
Analyzing Web Service Resource Compatibility?

Irina A. Lomazova1,2 and Ivan V. Romanov1

1 National Research University Higher School of Economics, Moscow, Russia
romanov.ekb@gmail.com

2 Program Systems Institute of the Russian Academy of Sciences,
Pereslavl-Zalessky, Russia

i lomazova@mail.ru

Abstract. In this work we consider modeling of services with workflow
modules, which are a subclass of Petri nets. The service compatibility
problem is to answer the question, whether two Web services fit together,
i.e. whether the composed system is sound. We study complementarity
of service produced/consumed resources, that is a necessary condition
for the service compatibility. Resources, which are produced/consumed
by a Web service, are described as a multiset language. We define an
algebra of multiset languages and present an algorithm for checking the
conformance of resources for two given structured workflow modules.

1 Introduction

Service-Oriented Computing is an emerging computing paradigm that supports
the modular design of (software) systems. Complex systems are designed by
composing less complex systems, called services.

A service consists of a control structure describing its behavior and of an
interface to communicate asynchronously with other services. An interface is a
set of (input and output) channels. In order that two services can interact with
each other, an input channel of the one service has to be connected with an
output channel of the other service.

The problem of checking services compatibility draws attention of many re-
searchers [11, 12]. A lot of different approaches have developed to verify the
compatibility of component Web services. Many of them utilize Petri Nets for
this purpose [9, 13]. Other models such as finite state machine are also used [5].
Some of the researches deal with concrete Web service specifications, for example
business process execution language for Web services (BPEL) [13].

Checking semantical correctness, e.g. deadlock freedom, for composition of
two services is a hard problem. Even when a property is decidable, its complex-
ity makes it almost intractable. So, finding relatively easy to check necessary

? This study was carried out within the National Research University Higher School
of Economics’ Academic Fund Program in 2012-2013, research grant No. 11-01-0032
and is supported by Russian Fund for Basic Research (projects 11-01-00737, 11-07-
00549)

conditions for correctness of services composition may help to find some bugs
for low costs and avoid further verification.

In this paper we study services resource conformance, notably whether two
services have complementary runs, such that all outputs of one service are con-
sumed by and enough for another service and vice versa.

Services are modeled with workflow modules, also called open workflow nets
— WF-nets (see e.g. [1]) with additional input/output places representing in-
put/output channels (cf. [3, 6]). The core WF-net in a workflow module describes
service control flow, and resource places represent its interface.

Since we study services compatibility we suppose control workflow nets to
be sound WF-nets. The soundness property guarantees proper termination of
autonomous workflow processes (not taking modules interactions into account,
so that resources can be generated or consumed during a process execution
without any restrictions). Moreover, we restrict ourselves to structured WF-
moduls — an important subclass of workflow modules with control WF-nets
sound by construction.

The paper is organized as follows. Section 2 contains some basic definitions
and notions, including formal definitions of workflow nets, workflow modules
and composition of workflow modules. In Section 3 a motivating example of two
workflow modules, modeling a part of credit allowence system, is given. In Section
4 we define and study a language of quasi regular expressions for describing a
workflow module resource interfaces. In Section 5 we present an algorithm for
checking resource compatibility of two structured workflow modules. Section 6
contains some conclusions.

2 Petri nets and workflow modules. Definitions

Let S be a finite set. A multiset m over a set S is a mapping m : S → Nat,
where Nat is the set of natural numbers (including zero), i. e. a multiset may
contain several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the
inclusion relation). The sum and the union of two multisets m and m′ are defined
as usual: ∀s ∈ S : m + m′(s) = m(s) + m′(s), m ∪m′(s) = max(m(s),m′(s)).
By M(S) we denote the set of all finite multisets over S.

Non-negative integer vectors are often used to encode multisets. Actually,
the set of all multisets over finite S is a homomorphic image of Nat|S|.

Let P and T be disjoint sets of places and transitions and let F : (P × T) ∪
(T × P)→ Nat. Then N = (P, T, F) is a Petri net. A marking in a Petri net is
a function M : P → Nat, mapping each place to some natural number (possibly
zero). Thus a marking may be considered as a multiset over the set of places.
Pictorially, P -elements are represented by circles, T -elements by boxes, and the
flow relation F by directed arcs. Places may carry tokens represented by filled
circles. A current marking M is designated by putting M(p) tokens into each
place p ∈ P . Tokens residing in a place are often interpreted as resources of some
type consumed or produced by a transition firing.

