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Abstract—Continued transistor scaling and increasing power
density has resulted in considerable increase in fault rates of
nano-technology systems. Cross-layer fault tolerance techniques
present a more cost-efficient methodology for adapting to such
increased fault rates as opposed to fixing everything at the
hardware layer. The effectiveness (Coverage, Fault-Masking and
Recovery) and overheads (Execution time, Energy and Cost) of
each fault tolerance technique varies with the layer and frequency
at which it is applied. The choice of appropriate fault-aware
design should also account for the application specific design
goals and constraints of real-time systems. To this end, we
provide a brief survey of fault-tolerance methods and discuss
their suitability to cross-layer design. We also provide a few
case studies that motivate the need for effective design space
exploration (DSE) for cross-layer fault-aware design of real-time
systems and discuss a few factors that have a major impact on
such DSE.

I. INTRODUCTION

We are in the middle of an exciting technology transforma-
tion. Most classes of electronic devices are already Internet-
enabled and inter-connected. With the growing interest in
Internet of Things (IoT) and wearables, even the smallest
of devices are expected to have some form of connectivity.
Consequently, real-time systems are going to be used in
an even wider range of applications. This broad variety of
application areas signifies varying demands on the system
regarding both performance and dependability [1]. A multi-
media application like portable gaming console, for instance,
has more stringent throughput and energy requirements than
a finance related application like an ATM, which has stricter
demands on correctness of computation. Varying relevance of
execution deadline in different real-time systems (Soft, Firm
and Hard) add to the system design complexity. Even for
similar applications, the performance metrics may vary with
different usage environments. It is impossible for a single
system architecture to cater to this wide variety of applications.
Therefore, appropriate computation platforms and design tech-
niques are necessary to meet application-specific performance
goals. Increasing physical fault rates pose a major challenge to
meeting those goals without exceeding the system’s resource
constraints.

Technology scaling and architectural innovations have led
to the design of denser and more complex systems. How-
ever, breakdown of Dennard Scaling [2] has led to increased
power density, which along with reduced transistor size, has
introduced reliability issues [3]. With smaller transistors, the
number of faults due to manufacturing defects such as im-
perfect lithographic patterning, has also increased. Moreover,
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increased temperature due to higher power density leads to
faster aging. Consequently, aging related fault mechanisms
like Negative-Bias Temperature Instability (NBTI), Time-
Dependent Dielectric Breakdown (TDDB), Hot Carrier Injec-
tion (HCI) and Electro Migration (EM) are accelerated and re-
sult in higher intermittent and permanent fault rates, eventually
leading to a reduced system lifetime. Smaller transistor size
also results in an increase in Soft Error Rates (SER) of logic
circuits. While the logical masking effect remains unaltered,
electrical masking effect is reduced by smaller and faster
transistors [4], [5]. Further, deeper pipelines used for enabling
higher clock speed have resulted in reduction of latching-
window masking, leading to even higher SER in micropro-
cessors. Therefore, extracting increasing usable-performance
out of real-time systems requires building resilient systems
out of increasingly unreliable hardware [6].

Traditional fault tolerance methods focus on mitigating all
physical faults at the hardware layer. Although this approach
provides freedom from dealing with physical faults to the
software designer, the area and power overhead costs may be
infeasible for most applications. Increased fault rate mitigation
and achieving application-specific performance targets require
innovative approaches beyond such single-layer approaches.
In Section II we review some fault tolerance methods imple-
mented at each layer of system stack for both memory and
computation. In contrast to the single-layer methods, a cross-
layer design approach involves utilizing the information and
capabilities of each layer to provide adequate overall system
resilience with a design that does not exceed the applica-
tion’s design constraints. In Section III we compare cross-
layer approach with single-layer fault tolerance and review
some recent projects that implement cross-layer resilience.
Cross-layer fault tolerance introduces the added complexity
of selecting appropriate resilience methods for an application
and also optimizing these methods for system-level design
goals. In Section IV we provide a first order framework for
comparing different cross-layer designs towards an effective
Design Space Exploration (DSE). In Section V, we conclude
the paper with discussions about important aspects of cross-
layer DSE and provide directions and scope of our future work.

