Metadata Management in the European DataGrid Project

Gavin McCance

University of Glasgow

European DataGrid Project

GridPP Project

Outline

- Classes of metadata in EDG
 - Grid internal metadata
 - Application specific metadata
- Products
 - Replica catalogues
 - Spitfire
- Technology details
- ◆Future Work

Types of Metadata

- ◆Two types of metadata used in EDG WP2
- Grid internal metadata
 - Metadata on files (size, checksum, etc)
 - Metadata on logical names (application specific)
- Application specific general metadata
 - Not related on logical filenames
 - Bookkeeping databases
 - Data Catalogues
 - Image metadata
 - etc

Grid Internal Replication Metadata

Replica Location Problem

- Given a logical file identifier how do we find all the replicas of that file on the Grid
- Driven by two use-cases:
 - a) Particle physics multiple replica of the same file so that the data are always near the compute resources - for data hungry applications
 - b) Earth Observation/Medical convenient mechanism for logical namespace. Don't need to know the physical location of the files.

Replica Metadata

 Logical filename to storage (physical) filename mapping

Replica Location Service (RLS)

- ◆Optimised to answer 2 very specific queries: "for a given GUID, give me all the replicas" "for a given GUID give me all locally available replicas"
- Scalability achieved by:
 - Each site has a Local Replica Catalog LRC containing mappings for files located at the given site
 - Each site runs a Replica Location Index RLI which contains a bloom-filter hashmap for all GUIDs in all LRCs

Architecture...

Architecture...

Each LRC updates the RLI on every other site.

Replica Location Index

Local Replica Catalog

Site 1

Replica Location Index

Local Replica Catalog

Site 2

Replica Location Index

Local Replica Catalog

Site 3

Sequence to answer the query

- ◆for a given GUID, give me **all locally available** replicas
 - simply contact the Local Replica Catalog.

- ◆for a given GUID, give me **all** the replicas
 - contact Replica Location Index to retrieve all LRCs potentially having a mapping for the given GUID:

GUID → List of LRCs

contact each LRC in the list to retrieve all replicas

Bloom Filter Indexing

Advantages:

- High level of scalability
- Fast
- Not a memory intensive hash

Disadvantages:

- Only fulfills "EQUALTY" type queries, i.e. no wildcards
- Non-deterministic, i.e. there are a small number of false positives to be dealt with

- Stores GUID metadata:
 - logical file names (human readable)
 - small number of user-defined attributes ~O(10)

- Attributes are natively typed:
 - string, float, int, date

RMC

- Used to do GUID selection based on applicationspecific metadata
 - Subsequently use the RLS to find the physical replica based on the GUID

- Currently a centralised catalog
 - though work ongoing with Oracle Streams for replicated architectures
 - Work on clustering and replication for high availability solutions

Application Specific General Metadata

Spitfire: Technology Demonstrator

Capabilities:

- Simple Grid-enabled front-end for any remote RDBMS through secure Web Services (SOAP-RPC)
- Provides sample generic RDBMS methods that may easily be customized with little additional development
- WSDL interfaces
- Web Browser integration (data browser servlet)
- GSI authentication
- Local authorization module
- Not suitable for the retrieval of LARGE result sets
- Status: current version 2.1
 - Used by EU DataGrid Earth Observation and Biomedical applications.

Spitfire Sample API

- Spitfire Sample API based upon common SQL operations. Use the Spitfire Grid service where you might have used JDBC before.
- Provides DB query operations, update operations, and schema update operations.
- Provides browser servlet to expose specific views of the data to web based clients.

Technology details

- All services implemented as secure web services
- WSDL exposed allowing auto-client generation
 - Supplied clients: Java, C++
 - Others have successfully used perl, python clients using our WSDL
- ◆SSL secure authentication using Grid Proxy certificates (GSI, but NOT **httpg**)
- Medium-grained' authorization including web-based administration tool:
 - 'medium-grained' meaning each method can be allowed/denied based on patterns of distinguished names, VOMS capabilities.
 - can interpret grid-map files
 - can interpret VOMS credentials and capabilities contained therein

Deployment

- Tested and deployed on
 - Tomcat/MySQL,
 - Tomcat/Oracle9i
 - Oracle9iAS/Oracle 9i.
- ◆Testing ongoing for Tomcat/DB2.

Future Work

- Plan to work together with DAIS working group of GGF to ensure that our services can be re-factored into DAIS-compliant services.
 - Should be fairly easy since we are starting from web services.
- Plan to work more closely with applications in order to refine the metadata interface, or just to enable their existing metadata applications to be 'on the Grid'.

Security modules

- Authentication using standard GSI certs or proxies
 - Trustmanager checks validity and revocation
- Role based Authorisation
 - Specific and default roles