writeln('You have ordered Chicken, this will take 15 minutes');
 Price:= 10;
 end;
 '2': begin
 Writeln('You have ordered Fish, this will take 12 minutes');
 Price:= 7;
 end;
 '3': begin

 Writeln('You have ordered meat, this will take 18 minutes');
 Price:= 8;
 end;
 '4': begin
 Writeln('You have ordered Salad, this will take 5 minutes');
 Price:= 2;
 end;
 '5': begin
 Writeln('You have ordered Orange juice, this will take 2 minutes');
 Price:= 1;
 end;
 '6': begin
 Writeln('You have ordered Milk, this will take 1 minute');
 Price:= 1;
 end;
 else
 begin
 Writeln('Wrong entry');
 Price:= 0;
 end;
 end;

 Total:= Total + Price;

 until (Selection = 'x') or (Selection = 'X');
 Writeln('Total price = ', Total);
 Write('Press enter key to close');
 Readln;
end.

In the previous example, we used these techniques:

1. Adding begin end in case branches to convert multiple statements to one statement
2. We initialized (put a starting value in a variable) the variable Total to zero, to accumulate the

total price of orders. Then we added the selected price in every loop to the Total variable:

Total:= Total + Price;

4. We put two options to finish the orders, either capital X, or small x. Both characters are
different in representation (storage) in computer memory.

Note:

We could replace this line:

 until (Selection = 'x') or (Selection = 'X');

By this abbreviated code:

 until UpCase(Selection) = 'X';

This will change the Selection variable to upper case if it is a lowercase letter, and the condition will
return True in both cases (x or X)

While loop

The while loop is similar to the repeat loop, but it differs from it in these aspects:

1. In the while , the condition is checked first before entering the loop, but repeat enters the loop
first then it checks the condition. That means repeat always executes its statement(s) once at
least, but while loop could prevent entering the first cycle if the condition returns False from the
beginning.

2. while loop needs begin end if there are multiple statements that need to be executed in a loop,
but repeat does not need begin end, its block (repeated statements) starts from the repeat
keyword to the until keyword.

Example:

var
 Num: Integer;
begin
 Write('Input a number: ');
 Readln(Num);
 while Num > 0 do
 begin
 Write('From inside loop: Input a number : ');
 Readln(Num);
 end;
 Write('Press enter key to close');
 Readln;
end.

Factorial program using while loopFactorial program using while loop
var
 Fac, Num, i: Integer;
begin
 Write('Please input any number: ');
 Readln(Num);
 Fac:= 1;
 i:= Num;
 while i > 1 do
 begin
 Fac:= Fac * i;
 i:= i - 1;
 end;
 Writeln('Factorial of ', Num ,' is ', Fac);

 Writeln('Press enter key to close');
 Readln;
end.

The while loop has no loop counter, and for that reason we have used the variable i to work as a loop
counter. The loop counter value is initialized by the number for which we need to get its factorial, then
we decrease it manually in each cycle of the loop. When i reaches 1, the loop will break.

Strings

The String type is used to declare variables that can hold a chain of characters. It can be used to store
text, a name, or a combination of characters and digits like a car license plate number.

In this example we will see how we can use the string variable to accept a user name:

var
 Name: string;
begin
 Write('Please enter your name : ');
 Readln(Name);
 Writeln('Hello ', Name);

 Writeln('Press enter key to close');
 Readln;
end.

In the next example, we will use strings to store information about a person:

var
 Name: string;
 Address: string;
 ID: string;
 DOB: string;
begin
 Write('Please enter your name : ');
 Readln(Name);
 Write('Please enter your address : ');
 Readln(Address);
 Write('Please enter your ID number : ');
 Readln(ID);
 Write('Please enter your date of birth : ');
 Readln(DOB);
 Writeln;
 Writeln('Card:');
 Writeln('--');
 Writeln('| Name : ', Name);
 Writeln('| Address : ', Address);
 Writeln('| ID : ', ID);
 Writeln('| DOB : ', DOB);
 Writeln('--');

 Writeln('Press enter key to close');
 Readln;
end.

Strings can be concatenated to produce larger strings. For example we can concatenate FirstName,
SecondName, and FamilyName into another string called FullName, similar to the next example:

var
 YourName: string;
 Father: string;
 GrandFather: string;
 FullName: string;
begin
 Write('Please enter your first name : ');
 Readln(YourName);
 Write('Please enter your father name : ');
 Readln(Father);
 Write('Please enter your grand father name : ');
 Readln(GrandFather);
 FullName:= YourName + ' ' + Father + ' ' + GrandFather;
 Writeln('Your full name is: ', FullName);

 Writeln('Press enter key to close');
 Readln;
end.

Note that in this example we have added a space (' ') between names (like YourName + ' ' + Father) to
make a separation between names. The space is a character too.

We can do many operations on strings, like searching for subtext in a string, copying one string to
another string variable, or converting text characters to capital or lowercase like the examples below:

This line converts the letters in the FullName string value to capital letters:

 FullName:= UpperCase(FullName);

And this converts it to lowercase letters:

 FullName:= LowerCase(FullName);

In the next example, we need to search for the letter a in a user name using the Pos function. The Pos
function returns the first occurrence (Index) of that character in a string, or returns zero if that letter or
substring does not exist in the searched text:

var
 YourName: string;
begin
 Write('Please enter your name : ');
 Readln(YourName);
 If Pos('a', YourName) > 0 then
 Writeln('Your name contains a')
 else
 Writeln('Your name does not contain a letter');

 Writeln('Press enter key to close');
 Readln;
end.

If the name contains a capital A, then Pos function will not point to it, because A is different from a as
we mentioned earlier.

To solve this problem we can convert all user name letters to lowercase case, and then we can do the
search:

 If Pos('a', LowerCase(YourName)) > 0 the

In the next modification of the code, we will display the position of the letter a in a user name:

var
 YourName: string;
begin
 Write('Please enter your name : ');
 Readln(YourName);
 If Pos('a', LowerCase(YourName)) > 0 then
 begin
 Writeln('Your name contains a');
 Writeln('a position in your name is: ',
 Pos('a', LowerCase(YourName)));
 end
 else
 Writeln('Your name does not contain a letter');

 Write('Press enter key to close');
 Readln;
end.

You may notice that if the name contains more than one letter a , the function Pos will return the index
of the first occurrence of the letter a in the user name.

You can get the count of characters in a string using the function Length:

 Writeln('Your name length is ', Length(YourName), ' letters');

And you can get the first letter/character of a string using its index number:

 Writeln('Your first letter is ', YourName[1]);

And the second character:

 Writeln('Your second letter is ', YourName[2]);

The last character:

 Writeln('Your last letter is ', YourName[Length(YourName)]);

You can also display a string variable character by character using a for loop:

 for i:= 1 to Length(YourName) do
 Writeln(YourName[i]);

Copy function

We can copy part of a string using the function copy. For example, if we need to extract the word
'world' from the string 'hello world', we can do it if we know the position of that part, as we have done
in the example below:

var
 Line: string;
 Part: string;
begin
 Line:= 'Hello world';

 Part:= Copy(Line, 7, 5);

 Writeln(Part);

 Writeln('Press enter key to close');
 Readln;
end.

Note that we have used the Copy function using this syntax:

 Part:= Copy(Line, 7, 5);

Here is an explanation of above statement:

• Part:= This is the string variable in which we will put the function result (sub string, 'world').
• Line This is the source string which contains the 'Hello world' sentence.
• 7 This is the starting point or index of sub string that we need to extract, in this case it is

 the character w.
• 5 This is the length of the extracted part. In this case it represents the length of the word

'world'.

In the next example, we will ask the user to enter a month name, like February, then the program will
type the short version of it, like Feb:

var
 Month: string;
 ShortName: string;
begin
 Write('Please input full month name e.g. January : ');
 Readln(Month);

 ShortName:= Copy(Month, 1, 3);

 Writeln(Month, ' is abbreviated as : ', ShortName);

 Writeln('Press enter key to close');
 Readln;
end.

Insert procedure

The Insert procedure inserts a substring into a string. Unlike the string concatenation operator (+)
which links two substrings together, Insert adds the substring in the middle of another string.

For example, we can insert the word Pascal into the string 'Hello world', resulting in 'Hello Pascal
World' as in the following example:

var
 Line: string;
begin
 Line:= 'Hello world';

 Insert('Pascal ', Line, 7);

 Writeln(Line);

 Writeln('Press enter key to close');
 Readln;
end.

Parameters of the Insert procedure are:

• 'Pascal' This is the substring that we need to insert inside the destination string.
• Line This is the destination string that will contain the result of the operation.
• 7 This is the position to start the insertion in the destination string. In this case it will be

after the seventh character, which is the first space of 'Hello world'.

Delete procedure

This procedure is used to delete a character or substring from a string. We need to know the start
position and the length of substring that should be deleted.

For example, if we need to delete the letters ll from the string 'Hello World' to make 'Heo World', we
can do it like this:

var
 Line: string;
begin
 Line:= 'Hello world';
 Delete(Line, 3, 2);
 Writeln(Line);
 Writeln('Press enter key to close');
 Readln;
end.

Trim function

This function is used to remove spaces from the start and the end of strings. If we have a string that
contains the text ' Hello ' it will be 'Hello' after using this function. We can not display spaces in a
terminal window unless we put characters between them. Look at the example below:

program TrimStr;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 Line: string;
begin
 Line:= ' Hello ';

 Writeln('<', Line, '>');

 Line:= Trim(Line);

 Writeln('<', Line, '>');

 Writeln('Press enter key to close');
 Readln;
end.

In the foregoing example, we have used the unit SysUtils, which contains the Trim function.

There are another two functions that remove spaces from only one side of a string, before/after. These
functions are: TrimRight, TrimLeft.

StringReplace function

The StringReplace function replaces characters or substrings with other characters or substrings in the
desired string.

program ٍStrReplace;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 Line: string;
 Line2: string;
begin
 Line:= 'This is a test for string replacement';
 Line2:= StringReplace(Line, ' ', '-', [rfReplaceAll]);
 Writeln(Line);
 Writeln(Line2);
 Write('Press enter key to close');
 Readln;
end.

The parameters of the StringReplace function are:

1. Line: This is the original string that we need to modify.

2. ' ': This is the substring that we need to replace. It is space in this example.

3. '-': This is the alternative substring that we want to replace the previous one in original string.

4. [rfReplaceAll]: This is the replacement type. In this case we need to replace all occurrence of
the space substring.

We can use only one string variable and discard the variable Line2 as modified example shows, but we
will lose the original text value.

var
 Line: string;

begin
 Line:= 'This is a test for string replacement';
 Writeln(Line);
 Line:= StringReplace(Line, ' ', '-', [rfReplaceAll]);
 Writeln(Line);
 Write('Press enter key to close');
 Readln;
end.

Arrays

An Array is a chain of variables of the same type. If we need to declare an array of 10 Integer variables,
we can do it like this:

 Numbers: array [1 .. 10] of Integer;

We can access single variables in the array using its index. For example, to put a value in the first
variable in the array we can write it as:

 Numbers[1]:= 30;

To put a value in the second variable, use the index 2:

 Numbers[2]:= 315;

In the next example, we will ask the user to enter 10 student marks and put them in an array. Eventually
we will go through them to extract pass/fail results:

var
 Marks: array [1 .. 10] of Integer;
 i: Integer;
begin
 for i:= 1 to 10 do
 begin
 Write('Input student number ', i, ' mark: ');
 Readln(Marks[i]);
 end;

 for i:= 1 to 10 do
 begin
 Write('Student number ', i, ' mark is : ', Marks[i]);
 if Marks[i] >= 40 then
 Writeln(' Pass')
 else
 Writeln(' Fail');
 end;

 Writeln('Press enter key to close');
 Readln;
end.

We can modify the previous code to get the highest and lowest student marks:

var
 Marks: array [1 .. 10] of Integer;
 i: Integer;
 Max, Min: Integer;
begin

 for i:= 1 to 10 do

 begin
 Write('Input student number ', i, ' mark: ');
 Readln(Marks[i]);
 end;

 Max:= Marks[1];
 Min:= Marks[1];

 for i:= 1 to 10 do
 begin
 // Check if current Mark is maximum mark or not
 if Marks[i] > Max then
 Max:= Marks[i];

 // Check if current value is minimum mark or not
 if Marks[i] < Min then
 Min:= Marks[i];

 Write('Student number ', i, ' mark is : ', Marks[i]);
 if Marks[i] >= 40 then
 Writeln(' Pass')
 else
 Writeln(' Fail');
 end;

 Writeln('Max mark is: ', Max);
 Writeln('Min mark is: ', Min);
 Writeln('Press enter key to close');
 Readln;
end.

Note that we consider the first mark (Marks[1]) as the maximum and minimum mark, and then we will
compare it with the rest of the marks.

 Max:= Marks[1];
 Min:= Marks[1];

Inside the loop we compare Max, Min with each mark. If we find a number that is larger than Max, we
will replace Max value with it. If we find a number that is less than Min, then we will replace Min with
it.

In the previous example we have introduced comments:

 // Check if current Mark is maximum mark or not

We have started the line with the characters //, which means that this line is a comment and will not
affect the code and will not be compiled. This technique is used to describe parts of code to other
programmers or to the programmer himself/herself.

// is used for short comments. If we need to write multi-line comments we can surround them by {} or
(**)

Example:

 for i:= 1 to 10 do
 begin
 { Check if current Mark is maximum mark or not
 check if Mark is greater than Max then put
 it in Max }
 if Marks[i] > Max then
 Max:= Marks[i];

 (* Check if current value is minimum mark or not
 if Min is less than Mark then put Mark value in Min
 *)
 if Marks[i] < Min then
 Min:= Marks[i];

 Write('Student number ', i, ' mark is : ', Marks[i]);
 if Marks[i] >= 40 then
 Writeln(' Pass')
 else
 Writeln(' Fail');
 end;

We can also disable part of our code temporarily by commenting it:

 Writeln('Max mark is: ', Max);
 // Writeln('Min mark is: ', Min);
 Writeln('Press enter key to close');
 Readln;

In the above code, we have disabled the procedure for writing the minimum student mark.

Note:

We can declare an array as having a zero based index the same as in the C language:

 Marks: array [0 .. 9] of Integer;

This can hold 10 elements too, but the first item can be accessed using the index 0:

 Numbers[0]:= 30;

Second item:

 Numbers[1]:= 315;

Last item:

 Numbers[9]:= 10;

or

 Numbers[High(Numbers)]:= 10;

Records

While arrays can hold many variables of the same type, records can hold variables of different types,
and these variables are called 'Fields'.

This group of variables/fields can be treated as a single unit or variable. We can use records to store
information that belong to the same object, for example, car information:

1. Car type: string variable
2. Engine size: real number
3. Production year: integer value

We can collect these different types in one record which represents a Car as in the following example:

program Cars;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

type
 TCar = record
 ModelName: string;
 Engine: Single;
 ModelYear: Integer;
 end;

var
 Car: TCar;
begin
 Write('Input car Model Name: ');
 Readln(Car.ModelName);
 Write('Input car Engine size: ');
 Readln(Car.Engine);
 Write('Input car Model year: ');
 Readln(Car.ModelYear);

 Writeln;
 Writeln('Car information: ');
 Writeln('Model Name : ', Car.ModelName);
 Writeln('Engine size : ', Car.Engine);
 Writeln('Model Year : ', Car.ModelYear);

 Write('Press enter key to close..');
 Readln;
end.