II. DESIGN FOR FAULT TOLERANCE

Any fault tolerance technique involves either masking the
effect of the fault or detecting and recovering from the errors
caused due to the fault. While system recovery may be
sufficient for resilience against transient faults or soft errors,
permanent fault tolerance usually requires additional step of



isolating the fault by some form of system reconfiguration. We
provide a brief overview of some fault tolerance techniques
for faults in memory and computation. While some of the
techniques are applicable to both transient and intermittent
faults, we focus more on transient fault tolerance.

A. Fault tolerance in Memory

Information redundancy in the form of additional bits
for Error Checking and Correcting (ECC) is commonly
used for both SRAM-based caches and DRAM-based main
memory. Hamming [7] or Hsiao [8] code based Single-bit-
Error-Correcting and Double-bit-Error-Detecting (SEC-DED)
codes are usually sufficient for most systems. More robust
methods like Double-bit-Error-Correcting and Triple-bit-Error-
Detecting (DEC-TED) codes can be used for higher re-
silience against random bit errors. Reed Solomon [9] codes
and Single-Nibble-error-Correcting and Double-Nibble-error-
Detecting (SNC-DND) codes [10] are usually used for pro-
tection against multiple-bit burst errors. Granularity of ECC
implementation provides the trade-off between resilience and
storage overhead. Table I shows the storage overheads associ-
ated with some ECC implementations [11].

In caches, the write-policy determines the amount of cor-
rection capabilities that can be implemented. For a write-
through policy, the access granularity at Last Level Cache
(LLC) from Level 1 (L1) cache is a word and hence the
ECC granularity at LLC should be a single word. However,
for a write-back policy of L1 cache, the LLC access is a
full L1 cache line and therefore allows higher granularity
of ECC with reduced overheads. Additional tolerance can
be provided by interleaving more ECC codes within the
cache line, albeit with more overheads. Most systems use
commodity DRAM devices for main memory. Therefore, there
is an additional cost in terms of I/O pins over and above the
usual storage overheads. ECC DIMMs (dual in-line-memory
module) provide SEC-DED for each DRAM rank and have
higher overheads compared to non-ECC DIMMSs. More recent
methods have been developed to provide fault tolerance against
permanent faults in one or more chips on a DIMM. Such
Chipkill-correct [12] techniques spread the DRAM access
over multiple chips and use single-symbol-error-correcting
and double-symbol-error-detecting codes for error-correction.
Adaptive methods of ECC like Virtualized ECC [13] and
Bamboo codes [14] provide flexible and tunable approaches to
main memory fault tolerance. Such techniques can be used to
find appropriate trade-offs in cross-layer design approaches.

Summarizing, ECC granularity and fault-coverage provide
the tunable parameters, and memory controller, the tuning
knob for varying error protection levels based on system
requirements.

TABLE I: ECC storage overheads [11]

Data Bits SEC-DED SNC-DND DEC-TED
Check bits | Overhead | Check bits | Overhead | Check bits | Overhead
16 6 38% 12 75% 11 69%
32 7 22% 12 38% 13 41%
64 8 13% 14 22% 15 23%
128 9 7% 16 13% 17 13%

B. Fault tolerance in Computation

Tolerance techniques for soft-errors in computation circuits
primarily involve some form of execution redundancy — either
spatial and/or temporal. Implemented at any level of the
system stack, Dual Modular Redundancy (DMR) provides
only fault/error detection and Triple Modular Redundancy
(TMR) provides masking of any single fault/error. In terms
of cost, TMR can result in more than 200% area and power
overheads. Area and power overheads in a LEON3 core when
introduced with varying levels of TMR in pipeline, cache
and register file are reported in [15]. Corresponding results
for an FPGA-based implementation of LEON3 are presented
in [16]. In both cases, power and area overheads of more than
200% are observed. We briefly describe a few fault tolerance
techniques for each layer.

Circuit level fault masking usually involves circuit harden-
ing by using multiple flip-flops [17] or by gate resizing [18].
Multiple flip-flop based design uses scan-flops already present
in the circuit to provide error tolerance. Gate resizing involves
using bigger transistors to provide better tolerance against
radiation induced soft errors. More flexible methods [19]—-[21]
use partial replication based on profiling results to obtain re-
duced coverage at lower power and area overheads. Similarly,
low overhead methods based on circuit monitoring enable low
cost [22] and configurable fault detection [23].

