
45

Efficient Subset and Superset Queries

Iztok SAVNIK
Faculty of Mathematics, Natural Sciences and Information Technologies, University of

Primorska, Glagoljaška 8, 5000 Koper, Slovenia

Abstract. The paper presents index structure for storing and querying sets called
SetTrie. Besides the operations insert and search defined for ordinary tries, we
introduce the operations for retrieving subsets and supersets of a given set from
SetTrie tree. The performance of operations is analysed empirically in a series
of experiments. The analysis shows that sets can be accessed in O(c ∗ |set|) time
where |set| represents the size of parameter set. The constant c is up to 5 for subset
case and approximately 150 in average case for the superset case.

Keywords. Containment queries, indexes, access methods, databases

Introduction

Set containment queries are common in applications based on object-oriented or object-
relational database systems. Relational tables or objects from collections can have set-
valued attributes i.e. the attributes that range over sets. Set containment queries can ex-
press either selection or join operation based on set containment condition [5,10,3].

In this paper we propose an index structure SetTrie that implements efficiently
the basic two types of set containment queries: subset and superset queries. We give
the presentation of the proposed data structure, the operations defined on SetTrie and
thorough empirical analysis.

Let us first give a description of subset and superset operations in more detail. Let U
be a set of ordered symbols. The subsets of U are denoted as words. Given a set of words
S and a subset of U named X , we are interested in the following queries.

1. Is X a subset of any element from S?
2. Is X a superset of any element from S?
3. Enumerate all Y in S such that X is a subset of Y .
4. Enumerate all Y in S such that X is a superset of Y .

SetTrie is a tree data structure similar to trie [6]. The possibility to extend the
performance of usual trie from membership operation to subset and superset operations
comes from the fact that we are storing sets and not the sequences of symbols as for
ordinary tries. In the case of sets the ordering of symbols in a set is not important as it is
in the case of text. As it will be presented in the paper the ordering of set elements can
be exploited for the efficient implementation of containment operations.

We analyse subset and superset operations in two types of experiments. Firstly, we
examine the execution of the operations on real-world data where sets represents words
from the English dictionary. Secondly, we have tested the operations on artificially gen-

46 I. Savnik / Efficient Subset and Superset Queries

��������� ������

���

""""
bbbb

#
#
#

l
l
l

�
�
�

T
T
T

{}

1 2

2 3 4 3 4

4 5 5

Figure 1. Example of SetTrie

erated data. In these experiments we tried to see how three main parameters: the size
of words, the size of SetTrie tree and the size of test-set, affect the behavior of the
operations.

The paper is organized as follows. The following section presents the data structure
SetTrie together with the operations for searching the subsets and supersets in a tree.
The Section 2 describes the empirical study of SetTrie. We present a series of experi-
ments that measure the behavior of operations and the size of data structure. The related
work is presented in Section 3. We give the presentation of existent work on set-valued
attributes and containment queries as well as related work on trie and Patricia tree data
structures. Finally, the overview and conclusions are given in Section 4.

1. Data Structure SetTrie

SetTrie is a tree composed of nodes labeled with indices from 1 to N where N is the
size of the alphabet. The root node is labeled with {} and its children can be the nodes
labeled from 1 to N . A root node alone represents an empty set. A node labeled i can
have children labeled with numbers greater than i. Each node can have a flag denoting
the last element in the set. Therefore, a set is represented by a path from the root node to
a node with flag set to true.

Let us give an example of SetTrie. Figure 1 presents a SetTrie containing the
sets {1, 3}, {1, 3, 5}, {1, 4}, {1, 2, 4}, {2, 4}, {2, 3, 5}. Note that flaged nodes are repre-
sented with circles.

Since we are dealing with sets for which the ordering of the elements is not impor-
tant, we can define a syntactical order of symbols by assigning each symbol a unique
index. Words are ordered by sequences of indices. The ordering of words is exploited for
the representation of sets of words as well as in the implementation of the above stated
operations.

SetTrie is a tree storing a set of words which are represented by a path from the
root of SetTrie to a node corresponding to the indices of elements from words. As with
tries, prefixes that overlap are represented by a common path from the root to an internal
vertex of SetTrie tree.

The operations for searching subsets and supersets of a set X in S use the ordering
of U . The algorithms do not need to consider the tree branches for which we know they

I. Savnik / Efficient Subset and Superset Queries 47

do not lead to results on the basis of the ordering of word symbols. The search space for
a given X and tree representing S can be seen as a subtree determined primarily by the
search word X but also with the search tree corresponding to S.