In this example ,we have defined a new type (Record) using the 'type' keyword:

type
 TCar = record
 ModelName: string;
 Engine: Single;
 ModelYear: Integer;
 end;

We have added the letter (T) to Car to indicate that this is a type and not a variable. Variable names
could be like: Car, Hour, UserName, but type names should be like: TCar, THouse, and TUserName.
This is a standard in the Pascal language.

When we need to use this new type, then we should declare a variable of that type, for example:

var
 Car: TCar;

If we need to store a value in one of its variables/fields, we should access it like this:

 Car.ModelName

Records will be used in the Random access files section of this book.

Files

Files are important elements of operating systems and applications. Operating system components are
represented as files, and information and data are represented in files too, like photos, books,
applications, and simple text files.

Operating systems control files management like: reading, writing, editing and deleting files.

Files are divided into many types according to many perspectives. We can group files into two types:
executable files, and data files. For example compiled binary Lazarus applications are executable files,
while Pascal source code (.pas) are data files. Also PDF books, JPEG pictures, are data files.

We can divide data files into two types according to the representation of their contents:

1. Text files: which are simple text files that can be written, or read using any simple tool including
operating system command lines like cat, vi commands in Linux and type, copy con commands
in Windows.

2. Binary data files: These are more complex and need special applications to open them. For
example, picture files can not be opened using simple command line tools, instead they should
be opened using applications like GIMP, Kolour Paint, MS Paint, etc. If we open picture, or
voice files, we will get unrecognizable characters which mean nothing to the user. Examples of
binary data files are database files, which should be opened using the proper application.

There is another way to categorize files according to access type:

1. Sequential access files: An example of a sequential file is a text file, which has no fixed size
record. Each line has its own length, so we can't know the position (in characters) for the start
of the third line for example. For that reason, we could open the file for read only, or writing
only, and we can also append text only to the end of file. If we need to insert text in the middle
of a file, then we should read file contents into memory, do the modifications, erase the entire
file from disk, then overwrite it the file with the modified text.

2. Random access files: This type of file has a fixed size record. A record is the smallest unit that
we can read and write at one time, and it could be Byte, Integer, string, or a user defined record.
We can read and write at the same time, for example, we could read the record number 3 and
copy it to the record number 10. In this case, we can know exactly the position of each record in
the file. Modifying records is simple. In random access files, we can replace/overwrite any
record without affecting the rest of the file.

Text files

Text files are the simplest files, but we should write to them in only one direction (only forward). We
can not go back while writing to a text file. We should also define the operation mode before opening
the file: Read, Write or Append (writing at the end).

In this example, we will display the contents of a text file selected by a user. For example, a user may
have a text file name like c:\test\first.pas in Windows or /home/user/first.pas in Linux:

Reading text file programReading text file program
program ReadFile;

{$mode objfpc}{$H+}
uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, sysUtils
 { you can add units after this };

var
 FileName: string;
 F: TextFile;
 Line: string;
begin
 Write('Input a text file name: ');
 Readln(FileName);
 if FileExists(FileName) then
 begin
 // Link file variable (F) with physical file (FileName)
 AssignFile(F, FileName);

 Reset(F); // Put file mode for read, file should exist

 // while file has more lines that does not read yet do the loop
 while not Eof(F) do
 begin
 Readln(F, Line); // Read a line from text file
 Writeln(Line); // Display this line in user screen
 end;
 CloseFile(F); // Release F and FileName connection
 end
 else // else if FileExists..
 Writeln('File does not exist');
 Write('Press enter key to close..');
 Readln;
end.

In Linux we can enter these file names:

/etc/resolv.conf
or

/proc/meminfo
/proc/cpuinfo

We have used new types, functions and procedures to manipulate text files which are:

1.
 F: TextFile;

TextFile is a type that is used to declare a text file variable. This variable can be linked to a text file for
later usage.

2.
 if FileExists(FileName) then

FileExists is a function contained in the SysUtils unit. It checks for a file's existence. It returns True if
the file exists in the storage media.

3.
 AssignFile(F, FileName);

After we have checked for the file's existence, we can use the AssignFile procedure to link the file
variable (F) with the physical file. Any further usage of F variable will represent the physical file.

4.
 Reset(F); // Put file mode for read, file should exist

The Reset procedure opens text files for reading only, and puts the reading pointer at the first character
of the file.

If there is no read permission for that file for the current user, an error message will appear, like access
denied.

5.
 Readln(F, Line); // Read a line from text file

The procedure Readln is used to read a complete line from the file and put it in the variable Line.
Before reading a line from text file, we should make sure that the file has not reached the end. We can
do that with the next function, Eof.

6.
 while not Eof(F) do

The Eof function returns True if the file has reached its end. It is used to indicate that the Read
operation couldn't be used anymore and we have read all of the file's contents.

7.
 CloseFile(F); // Release F and FileName connection

After finishing reading from or writing to a file, we should close it to release the file, because the Reset

procedure reserves the file in the operating system and prevents writing and deletion by another
application while the file is open.

We should use CloseFile only when the Reset procedure succeeds in opening the file. If Reset fails (for
example, if the file does not exist, or is being used by another application) in that case we should not
close the file.

In the next example we will create a new text file and put some text in it:

Creating and writing into text fileCreating and writing into text file

var
 FileName: string;
 F: TextFile;
 Line: string;
 ReadyToCreate: Boolean;
 Ans: Char;
 i: Integer;
begin
 Write('Input a new file name: ');
 Readln(FileName);

 // Check if file exists, warn user if it is already exist
 if FileExists(FileName) then
 begin

 Write('File already exist, did you want to overwrite it? (y/n)');
 Readln(Ans);
 if upcase(Ans) = 'Y' then
 ReadyToCreate:= True
 else
 ReadyToCreate:= False;
 end
 else // File does not exist
 ReadyToCreate:= True;

 if ReadyToCreate then
 begin
 // Link file variable (F) with physical file (FileName)
 AssignFile(F, FileName);

 Rewrite(F); // Create new file for writing

 Writeln('Please input file contents line by line, '
 , 'when you finish write % then press enter');
 i:= 1;
 repeat
 Write('Line # ', i, ':');
 Inc(i);
 Readln(Line);
 if Line <> '%' then
 Writeln(F, Line); // Write line into text file

 until Line = '%';

 CloseFile(F); // Release F and FileName connection, flush buffer
 end
 else // file already exist and user does not want to overwrite it
 Writeln('Doing nothing');
 Write('Press enter key to close..');
 Readln;
end.

In this example, we have used many important things:

1. Boolean type:

 ReadyToCreate: Boolean;

This type can hold only one of two values: either True or False. These values can be used directly in if
condition, while loop or repeat loop.

In the previous example, we have used the if condition like this:

 if Marks[i] > Max then

Which eventually turns to True or False.

2. UpCase function:

 if upcase(Ans) = 'Y' then

This statement is executed when the file exists. The program will warn the user about overwriting an
existing file. If he/she wants to continue, then he/she should enter a lowercase y or capital Y. The
UpCase function will convert the character into a capital letter if it is lowercase.

3. Rewrite procedure:

 Rewrite(F); // Create new file for writing

The Rewrite procedure is used to create a new empty file. If the file already exists, it will be erased and
overwritten. It also opens the file for writing only in case of text files.

4. Writeln(F, ..) procedure:

 Writeln(F, Line); // Write line into text file

This procedure is used to write string or variables in text file, and appends them with end of line
characters, which are a carriage return/line feed combination (CR/LF), represented as the characters for
the numbers 13 and 10 respectively.

These characters can not be displayed in a console window, but it will move the screen display cursor
to a new line.

5. Inc procedure:

 Inc(i);

This procedure increases an integer variable by one. It is equivalent to the statement:

 i:= i + 1;

6. CloseFile procedure:

 CloseFile(F); // Release F and FileName connection, flush buffer

As we mentioned earlier, the CloseFile procedure releases a file in the operating system. In addition, it
has an additional job when writing to a text file, which is flushing the writing buffer.

Buffering of text files is a feature that makes dealing with text files faster. Instead of writing a single
line or character directly to disk or any other storage media (which is very slow compared with writing
into memory), the application will write these entries into a memory buffer. When the buffer reaches its
full size, it will be flushed (forced to be written) into permanent storage media like a hard disk. This
operation makes writing faster, but it will add the risk of losing some data (in the buffer) if the power is
suddenly lost. To minimize data loss, we should close the file immediately after finishing writing to it,
or calling the Flush procedure to flush the buffer explicitly.

Appending to a text file

In this example, we want to open an existing text file for writing at the end of it, without removing its
original contents using the procedure Append.

Add to text file programAdd to text file program

var
 FileName: string;
 F: TextFile;
 Line: string;
 i: Integer;
begin
 Write('Input an existed file name: ');
 Readln(FileName);
 if FileExists(FileName) then
 begin
 // Link file variable (F) with physical file (FileName)
 AssignFile(F, FileName);

 Append(F); // Open file for appending

 Writeln('Please input file contents line by line',
 'when you finish write % then press enter');
 i:= 1;
 repeat
 Write('Line # ', i, ' append :');
 Inc(i);
 Readln(Line);
 if Line <> '%' then
 Writeln(F, Line); // Write line into text file
 until Line = '%';
 CloseFile(F); // Release F and FileName connection, flush buffer
 end
 else
 Writeln('File does not exist');
 Write('Press enter key to close..');
 Readln;
end.

After we run this application and enter an existing text file, we can view it with the cat / type
commands, or by double clicking on it in its directory to see the appended data.

Random access files

As we mentioned earlier, the second type of file according to an access type perspective is Random
access , or direct access. This type of file has a fixed size record, so that we can jump to any record for
reading or writing at any time.

There are two types of random access files: typed files and untyped files.

Typed files

Typed files are used for files that contain the same type of data that has the same size of records, for
example, if a file contains records of Byte type, that means the record size = 1 byte. If the file contains
real numbers (Single), that means all record sizes are 4 bytes, etc.

In the next example, we will show how to use file of Byte:

Marks programMarks program

var
 F: file of Byte;
 Mark: Byte;
begin
 AssignFile(F, 'marks.dat');
 Rewrite(F); // Create file
 Writeln('Please input students marks, write 0 to exit');

 repeat
 Write('Input a mark: ');
 Readln(Mark);
 if Mark <> 0 then // Don't write 0 value
 Write(F, Mark);
 until Mark = 0;
 CloseFile(F);

 Write('Press enter key to close..');
 Readln;
end.

In this example, we have used this syntax to define a typed file:

 F: file of Byte;

Which means: the file contains records of Byte data type, which can hold values from 0 to 255.

And we have created the file and opened it for writing using the Rewrite procedure:

 Rewrite(F); // Create file

Also we have used the function Write instead of Writeln to write records in the typed file:

 Write(F, Mark);

Writeln is not suitable for typed files, because it appends CR/LF characters on each line of written text,
but Write stores the record as it is without any additions. In this case, if we have entered 10 records (of
Byte), file size will be 10 bytes on disk.

In the next example, we will show how to display the previous file's contents:

Reading student marksReading student marks

program ReadMarks;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 F: file of Byte;
 Mark: Byte;
begin
 AssignFile(F, 'marks.dat');
 if FileExists('marks.dat') then
 begin
 Reset(F); // Open file
 while not Eof(F) do
 begin
 Read(F, Mark);
 Writeln('Mark: ', Mark);
 end;
 CloseFile(F);
 end
 else
 Writeln('File (marks.dat) not found');

 Write('Press enter key to close..');
 Readln;
end.

In the next example, we will show how to append new records without deleting the existing data:

Appending student marks programAppending student marks program

program AppendMarks;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 F: file of Byte;
 Mark: Byte;
begin
 AssignFile(F, 'marks.dat');
 if FileExists('marks.dat') then
 begin
 FileMode:= 2; // Open file for read/write
 Reset(F); // open file
 Seek(F, FileSize(F)); // Go to beyond last record
 Writeln('Please input students marks, write 0 to exit');

 repeat
 Write('Input a mark: ');
 Readln(Mark);
 if Mark <> 0 then // Don't write 0 value in disk
 Write(F, Mark);
 until Mark = 0;
 CloseFile(F);
 end
 else
 Writeln('File marks.dat not found');

 Write('Press enter key to close..');
 Readln;
end.

After running this program and entering new records, we can run it again to see the appended data.

Note that we have used Reset for opening the file for writing instead of the Rewrite procedure. Rewrite
erases all data for existing files, and creates an empty file if the file does not exist, while Reset can only
open an existing file without erasing its contents.

Also we have assigned 2 to the FileMode variable to indicate that we need to open the file for
read/write access mode. 0 in FileMode means read only, 1 means write only, 2 (Default) means
read/write.

 FileMode:= 2; // Open file for read/write
 Reset(F); // open file

Reset puts the read/write pointer to the first record, and for that reason if we start to write records
immediately, we will overwrite the old records, so we have used the Seek procedure to move the
read/write pointer to the end of file. Seek can be used only with random access files.

If we try to access a record position that does not exist with the Seek procedure (for example, record
number 100, while we have only 50 records), we will get an error.

We have also used the FileSize function, which returns the current record count in the file. It is used in
combination with the Seek procedure to jump to the end of the file:

 Seek(F, FileSize(F)); // Go to after last record

Note that this example can be used if the Student marks file already exists; if not, then we should run
the first program (Storing Student Marks) because it uses Rewrite which can create new files.

We can combine both methods (Reset and Rewrite) according to whether the file exists, as we have
done in the next example:

Create and append student marks programCreate and append student marks program

program ReadWriteMarks;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 F: file of Byte;
 Mark: Byte;
begin
 AssignFile(F, 'marks.dat');
 if FileExists('marks.dat') then
 begin
 FileMode:= 2; // Open file for read/write
 Reset(F); // open file
 Writeln('File already exist, opened for append');
 // Display file records
 while not Eof(F) do
 begin
 Read(F, Mark);
 Writeln('Mark: ', Mark);
 end
 end
 else // File not found, create it
 begin
 Rewrite(F);

 Writeln('File does not exist,, not it is created');
 end;

 Writeln('Please input students marks, write 0 to exit');
 Writeln('File pointer position at record # ', FilePos(f));
 repeat
 Write('Input a mark: ');
 Readln(Mark);
 if Mark <> 0 then // Don't write 0 value
 Write(F, Mark);
 until Mark = 0;
 CloseFile(F);

 Write('Press enter key to close..');
 Readln;
end.

Note that in this example, we didn't use the Seek procedure, instead we read all file contents first. This
operation (Read all file) moves the pointer to the end of file.

In the next example, we will use a file of records to store Cars information.

