CASE Tools and the Human Computer
Interface: Implications for designers.

Alistair Sutcliffe

Dept of Business Computing Systems,
City University

Northampton Square,

London EC1V 0HB,

U.K.

Summary

Human computer interaction (HCI) is a subject which software developers can ill afford to
ignore, yet there is little evidence that software engineers HCI seriously. The paper sets out to
describe the software engineering and HCI issues which have to be addressed, in a
comparative framework of the development life cycle. From this the necessary conceptual
models produced by specification methods are defined. The requirements of CASE tool for
constructing conceptual models to support HCI and SE methods are outlined and the ability of
CASE environments to address HCI issues is reviewed. The concluding contention is that
current CASE tools, combined with HCI training for software developers could deliver results
in the short term, although to encourage HCI expertise in software design in the longer term
necessitates development of knowledge based HCI CASE tools.

Keywords: Human computer interaction, software engineering, CASE-tools, methods




1. Introduction

Awareness of the human computer interface as an issue in software development has increased
in recent years, design of interactive software according to human factors principles is still
infrequent (Gould 1987). Software developers may criticise the human computer interaction
(HCI) community for not producing practical methods and tools for specification and design of
interactive software. However, methods have been proposed which integrate HCI with existing
software engineering practices, e.g. SSADM (Damodaran et al 1988) and JSD (Sutcliffe

1988a) and the User System Engineering method, a HCI method based on Structured Analysis
techniques, does have tool support (Wasserman 1984, Wasserman et al 1987). To deliver more
usable systems, HCI authors need to integrate their findings within software engineering and
likewise, CASE tool developers and software development method authors should support
HCI principles and practices.

This paper sets out to describe the HCI issues which should be addresed during system
development and then reviews how current CASE tools may be used to partially fullfil those
requirements. As CASE tools are frequently sold as being configurable to support method
independent or toolkit type development, it follows that these tools should be a capable of
addressing a wide variety of system specification issues, including the human computer
interface.

2. Framework of HCI Issues.

Human computer interaction embraces many issues, some of which relate directly to
specification of interactive software, while others concern human organisation, operational
procedures and workplace ergonomics. A survey of some of these issues and how they related
to HCI and SE methods can be found in Sutcliffe (1988b, 1989) and more coverage of HCI
issues is given by Shneiderman (1987).

HCI has produced few methods which provide good coverage of software development
(Sutcliffe 1989), although there are a plethora of techniques with narrower aims, such as
theoretical cognitive analysis of interaction, evaluation of the cognitive complexity of user
system dialogues, and specifying the user's knowledge necessary to carry out a task (see
reviews by Simon 1988, Murray 1987, Whitefield 1987, Johnson and Johnson 1988). In spite
of this incoherent picture a consensus of basic requirements of HCI specification and design
can be established by examining the commonalities in these different approaches.

A comparative framework of software engineering and human computer interaction is
presented in Figure 1. This shows activities in the two disciplines grouped according to the
scale of investigation from whole organisations, to part of a system concerning one person and
then activities within systems. This classification is intended to draw out the activity phases
found in methods. In software engineering the activities mirror the classic life cycle of
development. Although this cycle is also present in HCI no comprehensive methods exist,
instead techniques have been proposed to address specific topics. Some of these techniques are
enumerated in fig 2. Since space precludes a review of these techniques the reader is referred to
Sutcliffe (1989), Simon(1988) and Wilson et al(1987) for further descriptions. However, a
brief summary of the similarities and differences of HCI techniques and software engineering
methods, as embodied in typical examples, e.g. JSD (Jackson 1983, Sutcliffe 1988c), SSADM
(Longworth and Nicholls 1987), will be given. Figure 2 illustrates a comparison of selected
HCI and SE methods, using the software development life cycle and development issues as
dimensions to show coverage by methods.