At the architecture level, the granularity of execution repli-
cation provides the trade-off in error resilience and associated
overheads. The granularity may vary from a single module like
the pipeline [24], [25] to an entire core in chip multiproces-
sors [26]. Time redundancy-based techniques like redundant
multithreading [27], [28] are also used. Some fault detection
methods involve manipulating the pipeline [29], [30] to detect
both transient and intermittent faults. Similar to circuit level,
symptom or assertion monitoring based detection methods [31]
provide incomplete coverage at very low overheads. These
symptoms could be exceptions, control flow mis-speculations
and cache or translation look-aside buffer misses. Some code-
based methods are also used at architecture level to provide
concurrent fault detection and masking at lower area over-
heads. These methods are based on AN codes [32] and are
based on the principle of providing a redundant representation
of numbers such that the results of some operation on them
can be analyzed to detect and correct errors. As shown in
Equation 1 some operations preserve certain properties of the
operands. Such operations are performed on both operands as
well as the result and the results can be used for detection
and sometimes correction. However, such methods are very
application specific and require high design effort.

AX N; £ AX Ny =Ax (N1 + Na)
(N1 ® N2) mod A = ((N1 mod A) ® (N2 mod A)) mod A M

C. Software Fault Tolerance

Decreasing masking effects in logic circuits was discussed
in Section I. However, logical masking does not depend on
the transistor size and on-chip variations. Therefore, every
logic circuit has some masking effect for SEUs. This masking
is not limited to logic circuits only. Program level error
masking and its propagation are discussed in [33], where the



authors exploit program-level masking to perform reliability
driven prioritization of instructions. Experimental studies into
the masking effects of software stack [34] show that lower
application failure rates are observed if more abstraction layers
exist between hardware and application. So, the error rates
seen by each layer decreases as we abstract away from the
hardware layer. However, this benefit is obtained at higher
performance overheads. We now discuss a few fault tolerance
techniques in system and application software.

Similar to circuit and architecture levels, replication and re-
execution are the most common methods employed for fault
tolerance by system software as well. The replication may be
full re-execution [35] of the application or compiler insertion
of replicated instructions and checks [36], [37]. More recent
approaches use reliability oriented compilation to generate
executables with required tolerance levels [38], [39]. Symptom
monitoring based approaches are also used at system software
level. These symptoms include fatal traps or application aborts
and can be used for detecting all kinds of faults.

Application level techniques can take advantage of the infor-
mation about applications requirements and characteristics to
provide customized error tolerance. However, designing such
methods might not always be possible for every application
and require high design effort. All such tunable methods
depend on appropriate profiling of the application [19], [33].
Algorithm based fault tolerance [40], [41] techniques imple-
ment specific error checking and correcting in the algorithm
to be executed. Some of these methods allow for trade-
offs between accuracy and cost. Checkpointing [42] with
backward/forward recovery is a more commonly used tech-
nique. Whereas backward recovery is not application-specific,
forward recovery depends on the application’s error-resilience.
Higher error resilience of the application can enable more
forward recovery and hence reduce the average execution time
of real-time tasks. Therefore, accurate application profiling and
models that relate application properties to real-time system
level objectives and constraints are necessary for selecting and
customizing software fault tolerance methods.

III. CROSS-LAYER FAULT TOLERANCE

Traditional single layer approaches address almost all hard-
ware reliability issues at circuit and architecture level. A
phenomenon-based approach — where each fault mechanism
(NBTI, EM, Single Event Upsets (SEU) etc.) is mitigated
separately to provide an error-free hardware platform— is
usually used for physical fault tolerance. This is depicted to
the left of system stack in Fig. 1. Barring a few application
areas that require high resilience in terms of both functionality
and execution time, most applications, especially soft real-time
systems, can tolerate some degradation in either or both. We
provide a few examples of such applications as case-studies
in Section IV.

Building cross-layer resilience into the system involves
inter-layer information exchange in the system stack. This
information exchange during run-time is depicted to the right
of system stack in Fig. 1. Dots and arrows in the figure
show the origin and direction respectively for reliability related
information. As shown in the figure, fault mitigation activities
are distributed across different layers. Inter-layer information
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transfer enables better knowledge of the current system state
and application requirements and hence results in more ef-
fective run-time response/reconfiguration to physical faults.
Similarly, Fig. 2 shows the activities during design phase
of real-time system design and the information origin and
transfer from the three layers — Hardware, System software
and Application. This information is essential to evaluate the
suitability of a fault tolerance method for an application. Fur-
ther, each of these selected methods need to be tailored to the
application-specific performance goals and design constraints.
Some projects that implement some form of cross-layer design
approach are discussed below.