Cars database programCars database program

program CarRecords;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

type
 TCar = record
 ModelName: string[20];
 Engine: Single;
 ModelYear: Integer;
 end;

var
 F: file of TCar;
 Car: TCar;
begin
 AssignFile(F, 'cars.dat');
 if FileExists('cars.dat') then
 begin
 FileMode:= 2; // Open file for read/write
 Reset(F); // open file
 Writeln('File already exist, opened for append');

 // Display file records
 while not Eof(F) do
 begin
 Read(F, Car);
 Writeln;
 Writeln('Car # ', FilePos(F), ' --------------------------');
 Writeln('Model : ', Car.ModelName);
 Writeln('Year : ', Car.ModelYear);
 Writeln('Engine: ', Car.Engine);
 end
 end
 else // File not found, create it
 begin
 Rewrite(F);
 Writeln('File does not exist, created');
 end;

 Writeln('Please input car informaion, ',
 'write x in model name to exit');
 Writeln('File pointer position at record # ', FilePos(f));

 repeat
 Writeln('--------------------------');
 Write('Input car Model Name : ');
 Readln(car.ModelName);
 if Car.ModelName <> 'x' then
 begin
 Write('Input car Model Year : ');
 Readln(car.ModelYear);
 Write('Input car Engine size: ');
 Readln(car.Engine);
 Write(F, Car);
 end;
 until Car.ModelName = 'x';
 CloseFile(F);

 Write('Press enter key to close..');
 Readln;
end.

In the previous example, we declared TCar type to define car information. The first field (ModelName)
is a string variable, but we limited its maximum length [20]:

 ModelName: string[20];

We should use this declaration for string variables before we use them in files, because the default
ANSI String variables has a different and unlimited storage type in memory, but for typed files, every
data type width should be defined.

File copying

All file types, like text files, binary files, are based on byte units, which are the smallest representation
of data in computer memory and on disk. Every file should contain one byte, two bytes, etc, or no bytes
at all. Every byte could hold an integer or a character code from 0 to 255. We can open all file types
using the File of Byte or File of Char declaration.

We can copy any file to another one using File of Byte files, and the result will be a new file that is
identical to the source file's contents.

Copy files using file of byteCopy files using file of byte

program FilesCopy;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 SourceName, DestName: string;
 SourceF, DestF: file of Byte;
 Block: Byte;
begin
 Writeln('Files copy');
 Write('Input source file name: ');
 Readln(SourceName);

 Write('Input destination file name: ');
 Readln(DestName);
 if FileExists(SourceName) then
 begin
 AssignFile(SourceF, SourceName);
 AssignFile(DestF, DestName);

 FileMode:= 0; // open for read only
 Reset(SourceF); // open source file
 Rewrite(DestF); // Create destination file

 // Start copy
 Writeln('Copying..');
 while not Eof(SourceF) do
 begin
 Read(SourceF, Block); // Read Byte from source file
 Write(DestF, Block); // Write this byte into new
 // destination file
 end;

 CloseFile(SourceF);
 CloseFile(DestF);

 end
 else // Source File not found
 Writeln('Source File does not exist');

 Write('Copy file is finished, press enter key to close..');
 Readln;
end.

After running the previous example, we should enter an existing source file and a new destination file.
In Linux we could enter file names like this:

Input source file name: /home/motaz/quran/mishari/32.mp3
Input destination file name: /home/motaz/Alsajda.mp3

In Windows we could enter something like this:

Input source file name: c:\photos\mypphoto.jpg
Input destination file name: c:\temp\copy.jpg

If the source file exists in the same directory as the FileCopy program, we could enter only the file
name like this:

Input source file name: test.pas
Input destination file name: testcopy.pas

If we use this method to copy large files, it will take a very long time compared with operating system
copy procedures. That means the operating system uses a different technique to copy files. If we want
to copy a 1 megabyte file, that means the while loop will repeat about 1 million times, that means a
million read and a million write operations. If we replace the file of Byte declaration with file of Word,
that means it will take about 500,000 cycles for read and write, but this will work only for the files
whose size is even not odd. It will succeed if a file contains 1,420 bytes, but it will fail with a file of
1,423 bytes.

To copy a file of any kind using a faster method, we should use untyped files.

Untyped files

Untyped files are random access files,that have a fixed record length, but are not linked to any data
type. Instead, they treat data (records) as an array of bytes or characters.

Copy files using untyped files programCopy files using untyped files program

program FilesCopy2;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 SourceName, DestName: string;
 SourceF, DestF: file;
 Block: array [0 .. 1023] of Byte;
 NumRead: Integer;
begin
 Writeln('Files copy');
 Write('Input source file name: ');
 Readln(SourceName);

 Write('Input destination file name: ');
 Readln(DestName);

 if FileExists(SourceName) then
 begin
 AssignFile(SourceF, SourceName);
 AssignFile(DestF, DestName);

 FileMode:= 0; // open for read only
 Reset(SourceF, 1); // open source file
 Rewrite(DestF, 1); // Create destination file

 // Start copy
 Writeln('Copying..');
 while not Eof(SourceF) do
 begin
 // Read Byte from source file
 BlockRead(SourceF, Block, SizeOf(Block), NumRead);
 // Write this byte into new destination file
 BlockWrite(DestF, Block, NumRead);
 end;
 CloseFile(SourceF);
 CloseFile(DestF);

 end
 else // Source File not found

 Writeln('Source File does not exist');

 Write('Copy file is finished, press enter key to close..');
 Readln;
end.

New things in the previous example are:

1. Declaration type of files:

 SourceF, DestF: file;

2. Read/write variable (Buffer)

 Block: array [0 .. 1023] of Byte;

We have used an array of bytes (1 Kilo bytes, and it can be modified) to read and copy files blocks.

3. Opening an untyped file requires an additional parameter:

 Reset(SourceF, 1); // open source file
 Rewrite(DestF, 1); // Create destination file

The additional parameter is the record size, which is the minimum element that can be read/written at a
time. Since we need to copy any file type, that means it should be one byte, because it can be used with
any file size.

4. Read procedure:

 BlockRead(SourceF, Block, SizeOf(Block), NumRead);

The BlockRead procedure is used with untyped files. It reads a bunch of data at a time.

The parameters of the BlockRead procedure are:

• SourceF: This is the source file variable that we need to copy.

• Block : This is the variable or array that will store the current data being read and written.

• SizeOf(Block): This is the desired number of records that we need to read at one time. For
example ,if we enter 100 that means we need to read 100 records (bytes on this case). If we use
the SizeOf function, that means we need to read records typical to the number of the container
(Array of Bytes).

• NumRead: We have told the BlockRead function to read a specific number of records (1024),
and some times it succeeds in reading all of that amount, and sometimes it gets only part of it.
For example, suppose that we need to read a file that contains only 100 bytes, that means
BlockRead could read only 100 bytes. Reading fewer records than desired happens also at the
last block of the file. If the file contains 1034 bytes for example, that means in the first loop, we
will get 1024, but in next loop we will get only 10 bytes left, and Eof function will return True.

We need the NumRead value to use with the BlockWrite procedure.

5. Writing to untyped files:

 BlockWrite(DestF, Block, NumRead);

This is the write procedure, and it is similar to the BlockRead procedure, but it has some differences: 1.
Instead of using the SizeOf procedure, we have used NumRead, because NumRead contains the actual
read Block size. 2. The fourth parameter NumWritten (which is not used in this example) is not
important, because we always get records written as we desire, unless the disk is full.

After we run this application, notice the speed of copying large files. If the file contains 1 Megabytes,
that means we need only about one thousand reading/writing cycles to copy the entire file.

In the next example, we will use untyped files to read any file and display it as it is stored in memory or
on disk. As we know, files are list of bytes.

Display file contents programDisplay file contents program

program ReadContents;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 FileName: string;
 F: file;
 Block: array [0 .. 1023] of Byte;
 i, NumRead: Integer;
begin
 Write('Input source file name: ');
 Readln(FileName);

 if FileExists(FileName) then
 begin
 AssignFile(F, FileName);

 FileMode:= 0; // open for read only
 Reset(F, 1);

 while not Eof(F) do
 begin
 BlockRead(F, Block, SizeOf(Block), NumRead);
 // display contents in screen

 for i:= 0 to NumRead - 1 do
 Writeln(Block[i], ':', Chr(Block[i]));
 end;
 CloseFile(F);

 end
 else // File does not exist
 Writeln('Source File does not exist');

 Write('press enter key to close..');
 Readln;
end.

After running this example and entering a text file name for example, we will see for the first time
CR/LF values (13/10), because we display each character code (ASCII). In Linux we will find only
line feed (LF) which has a value of 10 in decimal. This is a line delimiter in text files.

We can display other types of files, like pictures, executables, to see how they look from the inside.

We have used the Chr function in this example to get the numerical value of characters, for example the
letter a is stored in memory in a byte as 97, and capital A is stored as 65.

Date and Time

Date and time are two of the most important issues in programming. It is important for the applications
that store transaction or any operation information, like purchasing, bills payment, etc, they need to
store the date and time of that transaction. Later they could determine the transactions and operations
that happened during the last month or current month, for example.

An applications log is one operation that relies on date/time recording. We need to know when some
application starts, stops, generates an error, or crashes.

TDateTime is the type in Object Pascal that we can use to store date/time information. It is a double
precision floating point number that occupies 8 bytes in memory. The fractional part of this type
represents time, and the integral part represents the number of days that have passed since
30/Dec/1899.

In the next example, we will show how to display the current date/time value using the Now function.

program DateTime;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes , SysUtils
 { you can add units after this };

begin
 Writeln('Current date and time: ', DateTimeToStr(Now));
 Write('Press enter key to close');
 Readln;
end.

We have used the DateTimeToStr function contained in the SysUtils unit to convert a TDateTime type
returned by the Now function to a readable date/time string representation.

If we do not use this conversion, we will get an encoded date/time displayed as a real number:

 Writeln('Current date and time: ', Now);

There are also two date/time conversion functions that display the date part only and the time part
only :

 Writeln('Current date is ', DateToStr(Now));
 Writeln('Current time is ', TimeToStr(Now));

The Date function returns only the date part of today, and the Time function returns the current time
only:

 Writeln('Current date is ', DateToStr(Date));
 Writeln('Current time is ', TimeToStr(Time));

These two functions put zeroes in the other part, for example, the Date function returns the current day
and puts zero in the time part (Zero in time means 12:00 am). The Time function returns the current
system time, and puts zero in the date part (Zero in date means 30/12/1899).

We can check this by using DateTimeToStr function:

 Writeln('Current date is ', DateTimeToStr(Date));
 Writeln('Current time is ', DateTimeToStr(Time));

The DateTimeToStr displays date/time according to the computer's date/time configuration. Its result
may vary between two computer systems, but the FormatDateTime function will display date and time
in the format written by the programmer regardless of computer configuration:

 Writeln('Current date is ',
 FormatDateTime('yyyy-mm-dd hh:nn:ss', Date));
 Writeln('Current time is ',
 FormatDateTime('yyyy-mm-dd hh:nn:ss', Time));

In the next example, we will treat date/time as a real number, and we will add and subtract values from
it:

begin
 Writeln('Current date and time is ',
 FormatDateTime('yyyy-mm-dd hh:nn:ss', Now));
 Writeln('Yesterday time is ',
 FormatDateTime('yyyy-mm-dd hh:nn:ss', Now - 1));
 Writeln('Tomorrow time is ',
 FormatDateTime('yyyy-mm-dd hh:nn:ss', Now + 1));
 Writeln('Today + 12 hours is ',
 FormatDateTime('yyyy-mm-dd hh:nn:ss', Now + 1/2));
 Writeln('Today + 6 hours is ',
 FormatDateTime('yyyy-mm-dd hh:nn:ss', Now + 1/4));
 Write('Press enter key to close');
 Readln;
end.

If we add one to or subtract one from a date, it will add/subtract a complete day. If we add, for
example, ½ or 0.5, this will add half a day (12 hours).

In the next example, we will generate a date value using a specific year, month and day:

var
 ADate: TDateTime;

begin
 ADate:= EncodeDate(1975, 11, 16);
 Writeln('My date of birth is: ', FormatDateTime('yyyy-mm-dd', ADate));
 Write('Press enter key to close');
 Readln;
end.

The EncodeDate function accepts year, month and days as inputs, and returns year/month/day values in
one variable of type TDateTime.

The EncodeTime function accepts hour, minute, second and Milli second and returns time values as one
TDateTime value:

var
 ATime: TDateTime;
begin
 ATime:= EncodeTime(19, 22, 50, 0);
 Writeln('Almughrib prayer time is: ', FormatDateTime('hh:nn:ss', ATime));
 Write('Press enter key to close');
 Readln;
end.

Date/time comparison

You can compare two date/time variables the same as comparing real numbers. For example in real
numbers: 9.3 is greater than 5.1, the same happens for TDateTime values. Now + 1, which represents
tomorrow, is greater than today (Now), and Now + 1/24 which means an hour after now is greater than
Now – 2/24 which means two hours before now.

In the next example, we will put the date 1/Jan/2012 in a variable and compare it with current date and
check if this date is passed or not yet.

var
 Year2012: TDateTime;
begin
 Year2012:= EncodeDate(2012, 1, 1);

 if Now < Year2012 then
 Writeln('Year 2012 is not coming yet')
 else
 Writeln('Year 2012 is already passed');
 Write('Press enter key to close');
 Readln;
end.

We can add new functions to this example, which displays the remaining days or passed days to/from
that date:

var
 Year2012: TDateTime;
 Diff: Double;
begin
 Year2012:= EncodeDate(2012, 1, 1);
 Diff:= Abs(Now - Year2012);

 if Now < Year2012 then
 Writeln('Year 2012 is not coming yet, there are ',
 Format('%0.2f', [Diff]), ' days Remaining ')
 else
 Writeln('First day of January 2012 is passed by ',
 Format('%0.2f', [Diff]), ' Days');
 Write('Press enter key to close');
 Readln;
end.

Diff is a real number variable that will hold the difference between current date and the 2012 date. We
also used the Abs function, which returns the absolute value of a number (the number without the
negative sign).

News recorder programNews recorder program

In this example, we will use text files to store News titles, and in addition, we will store date and time
too.

After closing and opening the application again, it will display the previously entered news titles with
their date/time:

program news;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 Title: string;
 F: TextFile;
begin
 AssignFile(F, 'news.txt');
 if FileExists('news.txt') then

 begin // Display old news
 Reset(F);
 while not Eof(F) do
 begin
 Readln(F, Title);
 Writeln(Title);
 end;
 CloseFile(F); // reading is finished from old news
 Append(F); // open file again for appending
 end
 else
 Rewrite(F);

 Write('Input current hour news title: ');
 Readln(Title);
 Writeln(F, DateTimeToStr(Now), ', ', Title);
 CloseFile(F);

 Write('Press enter to close');
 Readln;
end.

Constants

Constants are similar to variables. They have names and can hold values, but differ from variables in
modifying that value. Constant values can not be modified while running the application, and their
values should be determined before compiling the application.

We have used constants in a different way before, without naming them, just as an Integer value or
string as in this example:

 Writeln(5);
 Writeln('Hello');

The value 5 will never change after running the application. 'Hello' is also a string constant.