At the scale of organisation analysis some software engineering methods espouse strategic
planning and enterprise analysis, e.g. Information Engineering (Macdonald 1986). HCI
methods follow a similar path in goal oriented analysis of an organisation's activity but more
emphasis is placed on people, their abilities, and expectations. Representative methods are
Open Systems (Eason 1989), and User Skills-Task Match (Fowler et al 1988). Both methods
address the person level of activity analysis, but do not follow specification through into

1




software design. At this level of analysis the Soft Systems method group, SSM (Checkland
1981) and Ethics (Mumford 1983), lies between the SE and HCI communities and both "hard"
software engineering methods and HCI methods have borrowed soft system's concepts.

Software engineering methods generally do not have the concept of individual users as a unit of
analysis, instead requirements analysis focusses on functionality and users' objectives. HCI
methods, in contrast, pay more attention to individual users, for three principal reasons. First is
matching system functionality, or tasks, to people to ensure that their work has the correct task
mix for their abilities. User-task matching employs many heuristics, see for instance Bailey
1982, although more methodical guidance is given in USTM and Open Systems. The second
reason is to model human mental processes for task operation to predict human errors and
cognitive limitations on task performance. Typical methods in this class are GOMS and CCT.
The third purpose is to obtain a model of the user's characteristics and knowledge about a
system. This HCI activity is collectively termed user modelling, and embraces a diverse
techniques and objectives, many of which have little relevance to systems development (see
Murray 1987, Whitefield 1987 for reviews). The activities more relevant to system
development are task modelling and analysis of user abilities and characteristics as profiles of
User groups.

At the scale of activity analysis SE and HCI methods show considerable similarities. SE
methods frequently use a goal oriented hierarchical decomposition approach (e.g. SA/AD De
Marco 1978), and HCI task analysis methods follow the same approach (Bailey 1982),
although it is not always explicit. Some HCI methods add modelling levels to the hierarchical
decomposition as in the Command Language Grammar of Moran(1981), while others take a
knowledge based approach creating models of user knowledge about tasks and the system
(TKS, Johnson et al 1988). In spite of the similarities in approach, HCI methods differ in
attempting to address cognitive issues of human information processing, which are ignored by
SE methods. Here the endeavour is to ensure that tasks do not impose demands on users that
exceed limitations of memory and mental abilities.

HCI methods utilise simple metrics of counting rules and state variables within task sequences
to estimate task complexity (Cognitive Complexity Theory -Kieras and Polson 1985),
however, techniques are still crude and design deliverables ill defined. More psychologically
valid approaches employ knowledge based systems but these are a long way from being
practical design advisors (Barnard et al 1988). The follow through of HCI analysis methods to
later life cycle stages and the link between analysis and design is poor (Sharrat 1987, Knowles
1988, Sutcliffe 1989). The more comprehensive examples either produce specifications in
knowledge based formalisms (CLG Moran 1981, TKS-Johnson et al 1988) making integration
within SE specifications difficult, else transition network diagrams are used to model
user-system dialogues but no integration with functional processing is given (Knowles 1988).

Clearly, HCI techniques do not exhibit the maturity to become utilisable methods in software
engineering, although there is a considerably body of utilisable knowledge and techniques .
Software engineering methods can not afford to ignore HCI issues, as many system
development problems can be ascribed to lack of human factors input into the software design
process (Gould 1987). Much of the HCI input to design in is the form of guidelines (Smith and
Mosier 1986) which need to be interpreted in the context of each application. While this
knowledge can be employed effectively by software engineers, to automate this support for the
development of interface software would require an intelligent HCI designer's assistant. This
may realisable when the present HCI knowledge based models of interaction (Barnard et al
1988) are integrated with the next generation of intelligent development support environments
(e.g. Requirements Apprentice Rich et al 1987). However, following the lessons in software
engineering, automated support is a prerequisite for practice of structured methods and
techniques. HCI specification produces conceptual models, as do software engineering
methods, hence it is appropriate to examine how CASE tools could support the development of
HCI models.