For a transition t ∈ T an arc (x, t) is called an input arc, and an arc (t, x) —
an output arc; the preset •t and the postset t• are defined as the multisets over
P such that •t(p) = F (p, t) and t•(p) = F (t, p) for each p ∈ P .

A transition t ∈ T is enabled in a marking M iff ∀p ∈ P M(p) ≥ F (p, t).
An enabled transition t may fire yielding a new marking M ′ =def M − •t+ t•,

i. e. M ′(p) = M(p)−F (p, t) +F (t, p) for each p ∈ P (denoted M
t→M ′, or just

M →M ′). We say that M ′ is reachable from M iff there is a sequence of firings
M = M1 → M2 → · · · → Mn = M ′. For a Petri net N by R(N,m) we denote
the set of all markings reachable in M from the marking m, by R(N,m) — the
set of all markings reachable in M from its initial marking.

Workflow nets (WF-nets) is a special subclass of Petri nets designed for
modeling workflow processes [1].

A workflow net has one initial and one final place, and every place or tran-
sition in it is on a directed path from the initial to the final place.

Definition 1. A Petri net N is called a workflow net (WF-net) iff

1. There is one source place i ∈ P and one sink place f ∈ P s. t. •i = f• = ∅;
2. Every node from P ∪ T is on a path from i to f .
3. The initial marking in N contains the only token in its source place.

By abuse of notation we denote by i both the source place and the initial
marking in a WF-net. Similarly, we use f to denote the final marking in a WF-net
N , defined as a marking containing the only token in the sink place f .

An important correctness property for WF-nets is soundness. Classical WF-
nets are called sound if one can reach the final marking from any marking reach-
able from the initial marking [1]. The intuition behind this notion is that no
matter what happens, there is always a way to complete the execution and
reach the final state. This soundness property is sometimes also called proper
termination and corresponds to classical soundness in [2].

Definition 2. A WF net N with a source place i and a sink place f is called
sound iff

1. For every marking m reachable from the initial marking i, there exists a
firing sequence leading from m to the final marking f :
∀m ∈ R(N) : (i

∗→ m)⇒ (m
∗→ f);

2. The marking f is the only marking reachable from i with at least one token
in place f :
∀m ∈ R(N) : m ≥ f ⇒ m = f ;

3. There are no dead transitions in N :
∀t ∈ T∃m,m′ : i

∗→ m
t→ m′.

For an arbitrary WF net soundness is decidable, but it is EXPSPACE-hard
[4].

Modeling workflow consists of modeling case management with the help of
sequential routing, parallelism, iteration, and conditional routing. To express

it explicitly building blocks such as the AND-split, AND-join, OR-split and
OR-join can be used. The AND-split and the AND-join are used for parallel
routing. The OR-split and the OR-join are used for conditional routing. All
these constructs can be easily expressed in Petri net formalism.

(a)

(b)

(c)

(d)

Fig. 1. Routing operations: (a) sequential routing, (b) parallel routing, (c) iteration,
(d) conditional routing

To guarantee, that we get ’good’ workflows, we are to balance AND/OR-
splits and AND/OR-joins. Clearly, two parallel flows initiated by an AND-split,
should not be joined by an OR-join. Two alternative flows created via an OR-
split, should not be synchronized by an AND-join. When we follow these rules
we obtain structured WF-nets (see [1] for more details). Fig. 1 shows fore routing
operations used in structured WF-nets. Thus, to apply sequential operation to
two WF-nets N1 and N2 is to substitute N1 for t1, and N2 for t2 in the net,
shown in Fig. 1 (a), by substituting the source place of N1 for p1, merge the sink
place of N1 and the source place of N2 (for p2), and substitute the sink place of
N2 for p3. To apply parallel operation to WF-nets N1 and N2 is to substitute
N1 for t2, and N2 for t3 in the net, shown in Fig. 1 (b), while transitions t1, t4
are additional routing transitions here. The iteration and conditional operations
are defined in the similar way.

Definition 3. An atomic WF-net is a WF-net, consisting of one source place
i, one sink place fand one transition, for which i is the only input place, and f
is the only output place.