We can define constants using the Const keyword after the application's uses clause as in the following
example:

Fuel Consumption programFuel Consumption program

program FuelConsumption;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

const GallonPrice = 6.5;

var
 Payment: Integer;
 Consumption: Integer;
 Kilos: Single;
begin
 Write('How much did you pay for your car''s fuel: ');
 Readln(Payment);
 Write('What is the consumption of your car? (Kilos per Gallon): ');
 Readln(Consumption);

 Kilos:= (Payment / GallonPrice) * Consumption;

 Writeln('This fuel will keep your car running for : ',
 Format('%0.1f', [Kilos]), ' Kilometers');
 Write('Press enter');
 Readln;
end.

In the previous example, we will calculate the kilometers that the car could run with its current fuel
according to these facts:

1. Car fuel consumption: we have used the Consumption variable to store kilometers per gallon for
the current car

2. Fuel: we have used the Payment variable to store how much money we paid for the current fuel
3. Gallon Price: we have used the GallonPrice constant to store the price for a gallon of fuel for

the current country. This value shouldn't be entered by the user; instead, it should be defined by
the programmer.

Constants are recommended when using the same value many times in the application. If we need to
change this value, we can do it once at the header of code.

Ordinal types

Ordinal types are integer values that use literal indications instead of numbers. For example, if we need
to define language variables (Arabic/English/French) we could use the value 1 for Arabic, 2 for
English, and 3 for French. Other programmers wouldn't know the values for 1, 2 and 3 unless they find
comments with these values. It will be more readable if we do it with ordinal types as in the below
example:

program OrdinalTypes;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

type
 TLanguageType = (ltArabic, ltEnglish);

var
 Lang: TLanguageType;
 AName: string;
 Selection: Byte;
begin
 Write('Please select Language: 1 (Arabic), 2 (English)');
 Readln(Selection);

 if Selection = 1 then
 Lang:= ltArabic
 else
 if selection = 2 then
 Lang:= ltEnglish
 else
 Writeln('Wrong entry');

 if Lang = ltArabic then
 Write('ماهو اسمك: ')
 else
 if Lang = ltEnglish then
 Write('What is your name: ');

 Readln(AName);

 if Lang = ltArabic then
 begin
 Writeln('مرحباً بك ', AName);
 Write('الرجاء الضغط على مفتاح إدخال لإغلاق البرنامج');
 end
 else
 if Lang = ltEnglish then
 begin
 Writeln('Hello ', AName);

 Write('Please press enter key to close');
 end;
 Readln;

end.

Integer, character and boolean types are ordinal types, while real numbers and strings are not.

Sets

Set types can hold multiple properties or characteristics in one variable. Sets are used only with ordinal
values.

For example, if we need to define the operating system's support for applications, we can do it as in the
following:

1. Define ordinal type that represents operating systems: TApplicationEnv:

 TApplicationEnv = (aeLinux, aeMac, aeWindows);

2. Define the application as set of TApplicationEnv:
for example:

 FireFox: set of TApplicationEnv;

3. Put operating system values in the application set variable:

 FireFox:= [aeLinux, aeWindows];

program Sets;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

type
 TApplicationEnv = (aeLinux, aeMac, aeWindows);

var
 FireFox: set of TApplicationEnv;
 SuperTux: set of TApplicationEnv;
 Delphi: set of TApplicationEnv;
 Lazarus: set of TApplicationEnv;
begin
 FireFox:= [aeLinux, aeWindows];
 SuperTux:= [aeLinux];
 Delphi:= [aeWindows];
 Lazarus:= [aeLinux, aeMac, aeWindows];

 if aeLinux in Lazarus then
 Writeln('There is a version for Lazarus under Linux')
 else
 Writeln('There is no version of Lazarus under linux');

 if aeLinux in SuperTux then
 Writeln('There is a version for SuperTux under Linux')
 else

 Writeln('There is no version of SuperTux under linux');

 if aeMac in SuperTux then
 Writeln('There is a version for SuperTux under Mac')
 else
 Writeln('There is no version of SuperTux under Mac');

 Readln;
end.

Also we can use set syntax for other ordinal types, like Integers:

 if Month in [1, 3, 5, 7, 8, 10, 12] then
 Writeln('This month contains 31 days');

Or character:

if Char in ['a', 'A'] then
 Writeln('This letter is A');

Exception handling

There are two types of errors: compilation errors like using a variable without defining it in the Var
section, or writing statements with incorrect syntax. These types of errors prevent the application from
compiling, and the compiler displays a proper message and points to the line containing the error.

The second type is the runtime error. This type of error occurs while the application is running, for
example, division by zero, In a line like this:

x:= y / z;

This is valid syntax, but at run time a user could enter 0 in the Z variable, and then the application will
crash and display a division by zero error message.

Trying to open a nonexistent file will generate a runtime error also (File not found), or trying to create a
file in a read only directory.

The compiler cannot catch such errors, which only occur after running the application.

To build a reliable application that will not crash from runtime errors, we should use exception
handling.

There are different methods of exception handling in Object Pascal:

Try except statement

Syntax:

try
 // Start of protected code
 CallProc1;
 CallProc2;
 // End of protected code

except
on e: exception do // Exception handling
begin
 Writeln('Error: ' + e.message);
end;
end;

Example for division:

program ExceptionHandling;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}

 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, sysutils
 { you can add units after this };

var
 x, y: Integer;
 Res: Double;
begin
 try
 Write('Input x: ');
 Readln(x);
 Write('Input y: ');
 Readln(y);
 Res:= x / y;
 Writeln('x / y = ', Res);

 except
 on e: exception do
 begin
 Writeln('An error occurred: ', e.message);
 end;
 end;
 Write('Press enter key to close');
 Readln;
end.

There are two sections of the try statement. The first one is the block that we need to protect, which
resides between try … except.The other part exists between except .. end.

If something goes wrong in the first section (try except), the application will go to the except section
(except.. end) and it will not crash, but rather it will display the proper error message and continue
execution.

This is the line that could raise the exception if the value of y is zero:

 Res:= x / y;

If there is no exception, the except .. end part will not be executed.

Try finally

Syntax:

try
 // Start of protected code
 CallProc1;
 CallProc2;
 // End of protected code

finally

 Writeln('This line will be printed in screen for sure');
end;

Division program using try finally method:

program ExceptionHandling;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

var
 x, y: Integer;
 Res: Double;
begin
 try
 Write('Input x: ');
 Readln(x);
 Write('Input y: ');
 Readln(y);
 Res:= x / y;
 Writeln('x / y = ', Res);

 finally
 Write('Press enter key to close');
 Readln;
 end;
end.

This time the finally .. end part will be executed in all cases, regardless of whether there is an error.

Raise an exception

Sometimes we need to generate/raise an exception to prevent some logical error. For example if the
user enters the value 13 for Month variable, we could raise an exception telling him/her that he/she has
violated the range of months.

Example:

program RaiseExcept;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

var
 x: Integer;
begin
 Write('Please input a number from 1 to 10: ');
 Readln(X);
 try

 if (x < 1) or (x > 10) then // rais exception
 raise exception.Create('X is out of range');
 Writeln(' X * 10 = ', x * 10);

 except
 on e: exception do // Catch my exception
 begin
 Writeln('Error: ' + e.Message);
 end;
 end;
 Write('Press enter to close');
 Readln;

end.

If the user enters a value outside of 1 to 10, an exception will be generated (X is out of range), and if
there is no exception handling for this part, the application will crash. Because we have written try
except around the code that contains the raise keyword, the application will not crash, but instead it
will display the error message.

Chapter TwoChapter Two

 Structured Programming Structured Programming

Introduction

Structured programming appeared after the expansion of programs. Large applications become
unreadable and unmaintainable when they use unstructured code in one file.

In structured programming, we can split an application's source code into smaller pieces, called
procedures and functions, and a we can also combine the procedures and functions that relate to one
subject in a separate code file called a unit.

Structured programming benefits:

1. Partitioning an application's code to readable modules and procedures.

2. Code re-usability: procedures and functions can be called from any part of the code many
times without the need to re-write and duplicate code.

3. Programmers could share and participate in one project at the same time. Each programmer
could write their own procedures and functions in a separate unit, then they can integrate these
units in the project.

4. Application maintenance and enhancement becomes easy: we can find bugs easily in
procedures, also it is easy to improve procedures and functions, write new ones, add new units,
etc.

5. Introducing modules and layers: we can divide an application into different logical layers and
modules: for example we can write a unit that contains procedures that read/write data from/into
files, and another unit that represent rules and validation layer, and a third one as a user
interface layer.

Procedures

We have already used some procedures in the previous chapter, like Writeln, Readln, Reset, etc, but this
time we need to write our own procedures that can be used by our applications.

In the next example we have written two procedures: SayHello and SayGoodbye:

program Structured;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,

 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

procedure SayHello;
begin
 Writeln('Hello there');
end;

procedure SayGoodbye;
begin
 Writeln('Good bye');
end;

begin // Here main application starts
 Writeln('This is the main application started');
 SayHello;
 Writeln('This is structured application');
 SayGoodbye;
 Write('Press enter key to close');
 Readln;
end.

We see that the procedure looks like a small program, with its own begin..end, and it can be called
from the main application's code.

Parameters

In the next example, we introduce parameters, which are variables passed to a procedure when calling
it:

procedure WriteSumm(x, y: Integer);
begin
 Writeln('The summation of ', x, ' + ', y, ' = ', x + y)
end;

begin
 WriteSumm(2, 7);
 Write('Press enter key to close');
 Readln;
end.

In the main application, we have called the WriteSumm procedure and passed the values 2, 7 to it, and
the procedure will receive them in x, y integer variables to write the summation result of them.

In the next example, we have rewritten the restaurant application using procedures:

Restaurant program using proceduresRestaurant program using procedures
procedure Menu;
begin
 Writeln('Welcome to Pascal Restaurant. Please select your order');
 Writeln('1 - Chicken (10$)');
 Writeln('2 - Fish (7$)');
 Writeln('3 - Meat (8$)');
 Writeln('4 – Salad (2$)');
 Writeln('5 - Orange Juice (1$)');
 Writeln('6 - Milk (1$)');
 Writeln;
end;

procedure GetOrder(AName: string; Minutes: Integer);
begin
 Writeln('You have ordered : ', AName, ', this will take ',
 Minutes, ' minutes');
end;

// Main application

var
 MyOrder: Byte;
begin

 Menu;
 Write('Please enter your selection: ');
 Readln(MyOrder);

 case MyOrder of
 1: GetOrder('Chicken', 15);
 2: GetOrder('Fish', 12);
 3: GetOrder('Meat', 18);
 4: GetOrder('Salad', 5);
 5: GetOrder('Orange juice', 2);
 6: GetOrder('Milk', 1);
 else
 Writeln('Wrong entry');
 end;
 Write('Press enter key to close');
 Readln;
end.

Now the main application becomes smaller and more readable. The details of the other parts are
separated in procedures, like the get order and display menu procedures.

Functions

Functions are similar to procedures, but have an additional feature, which is returning a value. We have
used functions before, like UpperCase, which converts and returns text to upper case, and Abs, which
returns the absolute value of a number.

In the next example, we have written the GetSumm function, which receives two integer values and
returns their summation:

function GetSumm(x, y: Integer): Integer;
begin
 Result:= x + y;
end;

var
 Sum: Integer;
begin
 Sum:= GetSumm(2, 7);
 Writeln('Summation of 2 + 7 = ', Sum);
 Write('Press enter key to close');
 Readln;
end.

Notice that we have declared the function as Integer, and we have used the Result keyword to represent
the function's return value.

In the main application, we have used the variable Sum, in which we receive the function result, but we
could eliminate this intermediate variable and call this function inside the Writeln procedure. This is
one difference between functions and procedures. We can call functions as input parameters in other
procedures or functions, but we can not call procedures as parameters of other functions and
procedures:

function GetSumm(x, y: Integer): Integer;
begin
 Result:= x + y;
end;

begin
 Writeln('Summation of 2 + 7 = ', GetSumm(2, 7));
 Write('Press enter key to close');
 Readln;
end.

In the next example, we have rewritten the Restaurant program using functions:

Restaurant program using functionsRestaurant program using functions

procedure Menu;
begin
 Writeln('Welcome to Pascal Restaurant. Please select your order');
 Writeln('1 - Chicken (10$)');
 Writeln('2 - Fish (7$)');
 Writeln('3 - Meat (8$)');
 Writeln('4 – Salad (2$)');
 Writeln('5 - Orange Juice (1$)');
 Writeln('6 - Milk (1$)');
 Writeln('X - nothing');
 Writeln;
end;

function GetOrder(AName: string; Minutes, Price: Integer): Integer;
begin
 Writeln('You have ordered: ', AName, ' this will take ',
 Minutes, ' minutes');
 Result:= Price;
end;

var
 Selection: Char;
 Price: Integer;
 Total: Integer;
begin
 Total:= 0;
 repeat
 Menu;
 price := 0;
 Write('Please enter your selection: ');
 Readln(Selection);

 case Selection of
 '1': Price:= GetOrder('Checken', 15, 10);
 '2': Price:= GetOrder('Fish', 12, 7);
 '3': Price:= GetOrder('Meat', 18, 8);
 '4': Price:= GetOrder('Salad', 5, 2);
 '5': Price:= GetOrder('Orange juice', 2, 1);
 '6': Price:= GetOrder('Milk', 1, 1);
 'x', 'X': Writeln('Thanks');
 else
 begin
 Writeln('Wrong entry');
 Price:= 0;
 end;
 end;

 Total:= Total + Price;

 until (Selection = 'x') or (Selection = 'X');
 Writeln('Total price = ', Total);
 Write('Press enter key to close');
 Readln;
end.

Local Variables

We can define variables locally inside a procedure or function to be used only inside its code. These
variables can not be accessed from the main application's code or from other procedures and functions.

Example:

procedure Loop(Counter: Integer);
var
 i: Integer;
 Sum: Integer;
begin
 Sum:= 0;
 for i:= 1 to Counter do
 Sum:= Sum + i;
 Writeln('Summation of ', Counter, ' numbers is: ', Sum);
end;

begin // Main program section
 Loop;
 Write('Press enter key to close');
 Readln;
end.

In the procedure Loop, there are two local variables Sum and I. Local variables are stored in Stack
memory, which is a part of memory that allocates variables temporarily until the procedure's execution
is finished. That means it will be unaccessible and can be overwritten when program execution reaches
this line of code:

 Write('Press enter key to close');

Global variables can be accessed from the main program and other procedures and functions. They can
hold values until the application is closed, but this can break the structure of the program and make it
hard to trace errors, because any procedure can change global variable values, which may result in
unknown values and misbehavior when we forget to initialize them.

Defining local variables guarantees their privacy, which helps the procedures and functions to be ported
or called from anywhere without worry about global variables values.