3. Conceptual models and CASE Tools.

One of the main functions of CASE tools is to record the conceptual models created by
development methods, usually in the form of diagrams or structured texts. CASE environments
reflect the origins as either generic tool-sets or method linked support tools. Generic toolsets
provide configurable editors which can create diagrams for different methods (e.g.
Eclipse-Elliston 1989), whereas method linked tools are tailored to a specific method's notation
and sometimes including guidance to help analysts follow the method's recommended
development steps, e.g. Speedbuilder, LBMS Automate, IEW, IEF etc.

While all SE method ignore development of the human computer interface, apart from
simplistic models of screens and interactive dialogues, their tools can be used for HCI
purposes. First some explanation is required of the models produced by HCI within the design
process. Fig 3 shows a comparison of conceptual models produced by software engineering
methods and HCI. Not all SE methods produce all models as found in comparative studies of
development methods (Loucopoulos et al 1987, Olle et al 1988). Likewise the complement of
HCI models is not complete, and indeed some areas -interface displays- have no formalised
models at all. However, the more formalised models are amendable to computerised support,
and this can be effected by the current generation of CASE tools. The following section
examines how both method dependant and open CASE toolsets can support the different model
classes.

4. Tool Support for HCI models
4.1 Organisation/Enterprise models

HCI organisation models are generally informal and therefore may not be amenable for
automated support. However HCI methods attempt to link analysis of organisations and users
with system functionality to specify optimal matching of functionality to people and
organisational units (e.g. USTM- Fowler et al 1988). This activity requires list handlers and
grid/matrix tools to cross reference variables. Few such tools are provided by either method
specific or open CASE environments even though developing such tools is not complex. A
further justification for grid/matrix type tools can be found in Soft Systems methodologies
which undertake similar cross referencing/trade off type analyses.

List handler tools are also required to support user models, While a bewildering number of
user models have been propounded in HCI, probably the most relevant to software designers
are simple list/grid based models characterising user abilities, knowledge of the system, and
expected frequency of usage. Other tools may be required for this level of analysis to support
workload planning. For instance job activity analysis, as proposed by Damodaran et al (1988)
is a temporal analysis of task effort and the necessary manpower. Here generic time series
analysis tools are needed, and Gnatt chart diagrammers could be made configurable for this
sort of activity.

While configurable tools could be provided to support the above modelling activities, it is
doubtful that such tools would be useful to software engineers without the HCI knowledge
necessary to interpret results and make trade off decisions. Consequently HCI methodical
guidance would have to be embedded within the CASE environment. Alternatively HCI
training should be given to software developers, in which scenario, generic CASE tools could
be used for documentation support.

4.2 Task/Function models

Task models can be developed with the current generation of CASE diagramming tools. Data
flow diagrams can describe task networks in the same way as they are used for functional
specification, and a functional/task specification using LBMS's Automate is illustrated in fig 4.
However, DFD task descriptions record only the functional aspects of tasks. Tools are also

3




required to support cognitive analysis. One possibility would be to use specification held in
data dictionaries to give counts of state variables, data items input and processing rules
associated with task actions, these could be used to estimate task complexity following Kieras
and Polson's method. Simple analyses list handling tools linked into specification data
dictionaries would suffice.

Task functionality can be also be recorded in event models such as the Process Structure
Diagram of Jackson System Development (JSD). Fig 5 depicts task specification as a Process
structure diagram, created by the PDF tool, which formed part of an design study integrating
HCI specification within JSD (Sutcliffe 19883) One appeal of the JSD event specification is
that it provides an easy transformation path from task specification to dialogue and process
design; an important advantage if the full potential of CASE tools is to be realised by
automatically generating interactive software code from specifications. This consideration leads
to detailed HCI design models.

4.3 Process/Dialogue design models.

HCI methods have adopted two principal approaches to dialogues specification: adaptations of
state transition diagrams (e.g. GTNs-Kieras and Polson 1985) and command grammars, a well
known example being the Command Language Grammar of Moran (1981). Some Software
Engineering methods do pay cursory attention to dialogue design in terms of high level
dialogue maps (see LBMS-SDM version 3), although their respective CASE tools do not
currently support this specification activity.