ROAR [44] is one of the earliest projects that used inter-
action among different system layers to provide a demand
specific switch between high performance and high resilience
on the same hardware platform. Relax [45] provides a frame-
work for achieving effective software recovery from hardware
faults. It leverages the decreasing checkpointing information
of emerging applications to provide energy-efficient fault tol-
erance. In [46], the authors propose various cross-layer tech-
niques — from microarchitecture to application level — for both
general purpose processor based and reconfigurable processor
based embedded systems. In all methods presented, every layer
takes advantage of the information available at its adjacent lay-
ers. For example, authors use Instruction Vulnerability Index
(IV]) to quantify the robustness of each instruction executing



on a specific processor. IVI is in turn used to compute the
Function Vulnerability Index (FVI) of a function and used for
reliability oriented compilation to generate executables based
on application specific reliability requirements. In [47], the
authors present a cross-layer approach providing resilience
in multimedia applications. Specifically, the proposed method
uses hardware layer for error detection, middleware for Drop
and Forward recovery and application layer for error resilient
application design.

IV. CROSS-LAYER DESIGN CASE STUDY

As discussed in Section II, fault tolerance measures can
be implemented at different layers with different trade-off
between performance and overheads. Therefore, system-level
metrics are necessary to evaluate the usefulness of these
various measures. System resilience of real-time applications
can be expressed in terms of functional reliability — correctness
of the results and timing reliability — frequency of deadline
misses. Circuit and architecture level spatial redundancy pro-
vide the best reliability values for both these metrics. However,
this comes at a very high cost. Although temporal redundancy
can reduce the area overheads, it results in decreased timing
reliability. System and application software resilience methods
have less area overhead, but suffer from decreased timing reli-
ability. A single reliability-oriented design cannot serve every
application. Choosing appropriate methods and customizing
them for system-level optimization is essential for system-
wide cross-layer resilience. In this Section, we provide few
example applications that motivate the need for cross-layer
DSE. Initially we define a simplified system-level framework
that is used for back-of-the-envelope calculations in the case
study. We use rough estimates for the analysis, using values
based on the results reported in state-of-the-art techniques
reviewed in Section II.

We characterize the hardware, system software and the
application with parameters as shown in Table II. The masking
factor of a layer is the ratio of fault and/or error rate observed
at the current layer to those observed at the layer above it. We
differentiate this from coverage for error detection, as masking
refers to all those faults/errors mitigated by a layer and not just
detected. For the hardware layer, masking factor is the ratio
of SEU rate to SER and the factors contributing to a higher
value are logical, electrical and latch-window based masking.
Additional measures (TMR, gate resizing, partial replication,
information redundancy in memory etc.) can be implemented
to increase M frw. Masking factor of system software can
be increased by Operating System (OS) level error mitigation,
compiler directed replication etc. The overheads in execution
due to additional reliability oriented measures implemented
at system software and application layer are represented by
Ovgg and Ovypp respectively.

Table III shows the performance metrics that can be consid-
ered applicable for most real-time systems. \ refers to the SEU
rate and is an indicator of the usage environment of the system.
Deadline D refers to the time by when the application should
complete the execution in order to avoid considerable loss in
the quality or catastrophic results in hard real-time systems.
Relrry g is expressed as the Prob(execution time < D).
Relpyne can be quantified by either Mean Time To Failure

TABLE II: Layer Parameters

System Layer Variable Description
Areapgw Area of hardware components
Hardware Powgw Power of hardware components
Mfaw Masking factor of hardware components
System Ovgg Execution time overhead factor
Software Mfss Masking factor of system software
T Typical execution time
Application Ovapp Execution time overhead factor
Mfapp Masking factor of application

TABLE III: Application requirements and performance metrics

Symbol Description

A SEU rate

D Application deadline
Relriv e Timing reliability
Relprunc Functional reliability
Powgys System power dissipation
Areagys Core and main memory area

Energysys Energy usage per cycle

(MTTF) or Mean Time Between Failures (MTBF), depending

upon the repairable nature of the system and faults under

study. Based on these parameters, the performance metrics are

expressed as shown in Equation 2.