News database applicationNews database application

In this example we have three procedures and one function: Add News title, display all News,
searching, and displaying menu to let the user select the function that he/she want to execute:

program news;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this };

type
 TNews = record
 ATime: TDateTime;
 Title: string[100];
 end;

procedure AddTitle;
var
 F: file of TNews;
 News: TNews;
begin
 AssignFile(F, 'news.dat');
 Write('Input current news title: ');
 Readln(News.Title);
 News.ATime:= Now;
 if FileExists('news.dat') then
 begin
 FileMode:= 2; // Read/Write
 Reset(F);
 Seek(F, System.FileSize(F)); // Go to last record to append
 end
 else
 Rewrite(F);
 Write(F, News);
 CloseFile(F);
end;

procedure ReadAllNews;
var
 F: file of TNews;
 News: TNews;
begin
 AssignFile(F, 'news.dat');
 if FileExists('news.dat') then
 begin
 Reset(F);
 while not Eof(F) do
 begin
 Read(F, News);
 Writeln('------------------------------');
 Writeln('Title: ', News.Title);

 Writeln('Time : ', DateTimeToStr(News.ATime));
 end;
 CloseFile(F);
 end
 else
 Writeln('Empty database');
end;

procedure Search;
var
 F: file of TNews;
 News: TNews;
 Keyword: string;
 Found: Boolean;
begin
 AssignFile(F, 'news.dat');
 Write('Input keyword to search for: ');
 Readln(Keyword);
 Found:= False;
 if FileExists('news.dat') then
 begin
 Reset(F);
 while not Eof(F) do
 begin
 Read(F, News);
 if Pos(LowerCase(Keyword), LowerCase(News.Title)) > 0 then
 begin
 Found:= True;
 Writeln('------------------------------');
 Writeln('Title: ', News.Title);
 Writeln('Time : ', DateTimeToStr(News.ATime));
 end;
 end;
 CloseFile(F);
 if not Found then
 Writeln(Keyword, ' Not found');
 end
 else
 Writeln('Empty database');
end;

function Menu: char;
begin
 Writeln;
 Writeln('...........News database..........');
 Writeln('1. Add news title');
 Writeln('2. Display all news');
 Writeln('3. Search');
 Writeln('x. Exit');
 Write('Please input a selection : ');
 Readln(Result);
end;

// Main application

var
 Selection: Char;

begin

 repeat
 Selection:= Menu;
 case Selection of
 '1': AddTitle;
 '2': ReadAllNews;
 '3': Search;
 end;
 until LowerCase(Selection) = 'x';
end.

This application is easy to read and has compact and clear code in the main section. We can also add
new features to any procedure without affecting or modifying other parts.

Functions as input parameters

As we said before, we can call the function as a procedure/function input parameter, because we can
treat it as a value.

See the example below:

function DoubleNumber(x: Integer): Integer;
begin
 Result:= x * 2;
end;

// Main

begin
 Writeln('The double of 5 is : ', DoubleNumber(5));
 Readln;
end.

Note that we have called the DoubleNumber function from inside the Writeln procedure.

In the next modification of the example, we will use an intermediate variable to store the function's
result, and then use it as input to the Writeln procedure:

function DoubleNumber(x: Integer): Integer;
begin
 Result:= x * 2;
end;

// Main

var
 MyNum: Integer;
begin
 MyNum:= DoubleNumber(5);
 Writeln('The double of 5 is : ', MyNum);
 Readln;
end.

We can also call functions within if conditions and loop conditions:

function DoubleNumber(x: Integer): Integer;
begin
 Result:= x * 2;
end;

// Main

begin
 if DoubleNumber(5) > 10 then
 Writeln('This number is larger than 10')
 else
 Writeln('This number is equal or less than 10);

 Readln;
end.

Procedure and function output parameters

In the previous usage of functions, we found that we can return only one value, which is the result of
the function, but how can we return more than one value in functions or procedures?

Let us do this experiment:

procedure DoSomething(x: Integer);
begin
 x:= x * 2;
 Writeln('From inside procedure: x = ', x);
end;

// main

var
 MyNumber: Integer;
begin
 MyNumber:= 5;

 DoSomething(MyNumber);
 Writeln('From main program, MyNumber = ', MyNumber);
 Writeln('Press enter key to close');
 Readln;
end.

In this example, the doSomething procedure receives x as an Integer value, then it multiplies it by two,
and then finally it displays it.

In the main part of the program, we declared the variable MyNumber as an Integer, put the number 5 in
it, and then passed it as a parameter to the DoSomething procedure. In this case, the MyNumber value
(5) will be copied into the x variable.

After calling the function, X 'svalue will be 10, but when we display MyNumber after procedure calling
we will find that it still holds the value 5. That means MyNumber and X have two different locations in
memory, which is normal.

This type of parameter passing is called calling by value, which does not affect the original parameter
MyNumber. We also could use constants to pass such values, e.g:

DoSomething(5);

Calling by reference

If we add the var keyword to the declaration of DoSomething's x parameter, things will be different
now:

procedure DoSomething(var x: Integer);
begin
 x:= x * 2;
 Writeln('From inside procedure: x = ', x);
end;

// main

var
 MyNumber: Integer;
begin
 MyNumber:= 5;

 DoSomething(MyNumber);
 Writeln('From main program, MyNumber = ', MyNumber);
 Writeln('Press enter key to close');
 Readln;

end.

This time MyNumber's value will be changed according to x, which means they are sharing the same
memory location.

We should pass a variable (not a constant) to the procedure this time, using the same type: if the
parameter is declared as Byte, then MyNumber should be declared as Byte; if it is Integer, then it
should be Integer.

The next example will generate an error when calling DoSomething, which requires a variable for its
parameter:

 DoSomething(5);

In calling by value, the previous code could be used, because it cares only about having a value passed
as its parameter, and 5 is a value, but in calling by reference the program cares about having a variable
passed as its parameter and then acts on its value.

In the next example, we will pass two variables, and then the procedure will swap their values:

procedure SwapNumbers(var x, y: Integer);
var
 Temp: Integer;
begin
 Temp:= x;
 x:= y;
 y:= Temp;
end;

// main

var
 A, B: Integer;
begin

 Write('Please input value for A: ');
 Readln(A);

 Write('Please input value for B: ');
 Readln(B);

 SwapNumbers(A, B);
 Writeln('A = ', A, ', and B = ', B);
 Writeln('Press enter key to close');
 Readln;
end.

Units

A Unit in Pascal is a library that contains procedures, functions, constants, and user defined types that
can be used in many applications.

Units are used to achieve these goals:

1. Accumulate procedures and functions that are frequently used in applications in external units.
This achieves code re-usability in software development.

2. Combine procedures and functions that are used to perform certain tasks in one entity. Instead
of populating the main application's source code with unrelated procedures, it is better to divide
the application into logical modules using units.

To create a new unit, go to File/New Unit in the Lazarus menu, and Lazarus creates this template:

unit Unit1;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils;

implementation

end.

After creating a new unit, we should save it using a specific name, like Test. It will be saved in a file
named Test.pas, but the unit name will remain Test in the application.

Then we can start writing procedures, functions, and other re-usable code:

unit Test;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils;

const
 GallonPrice = 6.5;

 function GetKilometers(Payment, Consumption: Integer): Single;

implementation

function GetKilometers(Payment, Consumption: Integer): Single;
begin
 Result:= (Payment / GallonPrice) * Consumption;
end;

end.

We have written the GallonPrice constant and the GetKilometers function to be called from any
program.

Also we have put the function's header in the Interface part of the unit to make it accessible from
outside the unit. Applications can access only the Interface part of units.

To use this unit, we have created a new program in the same directory as the unit (Test.pas), and then
we have added this unit in uses clause:

program PetrolConsumption;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils
 { you can add units after this }, Test;

var
 Payment: Integer;
 Consumption: Integer;
 Kilos: Single;
begin
 Write('How much did you pay for your car''s petrol: ');
 Readln(Payment);
 Write('What is the consumption of your car (Kilos per one Gallon) ');
 Readln(Consumption);

 Kilos:= GetKilometers(Payment , Consumption);

 Writeln('This petrol will keep your car running for: ',
 Format('%0.1f', [Kilos]), ' Kilometers');
 Write('Press enter');
 Readln;
end.

If we need to go to the GetKilometers function's code, we can press the Ctrl key then click its name
with the mouse to display the GetKilometers function's source code. Lazarus/Delphi will immediately
open the Test unit and display that function.

We can also open the Test unit in the editor by moving the cursor to the unit's name (Test), and then
press Alt + Enter.

We can access units from programs in these conditions:

1. The Unit file exists in the same directory, as the application, as we have done in the previous
example.

2. Adding the unit to the project, by opening the unit in Lazarus then clicking Project/Add Editor
File to project.

3. Adding the unit's path in Project/Compiler Options/Compiler Options/Paths/Other Unit Files.

Units in Lazarus and Free Pascal

Units represent one of the most important building blocks in Lazarus and Free Pascal. We find that
most procedures, functions, types, classes and components exist in units.

Free Pascal has a very rich collection of units that provide functionality used in all different types of
applications. For that reason it is fast and easy to develop applications using Lazarus and Free Pascal.

Examples of Free Pascal/ Lazarus units that contain general procedures and functions: SysUtils, and
Classes.

Units written by the programmer

Programmers can use Lazarus units and they can write their own units. Units that are written by
programmers represent their special needs for their applications. For example, if a developer is writing
software for a car garage, then he/she could make a unit that contains procedures for adding a new car,
searching for a car using plate id, etc.

Putting procedures and functions in units makes the application more readable and easier to be
developed by more than one developer, because each one could concentrate on one module (unit) or
more, then they could test their units functionality independently (Unit testing), then eventually they
could integrate these units together in one project.

Hejri Calendar

The Hejri calender is based on Moon months, and was created by Muslims. We need to create a unit
that helps us to convert the Gregorian calendar to the Moon (Hejri) Calender based on these facts:

1. The first day of Hejri 16 July 622 in the Gregorian calender.
2. The Hejri year contains 354.367056 days.
3. The Hejri month contains 29.530588 days.

The Hejri unit can be used to get current the moon phase.

This is the code of the Hejri unit:

{
**

 HejriUtils: Hejri Calnder converter, for FreePascal and Delphi
 Author: Motaz Abdel Azeem
 email: motaz@code.sd
 Home page: http://motaz.freevar.com/
 License: LGPL
 Created on: 26.Sept.2009
 Last modifie: 26.Sept.2009

}

unit HejriUtils;

{$IFDEF FPC}
{$mode objfpc}{$H+}
{$ENDIF}

interface

uses
 Classes, SysUtils;

const
 HejriMonthsEn: array [1 .. 12] of string = ('Moharram', 'Safar', 'Rabie Awal',
 'Rabie Thani', 'Jumada Awal', 'Jumada Thani', 'Rajab', 'Shaban', 'Ramadan',
 'Shawal', 'Thi-Alqaida', 'Thi-Elhajah');

 HejriMonthsAr: array [1 .. 12] of string = (' 'ربيع أول, 'صفر', محرم' ',
 ' 'رمضان, 'شعبان', 'رجب', 'جمادى الآخر', 'جمادى الأول', ربيع ثاني' ',
 ' 'ذي الحجة,'ذي القعدة', شوال' ');

 HejriYearDays = 354.367056;
 HejriMonthDays = 29.530588;

 procedure DateToHejri(ADateTime: TDateTime; var Year, Month, Day: Word);
 function HejriToDate(Year, Month, Day: Word): TDateTime;

 procedure HejriDifference(Year1, Month1, Day1, Year2, Month2, Day2: Word;
 var YearD, MonthD, DayD: Word);

implementation

var
 HejriStart : TDateTime;

procedure DateToHejri(ADateTime: TDateTime; var Year, Month, Day: Word);
var
 HejriY: Double;
 Days: Double;
 HejriMonth: Double;
 RDay: Double;
begin
 HejriY:= ((Trunc(ADateTime) - HejriStart - 1) / HejriYearDays);
 Days:= Frac(HejriY);
 Year:= Trunc(HejriY) + 1;
 HejriMonth:= ((Days * HejriYearDays) / HejriMonthDays);
 Month:= Trunc(HejriMonth) + 1;
 RDay:= (Frac(HejriMonth) * HejriMonthDays) + 1;
 Day:= Trunc(RDay);
end;

function HejriToDate(Year, Month, Day: Word): TDateTime;
begin
 Result:= (Year - 1) * HejriYearDays + (HejriStart - 0) +
 (Month - 1) * HejriMonthDays + Day + 1;
end;

procedure HejriDifference(Year1, Month1, Day1, Year2, Month2, Day2: Word; var
 YearD, MonthD, DayD: Word);
var
 Days1: Double;
 Days2: Double;
 DDays: Double;
 RYear, RMonth: Double;
begin
 Days1:= Year1 * HejriYearDays + (Month1 - 1) * HejriMonthDays + Day1 - 1;
 Days2:= Year2 * HejriYearDays + (Month2 - 1) * HejriMonthDays + Day2 - 1;
 DDays:= Abs(Days2 - Days1);

 RYear:= DDays / HejriYearDays;
 RMonth:= (Frac(RYear) * HejriYearDays) / HejriMonthDays;
 DayD:= Round(Frac(RMonth) * HejriMonthDays);

 YearD:= Trunc(RYear);
 MonthD:= Trunc(RMonth);

end;

initialization

 HejriStart:= EncodeDate(622, 7, 16);

end.

The HejriUtils Unit contains these procedures and functions:

1. DateToHejri: This procedure is used to convert Gregorian date to Hejri date, example of using
it:

program Project1;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes , HejriUtils, SysUtils
 { you can add units after this };

var
 Year, Month, Day: Word;
begin
 DateToHejri(Now, Year, Month, Day);
 Writeln('Today in Hejri: ', Day, '-', HejriMonthsEn[Month],
 '-', Year);
 Readln;
end.

2. HejriToDate: This function is used to convert the Hejri date to a Gregorian TDateTime value.
3. HejriDifference: This procedure is used to calculate the difference in years, days, and months

between two Hejri dates.

Procedure and function Overloading

Overloading mean we can write two or more procedures/functions with the same name but different
parameters. Different parameters means different parameter types or a different number of parameters.

For example, we may need to write two versions of the Sum function, where the first one accepts and
returns integer numbers, and the second one accepts and returns real numbers:

program sum;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

function Sum(x, y: Integer): Integer; overload;
begin
 Result:= x + y;
end;

function Sum(x, y: Double): Double; overload;
begin
 Result:= x + y;
end;

var
 j, i: Integer;
 h, g: Double;
begin
 j:= 15;
 i:= 20;
 Writeln(J, ' + ', I, ' = ', Sum(j, i));

 h:= 2.5;
 g:= 7.12;
 Writeln(H, ' + ', G, ' = ', Sum(h, g));

 Write('Press enter key to close');
 Readln;

end.

Notice that we have used the reserved word overload, which means: this function is overloaded.

Default value parameters

We can put default values for procedures and functions in parameters. In this case we can ignore
sending these parameters, and the default values will be used.

Look at the next example:

program defaultparam;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

function SumAll(a, b: Integer; c: Integer = 0;
 d: Integer = 0): Integer;
begin
 result:= a + b + c + d;
end;

begin
 Writeln(SumAll(1, 2));
 Writeln(SumAll(1, 2, 3));
 Writeln(SumAll(1, 2, 3, 4));
 Write('Press enter key to close');
 Readln;
end.