Several SE methods use state transition models to specify event dependencies in processing
(e.g. SA/SD-Ward and Mellor 1986; IE -Macdonald 1986) and these method vendors do
supply appropriate CASE tools. Unfortunately these tools assume fairly simple event models
and have cumbersome notations unsuitable for complex models with a large number of states
and transitions. To be tractable, interactive dialogues have to be specified in levelled
hierarchies, also notations should be able to express concurrency, as in two dialogues in
separate windows. Current CASE tools, either method specific or open do not provide
adequate tools for dialogue specification, though to be fair most of HCI derived dialogue
diagrammers do not support concurrency.

Dialogue specification diagrammers based on state transition formalisms, are frequently

implemented in the nearest HCI equivalent of CASE tools, User Interface Management

Systems (UIMS). These software environments aim to specify and in some cases automatically

generate interactive software, which then communicates with the application software via

parameters (Cockton 1987). Regrettably creators of UIMS have ignored mainstream software

engineering methods and propound the philosophy that user interface and applications software

can, and should, be developed separately. This approach has many theoretical difficulties and '
to date UIMS have had an even worse track record for real-life application than CASE tools. -

One attempt to synthesise dialogue modelling with standard SE methods and tools which has
met with some success is the User System Engineering method of Wasserman (1984). This
combines data flow diagramming techniques of "top down" SA/SD (after De Marco 1978) with
state transition modelling of interactive dialogues in an "outside in" specification. Although the
method does not detail how these two approaches are reconciled, it does have extensive tool
support and automatic code generation from diagram specifications (Wasserman et al 1987).
CASE tool developers could profitably import state transition notation from HCI for the
purpose of dialogue specification. Models of screen layout and presentation design, however,
are too poorly formed even within HCI to merit tool support in their current state of
development.




5. Conclusions

To be truly effective CASE tools may require methodical guidance to be built in, although this
proposition is still a matter of active debate within the software engineering community.
Advanced CASE tools encapsulate method and domain knowledge to provide intelligent
assistance for the analyst (e.g. ASPIS Peitri et al 1987, Analyst Apprentice, Rich et al 1987).
Ultimately HCI knowledge should be added to intelligent design environments to guide analyst
in HCI design procedures and assist with more specialised cognitive aspects of interface
design. While this will entail a sophisticated expert designers assistant based on theoretically
sound psychological models of human computer interaction, as demonstrated in prototype
form by Barnard et al 1988, more modest systems could be developed in the short term to
codify HCI guidelines and design expertise.

Although it is acknowledged that human computer interface issues are important, little attention
is paid to this aspect of design by software developers. The HCI community are primarily
responsible for their own failure by inventing a plethora of fragmented techniques, and not
integrating human factors principle and practices with those of software engineering. The
HUFIT project is building support tools for task analysis based on HCI methods (Talyor 1988,
Zeigler 1988), although repeating the mistake of providing stand alone tools rather than
integrating HCI specification with standard software engineering specification methods.

Indeed the only notable exception to this rule is the USE method of Wasserman (1984) and
even this has enjoyed limited success and can be criticised as addressing a minimum of HCI
issues. More recently HCI authors have been turning their attention to integrated HCI-SE
methods (Damodaran et al 1988, Sutcliffe 1988a). Experience in software engineering has
taught that tool support is essential for method acceptance. The investigation reported in this
paper demonstrates that it is possible to use current CASE tools for a considerable degree of
HCI specification; so with successful HCI method education, HCI design could be practiced
by software engineers with current technology.

CASE tools, in particular the vendors of open tool sets, should be more aware of the
requirements for support tools, not only from HCI, but also from soft systems methods.
Clearly there is a need for simple tools such as list handlers and grid/matrix analysers to cover
analysis early in the life cycle and for organisational issues. While simple list handlers are
provided by some method dependant CASE tools (e.g. Speedbuilder), these are invariably tied
into the method's procedure.