A WF-net is called a structured WF-net iff it can be obtained from atomic
WF-nets by successive application of routing operations, shown in Fig. 1.

It was shown in [1], that structured WF-nets are sound by construction.

Following P. Martens [11], S. Stahl [12], and others to model services we use
workflow modules a — special subclass of Petri nets.

Definition 4. A Petri net M = (P, T, F) is called a workflow module (WF-
module) iff

1. The set P of places is a disjoint union of three sets: internal places PN ,
input places P I , and output places PO.

2. The flow relation is divided into internal flow FN ⊆ (PN × T) ∪ (T × PN)
and communication flow FC ⊆ (P I × T) ∪ (T × PO).

3. The net PM = (PN , T, FN) is a WF-net.
4. No transition is connected both to an input place and an output place.

Within a WF-module M , the workflow net PM is called the internal process
of M and the tuple I(M) = (P I , PO) is called its interface. Places belonging to
the interface I(M) are called ports. We suppose that each port in I(M) has a
unique name. A workflow module is called structured iff its internal process is a
structured WF-net.

Fig. 2. WF-module WFM1 for a bank service

Fig. 2 shows an example of a WF-module WFM1. Here p1 is a source place, p8
— a sink place. Places p1, . . . , p8 are internal places. The interface of M1 consists
of input places CR and A, and output places CD and E. The communication
flow of WFM1 includes arcs (t1, CD), (CR, t3), (A, t7), and (t9, E). All other
arcs belong to the internal process of M1. Note, that WFM1 is a structured
WF-module.

Definition 5. A WF-module is called sound iff its internal process is sound.

A composition of WF-modules, modeling Web services interaction, is defined
as follows.

Definition 6. Let M1,M2 be two WF-modules. A composition M1�M2 of M1

and M2 is a net N obtained from M1 and M2 by merging input ports of M1 with
output ports of M2 with the same names, and similarly output ports of M1 with
input ports of M2, i.e. p1 ∈ I(M1) and p2 ∈ I(M2) are merged iff they have the
same name and one of them is an input port, while the other is an output port.

An example of two WF-modules composition is shown in the next section.
A composition M1�M2 of two WF-modules M1 and M2 can be easily trans-

formed into a WF-module as follows. Let i1, i2 be source places in M1 and
M2 correspondingly, and f1, f2 be their output places. Add to M1 �M2 a new
source place i, a new sink place f , and two new transitions ti, tf , s.t. •ti = {i},
t•i = {i1, i2}, and t•f = {f}, •ti = {f1, f2}.

We say that a composition M1�M2 is sound iff its corresponding WF-module
is sound.

3 Motivating example

As a motivating example we consider a model of credit allowance. The model
describes two services, represented by two WF-modules.

The WF-module WFM1 in Fig. 2 models a service of a bank credit system,
that allows to estimate whether it is reasonable to loan money to this or that
person. In this model work startes from the position “p 1”, where one token is
placed in the initial state. Then service sends client information to the credit
bureau (“t 1”) and is waiting for the response (“p 2”). When bank system takes
the credit rating and is analyzed it (“t 3”), decision makes in position “p 3”,
service can goes to the “p 1” through “t 2” for the repetition of request , or
can goes to the operation of the payment. There are two ways for that (“t 5”
and “t 6”). First, pay all accounts, which were obtained from the credit bureau
(“t 7”). Second, send information about the client, when he will pay the loan.
At the end of the each possible way bank system sends E to report about the
competition of conversation(“t 9”, “t 10”) and stops in position “p 8”.

Fig. 3. WF-module WFM2 for a credit bureau

Fig. 3 shows a WF-module, modeling a credit bureau. It is a company that
collects information from various sources and provides consumer credit informa-
tion on individual consumers for a variety of uses. Here there are four internal

places and four interface places. “p 10” is starting position, where service is wait-
ing for the client information from the external bank system. When it receives
necessary data from “CD”, transition “t 11” fires, client credit rating is calcu-
lated, and service goes to the position “p 12”. If position “CR” is enabled, that
means that bank is requesting for the credit rating. In that case credit bureau
sends this information (“CR”) to the partner service(“t 12”), after that sends
an account (“A”) to the bank (“t 13”) and goes to the place “p 10” again. Oth-
erwise, if credit bureau receives end request (“E”), it goes to the final position
“p 13” and stops.