In this example, we have called the SumAll function three times, the first time using two values, the
second time using three values, and the third time using four values. A and B are mandatory parameters
and should be sent in all cases because they have no default values.

We can ignore sending default parameter values from left to right, for example, if we want to ignore
sending a value for c, then we should not send a value for d.

Default parameters should start from right to left. We can not declare a default parameter and declare
another one that has no default value next to it, like the following example:

function ErrorParameters(a: Integer; b: Integer = 10; c: Integer; x: string);

We should put the most important parameters on the left, and unimportant ones (that can be ignored)
on the right side of the function/procedure's header.

Sorting

Data sorting is part of the data structure topic, and we introduce it here because it needs procedures and
functions to implement it.

Sorting is always used with arrays and lists. Suppose that we have an array of integers, and we need to
sort it in ascending or in descending order. We can do this using different methods:

Bubble sort algorithm

This algorithm is one of the simplest sorting algorithms. It compares the first item of array with second
one, and in case of ascending order, it will swap the first one with second if the first is greater than the
second. After that it compares the second item with third one until it reaches the end of the array. Then
it repeats this operation until no swap operation happens, which means the array is already sorted.

Suppose that we have 6 items in an array containing these values:

7
10
2
5
6
3

We will find that these values need more than one cycle to be sorted.

The first number will be compared with the second one, and a swap operation will occur if the first one
is greater than the second, and then the second will be compared with third, until the fifth item is
compared with the sixth one.

After the first cycle, the array will be like this:

7
2
5
6
3
10

After the second cycle:

2
5
6
3
7

10

Third:

2
5
3
6
7
10

Fourth:

2
3
5
6
7
10

We will get a sorted array after the fourth cycle, because in the fourth cycle no swap operation
happens. That means only three cycles are required with that data, but the fourth one is used to check
for the occurrence of a sort.

Notice that the small values float like bubbles over the larger values.

Next is a bubble sort program:

program BubbleSortProj;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes;

procedure BubbleSort(var X: array of Integer);
var
 Temp: Integer;
 i: Integer;
 Changed: Boolean;
begin
 repeat // Outer loop
 Changed:= False;
 for i:= 0 to High(X) - 1 do // Inner loop
 if X[i] > X[i + 1] then
 begin
 Temp:= X[i];
 X[i]:= X[i + 1];
 X[i + 1]:= Temp;

 Changed:= True;
 end;
 until not Changed;
end;

var
 Numbers: array [0 .. 9] of Integer;
 i: Integer;
begin
 Writeln('Please input 10 random numbers');
 for i:= 0 to High(Numbers) do
 begin
 Write('#', i + 1, ': ');
 Readln(Numbers[i]);
 end;

 BubbleSort(Numbers);
 Writeln;
 Writeln('Numbers after sort: ');

 for i:= 0 to High(Numbers) do
 begin
 Writeln(Numbers[i]);
 end;
 Write('Press enter key to close');
 Readln;
end.

We can modify this sort to a descending sort by changing the greater than (>) operator to less than (<),
in this line:

 if X[i] < X[i + 1] then

In the next example, we will sort students' grades from larger to smaller marks (descending order):

Sorting students' marksSorting students' marks
program smSort; // Students' marks sort

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

type
 TStudent = record
 StudentName: string;
 Mark: Byte;
 end;

procedure BubbleSort(var X: array of TStudent);
var
 Temp: TStudent;
 i: Integer;
 Changed: Boolean;
begin
 repeat
 Changed:= False;
 for i:= 0 to High(X) - 1 do
 if X[i].Mark < X[i + 1].Mark then
 begin
 Temp:= X[i];
 X[i]:= X[i + 1];
 X[i + 1]:= Temp;
 Changed:= True;
 end;
 until not Changed;
end;

var
 Students: array [0 .. 9] of TStudent;
 i: Integer;

begin
 Writeln('Please input 10 student names and marks');
 for i:= 0 to High(Students) do
 begin
 Write('Student #', i + 1, ' name : ');
 Readln(Students[i].StudentName);

 Write('Student #', i + 1, ' mark : ');
 Readln(Students[i].Mark);
 Writeln;
 end;

 BubbleSort(Students);
 Writeln;
 Writeln('Marks after Bubble sort: ');
 Writeln('----------------------');

 for i:= 0 to High(Students) do
 begin
 Writeln('# ', i + 1, ' ', Students[i].StudentName,
 ' with mark (', Students[i].Mark, ')');
 end;
 Write('Press enter key to close');
 Readln;
end.

The Bubble sort algorithm is very simple, and programmers could memorize it. It is also suitable only
for a small amount of data, or data that is nearly sorted. In the case of a large amount of unsorted data,
it could take a long time, so that it is better to use another algorithm.

Selection Sort algorithm

This type of sorting is similar to the bubble sort, but it is faster with a large amount of data. It contains
two loops, the outer loop and the inner loop. In the inner loop, the cycles decrease in every outer loop
cycle until it reaches only two cycles.

program SelectionSort;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes
 { you can add units after this };

procedure SelectSort(var X: array of Integer);
var
 i: Integer;
 j: Integer;
 SmallPos: Integer;
 Smallest: Integer;
begin
 for i:= 0 to High(X) -1 do // Outer loop
 begin
 SmallPos:= i;
 Smallest:= X[SmallPos];
 for j:= i + 1 to High(X) do // Inner loop
 if X[j] < Smallest then
 begin
 SmallPos:= j;
 Smallest:= X[SmallPos];
 end;
 X[SmallPos]:= X[i];
 X[i]:= Smallest;
 end;
end;

// Main application

var
 Numbers: array [0 .. 9] of Integer;
 i: Integer;

begin
 Writeln('Please input 10 random numbers');
 for i:= 0 to High(Numbers) do
 begin
 Write('#', i + 1, ': ');
 Readln(Numbers[i]);
 end;

 SelectSort(Numbers);
 Writeln;
 Writeln('Numbers after Selection sort: ');

 for i:= 0 to High(Numbers) do
 begin
 Writeln(Numbers[i]);
 end;
 Write('Press enter key to close');
 Readln;
end.

In spite of that, it is faster than a bubble sort, but a bubble sort becomes faster (fewer outer cycles) if
the data is sorted or semi-sorted, while a selection sort always has the same number of cycles
regardless of the data's initial order.

Shell sort algorithm

This is a very fast sort when there is a large amount of data, and its behavior is similar to a bubble sort
if the data is semi-sorted, but it is more complicated than the two previous sort algorithms.

Its name comes from its inventor, Donald Shell.

program ShellSort;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes;

procedure ShellS(var X: array of Integer);
var
 Done: Boolean;
 Jump, j, i: Integer;
 Temp: Integer;
begin
 Jump:= High(X);
 while (Jump > 0) do // Outer loop
 begin
 Jump:= Jump div 2;
 repeat // Intermediate loop
 Done:= True;
 for j:= 0 to High(X) - Jump do // Inner loop
 begin
 i:= j + Jump;
 if X[j] > X[i] then // Swap
 begin
 Temp:= X[i];
 X[i]:= X[j];
 X[j]:= Temp;
 Done:= False;

 end;

 end; // end of inner loop
 until Done; // end of intermediate loop
 end; // end of outer loop
end;

var
 Numbers: array [0 .. 9] of Integer;
 i: Integer;

begin
 Writeln('Please input 10 random numbers');
 for i:= 0 to High(Numbers) do
 begin
 Write('#', i + 1, ': ');
 Readln(Numbers[i]);
 end;

 ShellS(Numbers);
 Writeln;
 Writeln('Numbers after Shell sort: ');

 for i:= 0 to High(Numbers) do
 begin
 Writeln(Numbers[i]);
 end;
 Write('Press enter key to close');
 Readln;
end.

String sorting

We can sort strings like names, address, etc., using the same comparison operators (> and <) that we
used to sort integers.

Comparison occurs from the left characters to the right, for example the letter A is smaller than B, and
the name 'Ahmed' is smaller than 'Badr'. If two strings have the same first letters, then comparison will
go to the next character. Example 'Ali' and 'Ahmed', this time h is smaller than l.

Sorting students name programSorting students name program

program smSort; // Students mark sort by name

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes;

type
 TStudent = record
 StudentName: string;
 Mark: Byte;
 end;

procedure BubbleSort(var X: array of TStudent);
var
 Temp: TStudent;
 i: Integer;
 Changed: Boolean;
begin
 repeat
 Changed:= False;
 for i:= 0 to High(X) - 1 do
 if X[i].StudentName > X[i + 1].StudentName then
 begin
 Temp:= X[i];
 X[i]:= X[i + 1];
 X[i + 1]:= Temp;
 Changed:= True;
 end;
 until not Changed;
end;

var
 Students: array [0 .. 9] of TStudent;
 i: Integer;

begin

 Writeln('Please input 10 student names and marks');
 for i:= 0 to High(Students) do
 begin
 Write('Student #', i + 1, ' name : ');
 Readln(Students[i].StudentName);

 Write('Student #', i + 1, ' mark : ');
 Readln(Students[i].Mark);
 Writeln;
 end;

 BubbleSort(Students);
 Writeln;
 Writeln('Marks after Bubble sort: ');
 Writeln('----------------------');

 for i:= 0 to High(Students) do
 begin
 Writeln('# ', i + 1, ' ', Students[i].StudentName,
 ' with mark (', Students[i].Mark, ')');
 end;
 Write('Press enterkey to close');
 Readln;
end.

Sort algorithms comparison

In this example, we will compare the three sorting algorithms that we have mentioned in this chapter
with a large array of Integer. We will measure the time used by each algorithm:

program SortComparison;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Classes, SysUtils;

// Bubble sort

procedure BubbleSort(var X: array of Integer);
var
 Temp: Integer;
 i: Integer;
 Changed: Boolean;
begin
 repeat
 Changed:= False;
 for i:= 0 to High(X) - 1 do
 if X[i] > X[i + 1] then
 begin
 Temp:= X[i];

 X[i]:= X[i + 1];
 X[i + 1]:= Temp;
 Changed:= True;
 end;
 until not Changed;
end;

// Selection Sort

procedure SelectionSort(var X: array of Integer);
var
 i: Integer;
 j: Integer;
 SmallPos: Integer;
 Smallest: Integer;
begin
 for i:= 0 to High(X) -1 do // Outer loop
 begin
 SmallPos:= i;
 Smallest:= X[SmallPos];
 for j:= i + 1 to High(X) do // Inner loop
 if X[j] < Smallest then
 begin
 SmallPos:= j;
 Smallest:= X[SmallPos];
 end;
 X[SmallPos]:= X[i];
 X[i]:= Smallest;
 end;
end;

// Shell Sort

procedure ShellSort(var X: array of Integer);
var
 Done: Boolean;
 Jump, j, i: Integer;
 Temp: Integer;
begin
 Jump:= High(X);
 while (Jump > 0) do // Outer loop
 begin
 Jump:= Jump div 2;
 repeat // Intermediate loop
 Done:= True;
 for j:= 0 to High(X) - Jump do // Inner loop
 begin
 i:= j + Jump;
 if X[j] > X[i] then // Swap
 begin
 Temp:= X[i];
 X[i]:= X[j];
 X[j]:= Temp;
 Done:= False;
 end;

 end; // inner loop
 until Done; // innermediate loop end

 end; // outer loop end
end;

// Randomize Data

procedure RandomizeData(var X: array of Integer);
var
 i: Integer;
begin
 Randomize;
 for i:= 0 to High(X) do
 X[i]:= Random(10000000);
end;

var
 Numbers: array [0 .. 59999] of Integer;
 i: Integer;
 StartTime: TDateTime;

begin

 Writeln('----------------- Full random data');
 RandomizeData(Numbers);
 StartTime:= Now;
 Writeln('Sorting.. Bubble');
 BubbleSort(Numbers);
 Writeln('Bubble sort tooks (mm:ss): ',
 FormatDateTime('nn:ss', Now - StartTime));
 Writeln;

 RandomizeData(Numbers);
 Writeln('Sorting.. Selection');
 StartTime:= Now;
 SelectionSort(Numbers);
 Writeln('Selection sort tooks (mm:ss): ',
 FormatDateTime('nn:ss', Now - StartTime));
 Writeln;

 RandomizeData(Numbers);
 Writeln('Sorting.. Shell');
 StartTime:= Now;
 ShellSort(Numbers);
 Writeln('Shell sort tooks (mm:ss): ',
 FormatDateTime('nn:ss', Now - StartTime));

 Writeln;
 Writeln('----------------- Nearly sorted data');
 Numbers[0]:= Random(10000);
 Numbers[High(Numbers)]:= Random(10000);
 StartTime:= Now;
 Writeln('Sorting.. Bubble');
 BubbleSort(Numbers);
 Writeln('Bubble sort tooks (mm:ss): ',
 FormatDateTime('nn:ss', Now - StartTime));
 Writeln;

 Numbers[0]:= Random(10000);
 Numbers[High(Numbers)]:= Random(10000);
 Writeln('Sorting.. Selection');

 StartTime:= Now;
 SelectionSort(Numbers);
 Writeln('Selection sort tooks (mm:ss): ',
 FormatDateTime('nn:ss', Now - StartTime));
 Writeln;

 Numbers[0]:= Random(10000);
 Numbers[High(Numbers)]:= Random(10000);
 Writeln('Sorting.. Shell');
 StartTime:= Now;
 ShellSort(Numbers);
 Writeln('Shell sort tooks (mm:ss): ',
 FormatDateTime('nn:ss', Now - StartTime));

 Write('Press enterkey to close');
 Readln;
end.

Chapter ThreeChapter Three

The Graphical User InterfaceThe Graphical User Interface

Introduction

The Graphical User Interface (GUI) is a new alternative to the console interface. It contains forms,
buttons, message boxes, menus, check boxes and graphical components. It is easier for users to use
GUI applications than console applications.

The GUI is used for business applications, operating system applications, games, and development
tools like Lazarus, and many other applications.

Our First GUI application

To create a new GUI application, click on the Lazarus menu:

Project/New Project/Application

Then save the application by clicking on:

File/Save All

We can then create a new folder, such as firstgui, in which to save our project files. Then we should
save the main unit, for example, main.pas, and finally we should choose a project name, such as
firstgui.lpi.

In the main unit, we can press F12 to view the form associated with the main unit, which will look like
this:

If we run the application, we will get this window:

Then we can close the application to return to the designer.

After that, we drop a button from standard component page on the form:

Then put the button at any place on the form like this picture:

We can display the button's properties (like caption name, width, etc) in the Object Inspector window.
If it does not appear in Lazarus's windows, then we can display it by clicking Window/Object Inspector

from the main menu or by pressing F11. Then we will get this window:

We should make sure that we have selected the button not the form before we do any modification to its
properties. Notice the Inspector window has tabs, the first being Properties and the second being
Events. Each tab displays its own page.

Then we can change the text that is displayed in the button by changing its Caption property to Click.