To be successful the next generation of open toolsets will have to be flexible enough to allow
configuration not only of specification recording tools but also knowledge bases holding
procedural "how to do it" knowledge, design heuristics and rules. These requirements will be
necessary to satisfy the demands of HCI and non functional aspects of system development.
The advice to method authors, and inter alia, method linked toolsets, is that integration of HCI
specification is a issue which can not be ignored. Tool support, particularly of dialogue design
needs to be provided, before methods can claim to cover all the major issues of systems
development.

Acknowledgements and Trade marks

Speedbuilder is a trademark of Michael Jackson Systems Ltd, London.

PDF is copyright of the United Kingdom Atomic Energy Authority.

IEF (Information engineering facility) is a trade mark of James Martin Associates.
IEW (Information Engineering Workbench) is a trade mark of Arthur Young Ltd.
Automate is a trade mark of LBMS, Learmonth and Burchett Management Systems.



References

Bailey R.W., (1982); Human performance engineering: A guide to  systems designers.
Prentice Hall, N.J.

Barnard P., Wilson, M. and Maclean A_; (1988); Approximate modelling of cognitive activity
with an expert system: A theory-based strategy for developing an interactive design tool.
The Computer Journal, Vol 31(5), pp 445-456

Card, S.K., Moran T.P. and Newell A.; (1983); The Psychology of human computer
interaction, Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Checkland, P.; (1981); Systems thinking, systems practice
J. Wiley.

Cockton G.; (1987); A new model for separable interactive systems.In Interact-87; Eds
Bullinger H-J and Shackel B, pp 1033-1037, North Holland.

De Marco T., (1978); Structured analysis and system specification. Yourdon press, N.Y.

Damodaran L., Ip, K and Beck, M.; (1988); Integrating human factors principles into
structured design methodology: A case study in the U.K. civil service.

In Information technology for organisational systems; Eds Bullinger H.J. et al,pp 235-241;
Elsevier.

Eason K.D.; (1989); Information technology and organisational change., Taylor and Francis,
London.

Elliston A.; (1988); Eclipse version 2, functional specification; Software Sciences, Handforth,
Cheshire, U.K.

Fowler, C, Kirby, M, Macauley, L. and Hutt A.; (1988); User skills and task match (USTM):
A human factors based methodology for determining product requirements.
In Proceedings of the 4th Alvey Conference, Swansea, Wales.

Gould 1.D.; (1987); How to design usable systems; eds Bullinger H-J and Shackel B.;
Proceedings Interact-87; North Holland.

Jackson ML.A.; (1983); System Development, Prentice Hall, London.

Johnson P. and Johnson H.; (1988); Practical and theoretical aspects of human computer
interaction. In The World yearbook of fifth generation computing research; Ed Aleksander I.;
Kogan Paul, London.

Johnson P, Johnson H., Waddington R. and Shouls A.; (1988); Task related knowledge
structures: Analysis, modelling and application.

In People and Computers IV (HCI-88); Eds Jones D.M. and Winder R.,pp 35-62, Cambridge
Univ Press.

Kieras D. and Polson P.G.; (1985); An approach to the formal analysis of user complexity.
Int. J. Man Machine Studies; Vol 22; pp 365-394.

Knowles C.; (1988); Can cognitive complexity theory (CCT) produce an adequate measure of
system usability?

In People and Computers IV (HCI-88); Eds Jones D.M. and Winder R.; pp 291-308;
Cambridge Univ Press.




Longworth G. and Nicholls, D.; (1987); The SSADM manual, NCC Publications.

Loucopoulos P., Black, W.J., Sutcliffe, A.G. and Layzell P.; (1987); Towards a unified view
of system development methods.
Int J. of Information Management, Vol 7(4)

MacDonald 1. G.; (1986); Information Engineering - An Improved, Automatable Methodology
for the Design of Data Sharing Systems. In Proc IFIP WG 8.1 Working Conference on
Comparative Review of Information Systems Design Methodologies: Improving the practice;
Eds Olle T.W., Sol, H.G. and Verrijn Stuart, A.A.; North Holland.

Moran T.P.; (1981); The Command Language Grammar: a representation for the user interface
of interactive systems.
Int. J. Man Machine Studies; Vol 15; pp 3-50.