Fig. 4. Composition of services

Interaction of these two services is modeled by the composition of the cor-
responding WF-modules, depicted in Fig. 4. Services communicate with each
other in the following way: the bank sends all information about the person to
the credit bureau, this information is analyzed, and basing on all data credit
bureau provides a credit rating of a definite client to the bank. This sequence of
actions may be repeated several times.

While each of WF-modules WFM1 and WFM2 is sound, their composition
WFM1 �MWFM2 is not sound. These services are resource incompatible, i.e.
for these services there is no executions without pending inputs and/or outputs.
In the next sections we show, how to find out such incompatibilities.

4 Workflow module resources and multiset languages

Let M be a structured WF-module with two disjoint sets P I of input places and
PO output places. Consider then some run δ for M — a sequence of states and
transition firings, starting from the initial state and coming to the final state of
M . For each run δ the pair of input and output resources R(δ) = (RI(δ), RO(δ)),

where RI(δ) ∈ M(P I) and RO(δ) ∈ M(PO), are defined as multisets of in-
puts/outputs consumed/produced in the course of δ execution. By ρ(M) we
denote the set of all pairs of resources for all runs in M . More formally:

Definition 7. Let M be a structured WF-module with input ports P I and output
ports PO. Then for RI ∈M(P I) and RO ∈M(PO) we define (RI , RO) ∈ ρ(M)
iff f +RO ∈ R(M, i+RI).

It is easy to note, that a pair of multisets over non-intersecting sets of places
can be considered as just one multiset. Thus for a workflow module a resource
is a multiset language [7, 8].

For describing resources of structured workflow modules we define a special
language of quasi-regular expressions.

Definition 8. Let Atom be a finite set of atoms (letters). The language of quasi-
regular expressions over Atom is defined by induction as follows:

1. ε ∈ L;
2. a ∈ L, if a ∈ Atom;
3. e1 ◦ e2 ∈ L, if e1, e2 ∈ L;
4. e1 ⊕ e2 ∈ L, if e1, e2 ∈ L;
5. e∗ ∈ L, if e ∈ L.

Semantics of L maps a quasi-regular expression e to a multiset language µ(e),
i.e. a set of multisets over Atom according to the following rules:

1. µ(ε) = ∅;
2. µ(a) = [a] for a ∈ Atom;
3. µ(e1 ◦ e2) = {m1 +m2|m1 ∈ µ(e1),m2 ∈ µ(e2)};
4. µ(e1 ⊕ e2) = µ(e1) ∪ µ(e2);
5. µ(e∗) = µ(e0)∪ µ(e1)∪ µ(e2) · · · ∪ µ(en) . . . , where e0 = ε, en = e ◦ en−1 for

n ≥ 1.

Now we say, that two quasi-regular expressions e1 and e2 are equivalent (de-
noted e1 = e2 by abuse of notation) iff µ(e1) = µ(e2).

Proposition 1. For all quasi-regular expressions e, e1, e2, e3 the following equa-
tions are valid:

1. e ◦ ε = e,
2. e⊕ ε = e,
3. ε∗ = ε,
4. e1 ◦ e2 = e2 ◦ e1,
5. e1 ⊕ e2 = e2 ⊕ e1,
6. (e1 ◦ e2) ◦ e3 = e1 ◦ (e2 ◦ e3),
7. (e1 ⊕ e2)⊕ e3 = e1 ⊕ (e2 ⊕ e3),
8. e ◦ (e1 ⊕ e2) = (e ◦ e1)⊕ (e ◦ e2),
9. e⊕ e = e,

10. (e∗)∗ = e∗,
11. (e1 ⊕ e2)∗ = e∗1 ◦ e∗2,
12. (e1 ◦ e∗2)∗ = e∗1 ◦ e∗2.

These equations define the algebra of quasi-regular expressions.

Definition 9. We say that a quasi-regular expression e is in the standard form,
iff e = e1 ⊕ · · · ⊕ en, where n ≥ 1, e1, . . . , en do not contain ⊕ and nested ∗.

Proposition 2. Every quasi-regular expression can be transformed to an equiv-
alent quasi-regular expression in the standard form by applying equations (1–12).