After that, select the Events tab of the Object Inspector to display the Events page and double click the
OnClick event, which will create this code template in the main unit:

procedure TForm1.Button1Click(Sender: TObject);
begin

end;

Then write this line in the OnClick event code template that Lazarus created for us:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage('Hello world, this is my first GUI application');
end;

By doing this, when we run the application, it will display a dialog window containing the desired
message when we click the button with our mouse.

In Linux, we will find firstgui as an executable file in the same project directory, and firstgui.exe if we
are using Windows. These are the executable files that we can copy to another computer and can run
without the need of the Lazarus tool.

In the previous example, there are many important issues:

1. Main application file: which is stored in the firstgui.lpi file in the example. We can show it by
clicking Project/Source. We will get this source code:

program firstgui;

{$mode objfpc}{$H+}

uses
 {$IFDEF UNIX}{$IFDEF UseCThreads}
 cthreads,
 {$ENDIF}{$ENDIF}
 Interfaces, // this includes the LCL widgetset
 Forms
 { you can add units after this }, main;

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

We may need to modify this code in certain cases for special purposes, but in most cases, we can leave
it as it is, and let Lazarus manage it automatically.

2. Main unit: It is the unit that contains the definition of the form that appears automatically when
we run the application.

Below is the main unit code after we have completed the code for the OnClick event:

unit main;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics, Dialogs,
 StdCtrls;

type

 { TForm1 }

 TForm1 = class(TForm)
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private

 { private declarations }
 public
 { public declarations }
 end;

var
 Form1: TForm1;

implementation

{ TForm1 }

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage('Hello world, this is my first GUI application');
end;

initialization
 {$I main.lrs}

end.

In the main unit header, we find the TForm1 declaration, which is similar to the record type, but is a
Class. We will talk about classes in the next chapter: Object Oriented Programming. Button1 is
declared inside the TForm1 class.

We can show this unit source code by pressing Ctrl-F12 then selecting main unit.

3. Object Inspector/Properties: In this page of the Object Inspector, we can view and modify any
component's properties, like a Button's caption or location, a form's color, or a labels font, etc.
These components are similar to records, and their properties are similar to a record's fields.

4. Object Inspector/Events: This page of the Object Inspector contains a component's events that
we can receive, like On Click event in a button, Key Press of an edit box, double click in a label,
etc. When we click on any event of a component, Lazarus creates a new procedure template for
us to write the code that will be called when this event occurs. We can write Pascal code for this
event like the example below for a button's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage('Hello world, this is my first GUI application');
end;

This procedure will be called when the user clicks that button. This procedure is called an event
handler.

Second GUI application

In this example, we will let the user enter his/her name in an edit box, and then when he/she clicks on a
button, a greeting message will be displayed in a label.

To write this application, do the following:

- Create a new application and save it as inputform. Save the main unit as main.pas, then drop these
components on the form from the standard component tab:

2 Labels
Edit box
Button

Then modify some properties of the above components as shown:

Form1:
Name: fmMain
Caption: Input form application

Label1:
Caption: Please enter your name

Label2:
Name: laYourName

Edit1:
Name: edName
Text:

Button1:
Caption: Click

Put the components on the form to look like the picture below:

- Put this code in the OnClick event handler:

procedure TfmMain.Button1Click(Sender: TObject);
begin
 laYourName.Caption:= 'Hello ' + edName.Text;
end;

Then we can run the application and write our name in the edit box, and then click the button.

In the previous example, we used the field Text in the edit box edName to read what the user types.
This is the graphical alternative to the Readln procedures used in console applications to receive user
input.

We also used the Caption property of the label laYourName to display a message. This is one of the
alternative methods to Writeln in GUI applications.

ListBox application

In the next example, we need to add text in a list box, delete it, and clear the list. To do this application
follow these steps:

– Create a new application and put 4 buttons, an Edit box, and a List Box (TListBox) on its main
form

– Change the name of buttons to these names:

btAdd, btClear, btDelete, btClose

– Change the captions of the buttons according to their names as shown in this figure:

- Write these event handlers for the buttons' OnClick events:

procedure TForm1.btAddClick(Sender: TObject);
begin
 ListBox1.Items.Add(Edit1.Text);
end;

procedure TForm1.btClearClick(Sender: TObject);
begin
 ListBox1.Clear;
end;

procedure TForm1.btDeleteClick(Sender: TObject);
var
 Index: Integer;
begin
 Index:= ListBox1.ItemIndex;
 if Index <> -1 then
 ListBox1.Items.Delete(Index);
end;

procedure TForm1.btCloseClick(Sender: TObject);
begin
 Close;
end;

Clicking the Add button will insert the text of the edit box into the list. The Delete button will delete
current selected list item. The Clear button will clear the entire list. Finally, the Close button will close
the application.

Text Editor Application

In this example, we will show how to create a simple text editor application.
Follow these steps:

• Create a new application and put these components on it's main form:

 - TMainMenu
 - TMemo: Change it's align property to alClient and ScrollBars to ssBoth
 - TOpenDialog and TSaveDialog from Dialogs page of components palette.

• Double click on the MainMenu1 component and add File menu and a sub menu containing
Open File, Save File, and Close menu items.

Our form will look like this:

• For the Open File item's OnClick event write this code:

 if OpenDialog1.Execute then
 Memo1.Lines.LoadFromFile(OpenDialog1.FileName);

• For the Save File item write this code:

 if SaveDialog1.Execute then
 Memo1.Lines.SaveToFile(SaveDialog1.FileName);

• For the Close item write:

 Close;

After running this text editor application, we can write any text and then save it to disk. We also can
open existing text files, like .pas files:

News Application

This time we need to write an application for storing news titles using these steps:

– Create a new application and name it gnews
– Add two buttons of type type TButton
– Add a text box (TEdit)
– Add memo (TMemo)
– Change the component's properties according to the following values:

Button1
Caption: Add Title

Button2
Caption: Save
Anchors: Left=False, Right=True

Edit1:
Text=

Memo1
ScrollBars: ssBoth
ReadOnly: True
Anchors: Top=True, Left=Ture, Right=True, Bottom=Ture

Then we will get a form like this:

– For the Add Title button's OnClick event write this code:

 Memo1.Lines.Insert(0,
 FormatDateTime('yyyy-mm-dd hh:nn', Now) + ': ' + Edit1.Text);

– For the Save button's OnClick event write:

 Memo1.Lines.SaveToFile('news.txt');

– For the main form's OnClose event write this code to save entered news:

 Memo1.Lines.SaveToFile('news.txt');

– For the main form's OnCreate event write the code that loads previously saved news titles if any
exist:

 if FileExists('news.txt') then
 Memo1.Lines.LoadFromFile('news.txt');

Application with a Second form

In the previous GUI applications, we have used only one form, but in real applications sometimes we
need multiple forms.

To write a multiple formGUI application, do the following steps:

1. Create a new application and save it in a new folder called secondform.
2. Save the main unit as main.pas, and name the form component as fmMain. Save the project as

secondform.lpi.
3. Add a new form by clicking File / New Form. Save this new unit as second.pas and name its

form component fmSecond.
4. Add a label in the second form and write in its Caption property 'Second Form'. Increase its

font size from the label's Font.Size property.
5. Go back to the main form and put a button on it.
6. Add this line after main unit implementation section:

uses second;

7. For the OnClick event of the button, write this code:

 fmSecond.Show;

Then run the application and click the button to display the second form.

Chapter FourChapter Four

Object Oriented Object Oriented
ProgrammingProgramming

Introduction

In Object Oriented Programming, we describe the entities of an application as objects. For example, we
can represent car information as an object that contains model name, model year, price, and this object
has the ability to save this data in a file.

The object contains:

1. Properties which store status information., These values can be stored in variables.
2. Procedures and functions which are called Methods. These methods represents the actions that

can be done in this object.
3. Events: these events could be received by the object, like the mouse moves over the object, a

mouse click, etc
4. Event handlers: These are the procedures that will be executed if an event occurs.

Properties and methods that are related to each other can be represented as one object:

Object = Code + Data

An example of Object Oriented Programming is the GUI that we have used in the previous chapter. In
that chapter we have used a lot of objects like buttons, labels, and forms. Each object contains
properties like Caption, Width, and have methods like, Show, Hide, Close, etc. Also they have events
like OnClick, OnCreate, OnClose, etc. The code that is written by the programmer to respond to
specific events like the OnClick code represents event handlers.

First example: Date and TimeFirst example: Date and Time

We have written an object that contains date and time with actions that work for date and time.
We have created a new unit which is called DateTimeUnit, and we have created a class in it called
TmyDateTime.

Class is the type of an object. If we need to use that class, we should declare an instance of it. This
instance is called object, the same as we have done with Integer, and String types. We declare instances
of classes as variables (I, J, Address, etc) in order to use them.

This is the code of unit:

unit DateTimeUnit;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils;

type

 { TMyDateTime }

 TMyDateTime = class
 private
 fDateTime: TDateTime;
 public
 function GetDateTime: TDateTime;
 procedure SetDateTime(ADateTime: TDateTime);
 procedure AddDays(Days: Integer);
 procedure AddHours(Hours: Single);
 function GetDateTimeAsString: string;
 function GetTimeAsString: string;
 function GetDateAsString: string;
 constructor Create(ADateTime: TDateTime);
 destructor Destroy; override;
 end;

implementation

{ TMyDateTime }

function TMyDateTime.GetDateTime: TDateTime;
begin
 Result:= fDateTime;
end;

procedure TMyDateTime.SetDateTime(ADateTime: TDateTime);
begin
 fDateTime:= ADateTime;
end;

procedure TMyDateTime.AddDays(Days: Integer);
begin
 fDateTime:= fDateTime + Days;
end;

procedure TMyDateTime.AddHours(Hours: Single);
begin
 fDateTime:= fDateTime + Hours / 24;
end;

function TMyDateTime.GetDateTimeAsString: string;
begin
 Result:= DateTimeToStr(fDateTime);
end;

function TMyDateTime.GetTimeAsString: string;
begin
 Result:= TimeToStr(fDateTime);
end;

function TMyDateTime.GetDateAsString: string;
begin
 Result:= DateToStr(fDateTime);
end;

constructor TMyDateTime.Create(ADateTime: TDateTime);
begin
 fDateTime:= ADateTime;

end;

destructor TMyDateTime.Destroy;
begin
 inherited Destroy;
end;

end.

We have put five buttons on the main form as shown:

We have written the following code in the OnClick event of each button:

unit main;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics, Dialogs,
 StdCtrls, DateTimeUnit;

type

 { TForm1 }

 TForm1 = class(TForm)
 Button1: TButton;
 Button2: TButton;
 Button3: TButton;

 Button4: TButton;
 Button5: TButton;
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 procedure Button3Click(Sender: TObject);
 procedure Button4Click(Sender: TObject);
 procedure Button5Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 { private declarations }
 public
 MyDT: TMyDateTime;
 { public declarations }
 end;

var
 Form1: TForm1;

implementation

{ TForm1 }

procedure TForm1.FormCreate(Sender: TObject);
begin
 MyDT:= TMyDateTime.Create(Now);
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 ShowMessage(MyDT.GetDateTimeAsString);
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 ShowMessage(MyDT.GetDateAsString);
end;

procedure TForm1.Button3Click(Sender: TObject);
begin
 ShowMessage(MyDT.GetTimeAsString);
end;

procedure TForm1.Button4Click(Sender: TObject);
begin
 MyDT.AddHours(1);
end;

procedure TForm1.Button5Click(Sender: TObject);
begin
 MyDT.AddDays(1);
end;

initialization
 {$I main.lrs}

end.

In this example, notice these important issues:

In the DateTimeUnit unit:

1. Defining TmyDateTime as class, which is the keyword for defining new classes.
2. Introducing the Constructor method: Create. This is a special procedure that is used to create

objects in memory and initialize them.
3. Introducing the Destructor method: Destroy. This is a special procedure that is called to dispose

of object's memory after finishing using it.
4. There are two sections in that class: private: which contains properties and methods that can not

be accessed from outside the class unit. The other section is public, which contains properties
and methods that can be accessed from outside the unit. If a class does not contains a public
section, that means it can not be used at all.

Main unit:

1. We have added DateTimeUnit in the Uses clause of the main form to access its class.
2. We have declared the MyDT object inside the unit:

 MyDT: TMyDateTime;

3. We have created the object and initialized it in the main Form's OnCreate event:

 MyDT:= TMyDateTime.Create(Now);

That is the method of creating objects in the Object Pascal language.

News application in Object Oriented PascalNews application in Object Oriented Pascal

In this example, we want to rewrite the News application using Object Oriented methods. We also have
to categorize news into separate files.

We have created a new GUI application and named it oonews.

The next example is a new unit that contains the TNews class that has news functionality:

unit news;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils;

type
 TNewsRec = record
 ATime: TDateTime;
 Title: string[100];
 end;

 { TNews }

 TNews = class
 private
 F: file of TNewsRec;
 fFileName: string;
 public
 constructor Create(FileName: string);
 destructor Destroy; override;
 procedure Add(ATitle: string);
 procedure ReadAll(var NewsList: TStringList);
 function Find(Keyword: string;
 var ResultList: TStringList): Boolean;
 end;

implementation

{ TNews }

constructor TNews.Create(FileName: string);
begin
 fFileName:= FileName;
end;

destructor TNews.Destroy;
begin
 inherited Destroy;
end;

procedure TNews.Add(ATitle: string);
var
 Rec: TNewsRec;
begin

 AssignFile(F, fFileName);
 if FileExists(fFileName) then
 begin
 FileMode:= 2; // Read/write access
 Reset(F);
 Seek(F, FileSize(F));
 end

 else
 Rewrite(F);

 Rec.ATime:= Now;
 Rec.Title:= ATitle;
 Write(F, Rec);
 CloseFile(F);

end;

procedure TNews.ReadAll(var NewsList: TStringList);
var
 Rec: TNewsRec;
begin
 NewsList.Clear;
 AssignFile(F, fFileName);
 if FileExists(fFileName) then
 begin
 Reset(F);
 while not Eof(F) do
 begin
 Read(F, Rec);
 NewsList.Add(DateTimeToStr(Rec.ATime) + ' : ' + Rec.Title);
 end;
 CloseFile(F);
 end;

end;

function TNews.Find(Keyword: string; var ResultList: TStringList): Boolean;
var
 Rec: TNewsRec;
begin
 ResultList.Clear;
 Result:= False;
 AssignFile(F, fFileName);
 if FileExists(fFileName) then
 begin
 Reset(F);
 while not Eof(F) do
 begin
 Read(F, Rec);
 if Pos(LowerCase(Keyword), LowerCase(Rec.Title)) > 0 then
 begin
 ResultList.Add(DateTimeToStr(Rec.ATime) + ' : ' + Rec.Title);
 Result:= True;
 end;
 end;
 CloseFile(F);
 end;

end;

end.