ArarL = A+ (Mfuw X Mfss x Mfapp)

Relpunc =1+ (Arparr in hours)

Avg execution time : Tapg =T X (1 + Ovss) X (1+ Ovapp)

Relrivme =Probability( Execution time < D)

System failure rate :

2

We define a baseline system configuration, a generic
processor core without any additional built-in reliabil-
ity methods and using non-ECC main memory. We as-
sume that the application runs on a real-time OS with-
out any explicit fault/error mitigation methods, neither in
OS nor in application code. The layer parameters for
this baseline system are: Areapwo, Powgwo, M fawo,
Ovsso, M fsso, Ovappo, M fappo, Ararro, Relrunco,
Relrrvpo and T,y = T. Based on this we estimate the
performance metrics with a hardware-only (HW-only) and a
software-only (SW-only) fault tolerance implementation. Note
that we consider application failures only due to incorrect end
result and do not consider other failures like system crash and
system hang for this analysis.

Hardware-only fault tolerance: Assuming a uniform TMR
for the processor core, we can estimate the performance
metrics for the system. As per [16], uniform TMR can result
in 10x better performance against radiation induced SEUs. So,
masking factor for hardware in such system can be estimated
as M fiw = 10 x M frawo. Therefore, Relpync of such a
system is 10 X Relpynco. Further, the overheads on timing
due to any of the layers is minimal i.e. Ov/ypp = Ovigg = 0.
So, Relpyp g remains unchanged at Relgyo. Other parame-
ters remain unchanged. Area and power figures are three times
that of the baseline system.

Software-only fault tolerance: Checkpointing and roll-
back recovery is a commonly used fault-tolerance method
which can be implemented completely in software. Assum-
ing an application-dependent error detection with coverage
Covapp and only re-execution based recovery, we deter-



mine the performance metrics of such an implementation on
our baseline system. We assume an execution overhead of
C' (in time units) for error detection and checkpointing and
no overheads for recovery or resumption. We use the results
from [48] to derive the performance metrics. The application
fail rate depends on the coverage of error detection method
implemented. Relpy e equals Relpynco X (1 — Covapp).
Relrrye depends on the deadline of the application and is
expressed as an N — fold convolution of a probability density
function, where N is the number of checkpoints. We use
Markov-chain Monte-Carlo simulations to calculate Relrry g
for an example application as shown in Table IV. We fix N
that gives the best value of N as that which provides the
maximum timing reliability assuming a Poisson distribution
of the fault/error inter-arrival times. Area and power values
are same as that of the baseline system.

Cross-layer fault tolerance: The increased functional re-
liability in a SW-only approach is proportional to coverage
of the error detection method. An effort to increase the error
detection coverage at application layer can lead to a higher
execution overhead and hence reduce timing reliability. On
the other hand, a HW-only approach results in improved
functional reliability with negligible reduction in timing re-
liability. However, the impact on cost (silicon area) and power
is very high. Additionally, the increased energy usage can
be infeasible for a portable application. As an example, we
consider the next-frame computation in a portable gaming
device, a soft real-time system. To maintain a frame rate of
30 frames/sec, the average execution time has to be around
33.33 ms. If we consider an ideal execution time of 30 ms,
a HW-only implementation of uniform TMR gives better
guarantees of avoiding bad-frames (due to computation errors
and incomplete processing) and getting higher frame rates.
Increased silicon area and up to three times higher energy-
usage can, however, increase the cost and reduce portability of
the product. If the functional reliability criteria is relaxed, i.e.
tolerating a few bad-frames once in a while, a lower M f};;,
may be sufficient. The lower M f};,, can be achieved by
application-specific partial replication with reduced area and
power overheads. In a SW-only implementation, if the cost C
is high, it may not be able to provide the requisite frame rate
for the application. A reduced error rate at application layer,
obtained by better masking at all layers can, however, increase
timing reliability on account of reduced 7.