Proof (Sketch). To take ⊕-operation outside we use equations 8 and 11. Equa-
tions 10, 12 allow taking ◦-operation outside in subexpressions without⊕. Nested
∗ are eliminated with the help of equation 10.

Now we show, that for a structured WF-module M a quasi-regular expression
e(M), describing interface resources ρ(M), can be effectively constructed.

Recall, that structured workflow nets are constructed from atomic transi-
tions by sequential application of four control structures: sequential routing,
conditional routing, parallel routing and iteration.

Algorithm 1. (Constructing a quasi-regular expression representing inter-
face resources of a WF-modul).
For a structured workflow module M a quasi-regular expression e(M) can be
constructed by induction on the structure of internal process N of M :

– for an atomic net N — a transition with input resource places p1, . . . , pk and
output resource places q1, . . . , qn, define e(N) =?p1 ◦ · · · ◦?pk◦!q1 ◦ · · · ◦!qn;

– for N being sequential composition of N1 and N2 define e(N) = e(N1) ◦
e(N2);

– for N being parallel composition of N1 and N2 define e(N) = e(N1) ◦ e(N2);
– for N being selective composition of N1 and N2 define e(N) = e(N1)⊕e(N2);
– for N being an iteration of N1 and N2 define e(N) = e(N1)◦(e(N2)◦e(N1))∗.

Proposition 3. Let M be a structured WF-module, and let e(M) be a quasi-
regular expression, obtained for M according to the Algorithm 1. Then e(M) =
ρ(M).

The proof of this proposition is straightforward by induction on the structure
of the internal process of a given WF-module.

5 Resources compatibility

We say, that two workflow modules are resource compatible, if they may execute
runs with producing/consuming mutually complimentary resources. If the com-
position of two workflow modules is sound, then they are resource compatible.

However, it could be that for resource compatible modules their composition
is not sound, since resources may be outputted in a wrong order. So, resource
compatibility is a necessary, but not sufficient condition for the correctness of
services composition.

Definition 10. Let M1,M2 be two WF-modules with source places i1, i2 and
sink places f1, f2 correspondingly. We say that M1 and M2 are resource compat-
ible iff f1 + f2 ∈ R(i1 + i2) in M1 �M2.

Immediately from the definition we get that if M1 �M2 is sound, then M1

and M2 are resource compatible.
We show that resource compatibility is decidable for structured WF-modules.
Algorithm 2. (checking resource compatibility of two structured WF-modules).

Let M1,M2 be structured WF-modules.

Step 1. Construct quasi-regular expressions e(M1), e(M2).
Step 2. Reduce e(M1), e(M2) to standard forms es(M1), es(M2) correspond-

ingly.
Step 3. Construct a complementary expression e−1s (M1) by changing ? for !

and vice versa in es(M1).
Step 4. Check whether µ(e−1s (M1))∩ µ(es(M2)) is not empty. If µ(e−1s (M1))∩

µ(es(M2)) is not empty, output “YES”, otherwise output “NO”.

Proposition 4. Let M1,M2 be two structured WF-modules. Modules M1 and
M2 are resource compatible iff the output of the Agorithm 2 for M1,M2 is “YES”.

All steps of the Algorithm 2 except for Step 4 are already described. Check-
ing, whether the intersection of multiset languages µ(e−1s (N1)) and µ(es(N2)) is
empty, can be reduced to solving a set of linear equations.

We illustrate this algorithm by applying it to our motivation example from
Section 3.

First we build quasi-regular expressions for bank and credit bureau services:
e(WFM1) = (!CD◦?CR)∗ ◦ ((?A∗◦!E)⊕ (!CD◦!E));
e(WFM2) =?CD ◦ (!CR◦!A◦?CD)∗◦?E.

Then we are to reduce these expressions to regular forms. Note, that e(WFM2)
is already in a regular form, and hence e(WFM2) = es(WFM2). To reduce
e(WFM1) it is sufficient to apply distributivity law (equation 8):
es(WFM1) = ((!CD◦?CR)∗◦?A∗◦!E)⊕ ((!CD◦?CR)∗◦!CD◦!E).
Then e−1s (WFM1) = ((?CD◦!CR)∗◦!A∗◦?E)⊕ ((?CD◦!CR)∗◦?CD◦?E).

Now r ∈ es−1(WFM1) iff r = n1·?CD + n1·!CR + n2·!A+?E, or r = (n1 +
1)·?CD + n1·!CR+?E for some natural n1, n2 ≥ 0.