Mumford, E.; (1983); Designing participatively. Manchester Business School Publications.

Murray D.M.; (1987); Embedded user models.
In Interact-87; Eds Bullinger H-J and Shackel B, pp 229-236
North Holland.

Olle T.W., Sol, H.G. and Verrijn Stuart, A.A.; Eds; (1986);
CRIS-3. IFIP WG 8.1 Working Conference on Comparative Review of Information Systems
Design Methodologies: Improving the practice. North Holland.

Pietri, F, Puncello, P.P., Torrigani, P, Casale, G., Innocenti, M.D., Ferrari, G., Pacini, G,
and Turini, F.; (1987). ASPIS: A knowledge based environment for software development. In
Esprit-87: Achievements and Impact, pp 375-391.

Rich C., Waters R.C., and Reubenstein H.B.; (1987); Towards a requirements apprentice. In
Proceedings 4th Int. Conf. on Software Specification and Design; Monterey, California.

Sharrat B.; (1987); Top down interactive system design: some lessons learnt from using

command language grammar,
In Interact-87; Eds Bullinger H-J and Shackel B, pp 395-402,
North Holland.

Shneiderman B. (1987); Designing the user interface. Addison Wesley, Reading.

Simon T.; (1988); Analysing the scope of cognitive models in human computer interaction: A
trade off approach.

In People and Computers IV (HCI-88); Eds Jones D.M. and Winder R.,pp 79-96, Cambridge
Univ Press.

Smith S. and Mosier J.N.; (1986); Design guidelines for user-system interface software. Mitre
Corp, Bedford, MA.

Sutcliffe A.G.; (1988a); Some experiences in integrating specification of human computer
interaction within a structured system development method.

In People and Computers IV (HCI-88); Eds Jones D.M. and Winder R.; pp 145-160,
Cambridge Univ Press.

Sutcliffe A.G.; (1988b); Human computer interface design. Macmillan, London.
Sutcliffe A.G.; (1988c¢); Jackson System Development. Prentice Hall, London.

Z



Sutcliffe A.G.; (1989); Task analysis, Systems analysis
and design: Symbiosis or synthesis ?
Interacting with Computers, Vol 1 pp

Taylor B.C.; (1988); Tools for Human factors in IT product design. Summary paper Esprit
Project 385 HUFIT.

Ward P.T. and Mellor S.J. (1986); Structured design for real time systems. Yourdon Press,
N.J.

Wasserman A.lL, Pircher, P.A., Shewmake D.T. and Kersten, M.L. (1987); Developing
interactive information system with the User Software Engineering methodology. In Readings
in Human Computer Interaction: A multidisciplinary approach; Eds Baecker R.M. and Buxton
W.A.S; Morgan Kaufman.

Whitefield A; (1987); Models in human computer interaction: a classification with special

reference to their uses in design.
In Interact-87; Eds Bullinger H-J and Shackel B, pp 57-64
North Holland.

Wilson M.D., Barnard, P.J., and Maclean, A.; (1986); Task analysis in human computer
interaction; Hursley Human Factors Laboratory Report HF 122, IBM (UK) Ltd.

Zeigler J.; (1988); Tools for the design of integrated Interfaces.
Summary paper, Esprit Project 385 HUFIT.




Fig 1

Development Issues in Software Engineering and Human Computer
Interaction

Unit of Software Human-Computer
Analysis Engineering Interaction
Organisation Strategic Human Activity/
/whole system Planning organisation analysis
Individual Requirements Task/job/work analysis
person/job/ analysis User modelling
sub system Conceptual
modelling
Activity Functional Task analysis
sub-system analysis User modelling
Data analysis
Procedure Process/data Dialogue/display
/Process structure specification
specification

Classification of issues according to analysis activity is correlated to an extent with
the development life cycle, thus organisation analysis occurs in early phases while
processes are subject of later analysis/design stages.

The data related software engineering activities (Data models, etc) have been omitted as
there is no valid comparision in the HCI field.