Table IV shows five different implementations and their
performance metrics on different hardware platforms. We
assume a linear scaling between the reduction in application
fail rate and percentage of hardware area over which TMR was
implemented, with a maximum 10x for 300%. Similarly, we
assume a linear scaling of error detection time with Covapp
with 0.1 msec for 30% coverage. Since the results are based on
hardware replication, we assume the pattern of overheads in
power is same as that of area. The first two columns show the
HW-only and SW-only implementation discussed earlier. Note
the Relrrarg of 0.9995 in SW-only implementation translates
to 1 next-frame computation missing deadline in about every
67 seconds. The usage environment of the system can add
additional complexity to cross-layer DSE. Note the increased

TABLE IV: Implementation comparisons for equal reliability
targets

Multimedia Multimedia
(at altitude)
3 x Ag 2.5 x Ao

10 % Ao Ao

Parameters Baseline HW-only SW-only Financial

(ground)
Area Ao 3 x Ag Ao 2 x Ag
SEU rate o o o o
T
time (in ms)
D (in ms) 33 33 33 33 33 33
Checkpointing Partial TMR + Full TMR + Partial TMR +

None Full TMR cl i Cl i cl
(30% coverage)

30 30 30 30 30 30

Fault mitigation

method
(30% coverage)

5 X Mfuwo

(10% coverage)

10 X M frwo

(60% coverage)

Mfrw
Relpunc

Mfrawo | 10 X M frwo M fawo 7.5 x Mfrwo

1.5 %1072 1.5 %1073 1.05 x 1072 2.1 x 1073 1.35 x 1072 0.85 x 1072

(errors/sec)

Relrive
(probability)

1 1 0.9995 0.9999 0.9995 0.9993

Energysys Esyso 3 x Esyso 1.075 x Egyso | 2.196 x Esyso | 3.127 x Egyso | 2.744 x Esyso

hardware redundancy along with checkpointing needed to
achieve similar results at an altitude. This is needed to counter
the effect of increased rate of radiation-induced SEUs. The
third implementation shows a miss rate of about once every
6 minutes. This shows the implementation requirements of
typical multimedia applications where a higher Relrryg is
required for better QoS at the expense of some errors in
some frames which may not be discernible. The last column
shows an implementation that is more suitable for finance-
related applications, where a higher Relry nc i.e. correctness
of results is much more desirable than finishing within the
deadline. Note the reduced power and area overheads in all
cross-layer implementations. Here we have shown only the
result of distribution of fault-tolerance methods over different
layers. Additional methods to improve masking of each layer
can be used to further improve results. Varying application
requirements and usage scenarios need different implemen-
tation of resilience methods. Effective DSE is necessary to
achieve such results within tolerable overheads. In [49], the
authors present a framework for analysis of multibit error
protection overheads. This enables better architecture-level
design choices. However, the analysis is limited to the scope
of design of processor core and does not consider cross-layer
fault tolerance. Effective cross-layer DSE needs consideration
of several other factors like multilayer masking, run-time re-
configuration and above all system-level design optimization.

V. DISCUSSIONS AND CONCLUSIONS

A common theme among all the discussed cross-layer
implementations is the decoupling of fault tolerance into its
constituent stages — Error detection and Recovery — and
distribution of these activities across different layers of the
system stack. As discussed in [47], implementing separate
fault tolerance stages at different layers can result in reduced
power and area overheads. TMR, which provides complete
protection from single errors, has more than 200% area and
power overheads. However, error/fault detection by DMR usu-
ally has less (100%) overhead. Therefore, an implementation
that uses DMR-based hardware error detection and software
recovery methods can reduce overheads. Further, distributing
fault tolerance tasks to higher layers enable the designer to
take advantage of masking effects of more layers.

As discussed in Section IV, all fault tolerance methods
have to consider system-level objectives. Usually software
mitigation of hardware faults suffers less overheads. However,
the increased execution time can lead to faster aging in the



long run. Therefore, systems that have design constraints
about system lifetime have to use additional spare processing
units. This offsets some of the area/cost advantages. In [50],
the authors show the effect of increasing checkpoints on
permanent fault tolerance and provide hardware-software co-
design approaches to counter such effects. Hence, system level
optimizations should consider all system-level requirements.

Therefore, a comprehensive fault-aware design approach
is necessary to sustain and improve usability of real-time
embedded systems. Traditional approaches to resilience may
not provide us feasible solutions for this. To this end, cross-
layer fault-aware system design provides a more effective
alternative. However, given the large number of fault tolerance
methods and diverse system requirements, cross-layer DSE
is imperative. In this paper, we provided an overview of
fault-tolerant design and cross-layer resilience. We provided
examples of some applications as a case study to show the
importance of cross-layer DSE. We also discussed a few
important factors that are crucial to such DSE. We have
considered only design stage aspects of cross-layer system
design. We aim to include run-time methods into the frame-
work to enable effective run-time reconfiguration of cross-
layer resilience based systems.
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