Similarly, r ∈ es(WFM2) iff r = (n + 1)·?CD + n·!CR + n·!A+?E for some
natural n ≥ 0.

The multiset µ(e−1s (WFM1)) ∩ µ(es(WFM2)) is not empty iff at least one of
the following sets of simultaneous equations is consistent.

Set 1 of equations (corresponds to the first summand in es−1(WFM1):
n1 = n+ 1 (factors of ?CD),

n1 = n (factors of !CR),
n2 = n (factors of !A),
1 = 1 (factors of ?E).

Set 2 of equations (corresponds to the second summand in es−1(WFM1):
n1 = n+ 1 (factors of ?CD),
n1 = n (factors of !CR),
0 = n (factors of !A),
1 = 1 (factors of ?E).

Both these sets of equations are obviously inconsistent. So, we can imme-
diately conclude, that the services of our bank example in Section 3 are not
comparable.

Note, that Algorithm 2 has a polynomial on the size of WF-module time
complexity.

6 Conclusion

In this paper we have presented a new approach for detecting incompatibility of
Web services by analysis of resource compatibility of their structured workflow
models. The resource compatibility is a necessary condition for soundness of
composition of workflow models.

We introduce a language of quasi-regular expressions for describing multiset
languages, and use this language for representing interface resources of structured
workflow modules. Checking resource compatibility is then reduced to checking
emptiness of intersection of multiset languages, represented by quasi-regular ex-
pressions. Thus checking resource compatibility can be solved in polynomial
time.

Though resource compatibility is not sufficient for correct Web service inter-
action, the proposed procedure may be helpful for efficient detecting in consis-
tences on the early stages of analysis of Web services.

References

1. W. van der Aalst and K. van Hee. Workflow Management: Models, Methods and
Systems MIT Press,2002.

2. W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede, N. Sidorova, et
al. Soundness of workflow nets: classification, decidability, and analysis. Formal
Aspects of Computing. Vol. 23, Nr. 3, pages 333-363. 2011.

3. V. A. Bashkin and I. A. Lomazova. Resource equivalence in workflow nets. In Proc.
CS&P’2006 Workshop. Volume 1, pages 80–91. Humboldt-Universität zu Berlin,
2006.

4. Cheng A., Esparza J., and Palsberg J.: Complexity results for 1-safe nets. In LNCS
761, 326-337. 1993.

5. X. Gong. Formal Analysis of Services Compatibility In Computer Software and
Applications Conference, 2009, volume 2, pages 243–248. Seattle, WA, 2005.

6. K. van Hee, A. Serebrenik, N. Sidorova and M. Voorhoeve. Soundness of resource-
constrained workflow nets. In Proc. 26th Int. Conf. Application and Theory of
Petri Nets, 2005, volume 3536 of Lecture Notes in Computer Science, pages 250–
267. Springer, 2005.

7. M. Kudlek, C. .Mart̀ın Vide, Gh. Păun. Towards FMT (Formal Mucroset Theory).
In Multiset Processing, volume 2235 of Lecture Notes in Computer Science, pages
123–133. Springer, 2001.

8. M. Kudlek, V. Mitrana. Closure properties of multiset languages. Fundamenta
Informaticae, Vol. 49, Nr. 1-3, pages 191–203. 2002.

9. X. Li. A Petri Net Approach to Analyzing Behavioral Compatibility and Similarity
of Web Services Systems, Man and Cybernetics, Part A: Systems and Humans,
Vol. 41, pages 510–521, 2011.

10. I. A. Lomazova. Interacting workflow nets for workflow process re-engineering.
Fundamenta Informaticae, Vol. 101, Nr. 1-2, pages 59–70, 2010.

11. A. Martens. Analyzing Web service based on business processes. In Proc. Int.
Conf. on Fundamental Approaches to Software Engineering, 2005, volume 3442 of
Lecture Notes in Computer Science, pages 19–33. Springer, 2005.

12. C. Stahl. Service substitution - a behavioral approach based on Petri nets. PhD
Thesis, Eindhoven: Technische Universiteit Eindhoven, 2009.

13. P. Xiong. A Petri Net Approach to Analysis and Composition of Web Services
Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 40, pages 376–
387, 2010.