In the main form we have added Edit box, ComboBox, three buttons, Memo, and two labels
components as shown:

In the main unit, we have written this code:

unit main;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics,
 Dialogs, News, StdCtrls;

type

 { TForm1 }

 TForm1 = class(TForm)

 btAdd: TButton;
 btShowAll: TButton;
 btSearch: TButton;
 cbType: TComboBox;
 edTitle: TEdit;
 Label1: TLabel;
 Label2: TLabel;
 Memo1: TMemo;
 procedure btAddClick(Sender: TObject);
 procedure btSearchClick(Sender: TObject);
 procedure btShowAllClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 { private declarations }
 public
 NewsObj: array of TNews;
 { public declarations }
 end;

var
 Form1: TForm1;

implementation

{ TForm1 }

procedure TForm1.FormCreate(Sender: TObject);
var
 i: Integer;
begin
 SetLength(NewsObj, cbType.Items.Count);
 for i:= 0 to High(NewsObj) do
 NewsObj[i]:= TNews.Create(cbType.Items[i] + '.news');

end;

procedure TForm1.btAddClick(Sender: TObject);
begin
 NewsObj[cbType.ItemIndex].Add(edTitle.Text);
end;

procedure TForm1.btSearchClick(Sender: TObject);
var
 SearchStr: string;
 ResultList: TStringList;
begin
 ResultList:= TStringList.Create;
 if InputQuery('Search News', 'Please input keyword', SearchStr) then
 if NewsObj[cbType.ItemIndex].Find(SearchStr, ResultList) then
 begin
 Memo1.Lines.Clear;
 Memo1.Lines.Add(cbType.Text + ' News');
 Memo1.Lines.Add('--');
 Memo1.Lines.Add(ResultList.Text);
 end
 else
 Memo1.Lines.Text:= SearchStr + ' not found in ' +
 cbType.Text + ' news';
 ResultList.Free;

end;

procedure TForm1.btShowAllClick(Sender: TObject);
var
 List: TStringList;
begin
 List:= TStringList.Create;
 NewsObj[cbType.ItemIndex].ReadAll(List);
 Memo1.Lines.Clear;
 Memo1.Lines.Add(cbType.Text + ' News');
 Memo1.Lines.Add('---');
 Memo1.Lines.Add(List.Text);
 List.Free;
end;

procedure TForm1.FormClose(Sender: TObject; var CloseAction: TCloseAction);
var
 i: Integer;
begin
 for i:= 0 to High(NewsObj) do
 NewsObj[i].Free;

 NewsObj:= nil;

end;

initialization
 {$I main.lrs}

end.

In the previous example, notice these issues:

1. We have used a Dynamic array, which is an array that can be allocated, expanded, reduced and
disposed at run time according to it's usage. We declare a dynamic array of News objects like this:

 NewsObj: array of TNews;

At run time and before using it, we should initialize it using the SetLength procedure:

 SetLength(NewsObj, 10);

Which means allocate 10 elements for that array. This is similar to the declaration of a normal array:

 NewsObj: array [0 .. 9] of TNews;

A normal array's size will remain constant during the time an application is running, but a dynamic
array's size can be increased and decreased.

In this example, we have initialized the array according to categories that exist in the combo box:

 SetLength(NewsObj, cbType.Items.Count);

If we add more categories in ComboBox.Items, the dynamic array's size will increase accordingly.

2. The TNews type is a Class, and we can not use it directly,.We must declare an object instance of
it like NewsObj.

3. At the end of the application, we have released the objects, then released the dynamic array:

 for i:= 0 to High(NewsObj) do
 NewsObj[i].Free;

 NewsObj:= nil;

Queue ApplicationQueue Application

A queue is an example of one of type of data structure. It is used to insert and store elements
sequentially and delete them in the order in which the elements were inserted. Its rule is called First-in-
first-out.

In the next example, we have written a unit called Queue, which contains the TQueue class. The
TQueue class can be used to store data like names, and get them sequentially. Getting data from a
queue deletes that data. For example, if the queue contains 10 items, and we get and read 3 items, 7
items will be left in the queue.

Queue unit:

unit queue;
// This unit contains TQueue class,
// which is suitable for any string queue

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils;

type

 { TQueue }

 TQueue = class
 private
 fArray: array of string;
 fTop: Integer;
 public
 constructor Create;
 destructor Destroy; override;
 function Put(AValue: string): Integer;
 function Get(var AValue: string): Boolean;
 function Count: Integer;
 function ReOrganize: Boolean;
 end;

implementation

{ TQueue }

constructor TQueue.create;
begin
 fTop:= 0;
end;

destructor TQueue.destroy;
begin
 SetLength(fArray, 0); // Erase queue array from memory
 inherited destroy;
end;

function TQueue.Put(AValue: string): Integer;
begin
 if fTop >= 100 then
 ReOrganize;

 SetLength(fArray, Length(fArray) + 1);
 fArray[High(fArray)]:= AValue;
 Result:= High(fArray) - fTop;
end;

function TQueue.Get(var AValue: string): Boolean;
begin
 AValue:= '';
 if fTop <= High(fArray) then
 begin
 AValue:= fArray[fTop];
 Inc(fTop);
 Result:= True;
 end
 else // empty
 begin
 Result:= False;

 // Erase array
 SetLength(fArray, 0);
 fTop:= 0;
 end;
end;

function TQueue.Count: Integer;
begin
 Result:= Length(fArray) - fTop;
end;

function TQueue.ReOrganize: Boolean;
var
 i: Integer;
 PCount: Integer;
begin
 if fTop > 0 then
 begin
 PCount:= Count;
 for i:= fTop to High(fArray) do
 fArray[i - fTop]:= fArray[i];

 // Truncate unused data
 setLength(fArray, PCount);
 fTop:= 0;
 Result:= True; // Re Organize is done

 end
 else
 Result:= False; // nothing done
 end;
end;
end.

The main form for the Queue application:

The code of the main unit:

unit main;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics,
 Dialogs, Queue, StdCtrls;

type

 { TfmMain }

 TfmMain = class(TForm)
 bbAdd: TButton;
 bbCount: TButton;
 bbGet: TButton;
 edCustomer: TEdit;
 Label1: TLabel;
 Memo1: TMemo;
 procedure bbAddClick(Sender: TObject);
 procedure bbCountClick(Sender: TObject);
 procedure bbGetClick(Sender: TObject);
 procedure FormClose(Sender: TObject; var CloseAction: TCloseAction);
 procedure FormCreate(Sender: TObject);
 private
 { private declarations }
 public

 MyQueue: TQueue;
 { public declarations }
 end;

var
 fmMain: TfmMain;

implementation

{ TfmMain }

procedure TfmMain.FormCreate(Sender: TObject);
begin
 MyQueue:= TQueue.Create;
end;

procedure TfmMain.FormClose(Sender: TObject; var CloseAction: TCloseAction);
begin
 MyQueue.Free;
end;

procedure TfmMain.bbCountClick(Sender: TObject);
begin
 Memo1.Lines.Add('Queue length is: ' + IntToStr(MyQueue.Count));
end;

procedure TfmMain.bbAddClick(Sender: TObject);
var
 APosition: Integer;
begin
 APosition:= MyQueue.Put(edCustomer.Text);
 Memo1.Lines.Add(edCustomer.Text + ' has been added as # ' +
 IntToStr(APosition + 1));
end;

procedure TfmMain.bbGetClick(Sender: TObject);
var
 ACustomer: string;
begin
 if MyQueue.Get(ACustomer) then
 begin
 Memo1.Lines.Add('Got: ' + ACustomer + ' from the queue');
 end
 else
 Memo1.Lines.Add('Queue is empty');
end;

initialization
 {$I main.lrs}

end.

In the TQueue class, we have used the Put method to insert a new item by expanding the dynamic array
and then put the new item in the new last element of the array.

When calling the Get method to remove the item at the top of the queue, the fTop pointer will be moved
to the next item in the queue.

Removing items from the top of a the dynamic array will result in moving the fTop pointer, but the
items of dynamic array will remain in memory and will occupy space, because we can delete only from
the bottom of the dynamic array, and for that reason if the number of deleted items reaches 100, the
ReOrganize method will be called to shift the queue elements at the top of the dynamic array, then
delete unused elements of the array.

This is the code that shifts queue elements to the top of the dynamic array:

 for i:= fTop to High(fArray) do
 fArray[i - fTop]:= fArray[i];

And this is the code for cutting the dynamic array from the bottom:

 // Truncate unused data
 setLength(fArray, PCount);
 fTop:= 0;

In this example, we find that object oriented programming introduces information hiding. Access to
sensitive data will be denied, like access to variables. Instead we can use specific methods that will not
result in odd behavior for the object.

Sensitive data and methods will be located in the private section of the class declaration:

 private
 fArray: array of string;
 fTop: Integer;

Programmers who use this class can not access these variables directly. If they were able to access
those variables, then they could corrupt the queue by modifying fTop or fArray by accident. For
example, suppose that fTop has been changed to 1000 while the queue contains only 10 elements, this
will result in an access violation error at run-time.

As an alternative for using variables directly, we have implemented Put and Get methods to add and
remove items from array safely. This method is like using gates to control the inside elements.
This feature of OOP is called encapsulation.

Object Oriented File

In the first chapter, we used different types of files, and we manipulated them using structured
programming (procedures and functions). This time we will access files using a file object.

One of Object Oriented Pascal's file classes is TFileStream, which contains methods and properties to
manipulate files.

Using this method makes things more standard and predictable for programmers. For example to open
and initialize a file, we will use the Create constructor, as any other object in Pascal, but in the
structured method of using files, initializing files is done by AssignFile, Rewrite, Reset and Append
procedures.

Copy files using TFileStreamCopy files using TFileStream

In this example, we will copy files using the TFileStream type.

To do this, create a new application and put these components on the main form:

TButton, TOpenDialog, TSaveDialog

For the OnClick event of the button, write this code:

procedure TfmMain.Button1Click(Sender: TObject);
var
 SourceF, DestF: TFileStream;
 Buf: array [0 .. 1023] of Byte;
 NumRead: Integer;
begin
 if OpenDialog1.Execute and SaveDialog1.Execute then
 begin
 SourceF:= TFileStream.Create(OpenDialog1.FileName, fmOpenRead);
 DestF:= TFileStream.Create(SaveDialog1.FileName, fmCreate);
 while SourceF.Position < SourceF.Size do
 begin
 NumRead:= SourceF.Read(Buf, SizeOf(Buf));
 DestF.Write(Buf, NumRead);
 end;
 SourceF.Free;
 DestF.Free;
 ShowMessage('Copy finished');
 end;
end;

This method is very similar to using untyped files, except that it uses an object oriented file.

We can also use a simpler method of copying files:

procedure TfmMain.Button1Click(Sender: TObject);
var
 SourceF, DestF: TFileStream;
begin
 if OpenDialog1.Execute and SaveDialog1.Execute then
 begin
 SourceF:= TFileStream.Create(OpenDialog1.FileName, fmOpenRead);
 DestF:= TFileStream.Create(SaveDialog1.FileName, fmCreate);
 DestF.CopyFrom(SourceF, SourceF.Size);
 SourceF.Free;

 DestF.Free;
 ShowMessage('Copy finished');
 end;
end;

The CopyFrom method copies the entire file contents to the destination file because we gave it the
source file's size : SourceF.Size

Inheritance

Inheritance in Object Oriented Programming means creating a new class from an existing one and
inheriting its methods and properties. After inheriting existing properties and methods, we can add new
methods and properties to the new class.

As an example of inheritance, we want to create new a Integer queue class from our old string queue
class. Instead of writing the Integer queue from scratch, we can inherit from string queue.

To inherit from string queue, add a new unit and put the string queue unit in its uses clause. Then
declare the new integer queue as:

 TIntQueue = class(TQueue)

The new unit's name is IntQueue, and we have introduced two new methods: PutInt, and GetInt.

The complete code of the unit that contains the TIntQueue class is:

unit IntQueue;

// This unit contains TIntQueue class, which is inherits TQueue
// class and adds PutInt, GetInt methods to be used with
// Integer queue

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils, Queue;

type

 { TIntQueue }

 TIntQueue = class(TQueue)

 public
 function PutInt(AValue: Integer): Integer;
 function GetInt(var AValue: Integer): Boolean;

 end;

implementation

{ TIntQueue }

function TIntQueue.PutInt(AValue: Integer): Integer;
begin
 Result:= Put(IntToStr(AValue));
end;

function TIntQueue.GetInt(var AValue: Integer): Boolean;
var
 StrValue: string;
begin
 Result:= Get(StrValue);
 if Result then
 AValue:= StrToInt(StrValue);

end;

end.

Note that we didn't write new Create, Destroy and Count methods, because they already exist in the
parent class TQueue.

To use the new integer queue class, we have created a new application and added these components:

The unit's code is:

unit main;

{$mode objfpc}{$H+}

interface

uses
 Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics,
 Dialogs, IntQueue, StdCtrls;

type

 { TfmMain }

 TfmMain = class(TForm)
 bbAdd: TButton;
 bbCount: TButton;
 bbGet: TButton;
 edCustomerID: TEdit;
 Label1: TLabel;
 Memo1: TMemo;
 procedure bbAddClick(Sender: TObject);
 procedure bbCountClick(Sender: TObject);
 procedure bbGetClick(Sender: TObject);
 procedure FormClose(Sender: TObject;
 var CloseAction: TCloseAction);
 procedure FormCreate(Sender: TObject);
 private
 { private declarations }
 public
 MyQueue: TIntQueue;
 { public declarations }
 end;

var
 fmMain: TfmMain;

implementation

{ TfmMain }

procedure TfmMain.FormCreate(Sender: TObject);
begin
 MyQueue:= TIntQueue.Create;
end;

procedure TfmMain.FormClose(Sender: TObject; var CloseAction: TCloseAction);
begin
 MyQueue.Free;
end;

procedure TfmMain.bbCountClick(Sender: TObject);
begin
 Memo1.Lines.Add('Queue length is: ' + IntToStr(MyQueue.Count));
end;

procedure TfmMain.bbAddClick(Sender: TObject);
var
 APosition: Integer;
begin
 APosition:= MyQueue.PutInt(StrToInt(edCustomerID.Text));
 Memo1.Lines.Add(edCustomerID.Text + ' has been added as # '

 + IntToStr(APosition + 1));
end;

procedure TfmMain.bbGetClick(Sender: TObject);
var
 ACustomerID: Integer;
begin
 if MyQueue.GetInt(ACustomerID) then
 begin
 Memo1.Lines.Add('Got: Customer ID : ' + IntToStr(ACustomerID) +
 ' from the queue');
 end
 else
 Memo1.Lines.Add('Queue is empty');
end;

initialization
 {$I main.lrs}

end.

Note that we have used the properties and methods of TQueue in addition to TIntQueue properties and
methods.

In this case ,we call the original class TQueue the base class or ancestor, and we call the new class the
descendant.

Instead of creating a new class, we could modify the string queue unit and add IntPut and IntGet to
handle integers, but we have created the new class TIntQueue to illustrate inheritance. There is also
another reason: suppose that we didn't have the original source code of TQueue, like having only the
compiled unit file (ppu in Lazarus) or (.dcu in Delphi). In this case we couldn't see the source code and
of course we couldn't modify it. Inheritance will be the only way to add more functionality to this
queue.

The end

Code.sd

http://code.sd/