Fig 2. Method analysis by coverage of development life cycle
and systems design issues

Requirements definition Analysis Specification Logical Design Physical design
USTM
Open
Systems
Ethics ;,‘;‘
%
Soft
Systems
S
SSADM “ n A
~ A o]
o 2
JSD o E-
GOMS
s
TKS [ _1 a A
L8 P
CLG E.E‘ﬁ A
& &

Organisation Users Function/Process  Objects/data Dialogue Presentation
o] [ ias (= 7
N i A |
i g o /é |

Cognitive analyis for
dasign

Social/organisational analysis
for design

The life cycle categories are requirements definition, early analysis to decide the scope of investigation and appropriate users;
descriptive analysis of the current system and its users; specification of what the system should do in terms of processes

and organisation; design of how the system and its users cary out tasks in logical terms; and finally physical design taking in
environmental constraints, budget, hardware, etc. The final stages of implementation, testing and maintenance have

been omitited.

Key to methods: USTM - User Skills Task Match (Fowler et al 1988); Open Systems (Eason 1989); Ethics (Mumford 1983);
Soft Systems (Checkland 1981); SSADM - Structured Systems Analysis and Design Method (Longworth and Nicholls 1987);
JSD - Jackson System Development (Jackson 1983); GOMS- Goals, Operators, Methods, Selection rules (Card et al 1983);
TKS- Task Knowledge Structures (Johnson et al 1988); CLG- Command Language Grammar (Moran 1981); CCT- Cognitive
Complexity Theory (Kieras and Polson 1985).



Fig 3

Conceptual models produced by Software Engineering and Human
Computer Interaction and CASE support tools.

(a) Conceptual models in approximate life cycle order.

Life cycle phase Software Human-Computer

phase Engineering Interaction

Early analysis Enterprise Organisation/User

strategic planning model model

Analysis Functional model Task model
Data/object model User profile model
Event/object model

Logical Process specification Dialogue specification

design Data structure spec Screen designs

(b) Support tools for conceptual models

List handlers; Matrix-grid analysers
Enterprise, Organisation/User model; User profile model

User-function matrix.... function lists

Diagram editors

Functional model, Data/object model, Event/object model, Task model
Data-flow ........ Entity relationship...Entity life history....Task-info flow..
Dialogue transition network

Structured text editors

Process specification, Dialogue specification, Data structure spec

Structured English....Dialogue grammars.....Data dictionary

Conceptual models are grouped according to support tool types. Examples of modelling
notations are listed in italic.



Fig 4. Initial task specification recorded as a Data Flow diagram using LEMS-Automate.

Oueny-reade—ID
} Readere M_st
{ / / [\
/ Qverdusa=loane ‘ Finea
] Bac-rasde—10 ' | Fines—ouing
i Reade—10c v /
{ ] { |
Raqregiscer ! k=read |
I’r 2 T{ I Okmrasder _.:;,.i".:h.-ck overdue-books |

/ (Check-reade—1D | i \

== J
/ i

/f Borrourea |
W Overdues-ovkakending i

E' Qw } Valid-borrousr
|
\< Sxp lanakion I‘

‘Oueﬂfnv edues

\
|
i ) |

- i-‘:lui:hov'ise'!nm

Recpetorrousr / \L\W"da:a ile
| 9
Colleck—Fines

| : P
MA- . ! | Loans
T . ' Bock - mzock

E|F|M5 Co||ect!d"‘\cme

Payrerc

Finc—dctai la Fine-detai le

8 l !
|




Fig 5. Specification of a computer task support process for loan authorisation
recorded by the PDF tool. This specification could be elaborated to
directly generale interactive code, although the sophistication of screen

handling and dialogue I-O is dependant on the implementation environment.

Check-Book IBH-PC PDF 72.0A 4-JAN-80 01:58:56

Check-
Book

1
- Book-ck

Body
et X
081 i
GoodID %g;%ﬁ

EnterlD Check Check l Disp Code f Stock ‘
! code stetis detaile EITOT Error
. o [ : SRS ] R | DO oo
!
Kot
in 1ib

)
Bad code