1.1. Operations

Let us first present a data structure for storing words, that is, the sets of symbols. Words
are stored in a data structure Word representing ordered sets of integer numbers.

The users of Word can scan sets using the following mechanism. The operation
word.gotoF irstElement sets the current element of word to the first element of ordered
set. Then, the operation word.existsCurrentElement checks if word has the current
element set. The operation word.currentElement returns the current element, and the
operation word.gotoNextElement goes to the next element in the set.

Let us now describe the operations of the data structure SetTrie. The first opera-
tion is insertion. The operation insert(root,word) enters a new word into the SetTrie
referenced by the root node. The operation is presented by Algorithm 1.

Algorithm 1 insert(node, word)
1: if (word.existsCurrentElement) then
2: if (exists child of node labeled word.currentElement) then
3: nextNode = child of node labeled word.currentElement;
4: else
5: nextNode = create child of node labeled word.currentElement;
6: end if
7: insert(nextNode, word.gotoNextElement)
8: else
9: node’s flag_last = true;

10: end if

Each invocation of operation insert either traverses through the existing tree nodes
or creates new nodes to construct a path from the root to the flagged node corresponding
to the last element of the ordered set.

The following operation search(node,word) searches for a given word in the tree
node. It returns true when it finds all symbols from the word, and false as soon one
symbol is not found. The algorithm is shown in Algorithm 2. It traverses the tree node
by using the elements of ordered set word to select the children.

Let us give a few comments to present the algorithm in more detail. The operation
have to be invoked with the call search(root,set.gotoFirstElement) so that root is the
root of the SetTrie tree and the current element of the word is the first element of word.
Each activation of search tries to match the current element of word with the child
of node. If the match is not successful it returns false otherwise it proceeds with the
following element of word.

The operation existsSubset(node,word) checks if there exists a subset of word
in the given tree referenced by node. The subset that we search in the tree has fewer
elements than word. Therefore, besides that we search for the exact match we can also
skip one or more elements in word and find a subset that matches the rest of the elements
of word. The operation is presented in Algorithm 3.

48 I. Savnik / Efficient Subset and Superset Queries

Algorithm 2 search(node, word)
1: if (word.existsCurrentElement) then
2: if (there exists child of node labeled word.currentElement) then
3: matchNode = child vertex of node labeled word.currentElement;
4: search(matchNode, word.gotoNextElement);
5: else
6: return false;
7: end if
8: else
9: return (node’s last_flag == true) ;

10: end if

Algorithm 3 existsSubset(node,set)
1: if (node.last_flag == true) then
2: return true;
3: end if
4: if (not word.existsCurrentElement) then
5: return false;
6: end if
7: found = false;
8: if (node has child labeled word.currentElement) then
9: nextNode = child of node labeled word.currentElement;

10: found = existsSubset(nextNode, word.gotoNextElement);
11: end if
12: if (!found) then
13: return existsSubset(node,word.gotoNextElement);
14: else
15: return true;
16: end if

Algorithm 3 tries to match elements of word by descending simultaneously in tree
and in word. The first IF statement (line 1) checks if a subset of word is found in the
tree i.e. the current node of a tree is the last element of subset. The second IF statement
(line 4) checks if word has run of the elements. The third IF statement (line 8) verifies
if the parallel descend in word and tree is possible. In the positive case, the algorithm
calls existsSubset with the next element of word and a child of node corresponding to
matched symbol. Finally, if match did not succeed, current element of word is skipped
and existsSubset is activated again in line 13.

The operation existsSubset can be easily extended to find all subsets of a given
word in a tree node. After finding the subset in line 15 the subset is stored and the search
continues in the same manner as before. The experimental results with the operation
getAllSubsets(nod,word) are presented in the following section.

The operation existsSuperset(node,word) checks if there exists a superset of word
in the tree referenced by node. While in operation existsSubset we could skip some
elements from word, here we can do the opposite: the algorithm can skip some elements

I. Savnik / Efficient Subset and Superset Queries 49

Algorithm 4 existsSuperset(node, word)
1: if (not word.existsCurrentElement) then
2: return true;
3: end if
4: found = false;
5: from = word.currentElement;
6: upto = word.nextElement if it exists and N otherwise;
7: for (each child of node labeled l: from < l ≤ upto) while !found do
8: if (child is labeled upto) then
9: found = existsSuperset(child,word.gotoNextElement);

10: else
11: found = existsSuperset(child,word);
12: end if
13: end for

in supersets represented by node. Therefore, word can be matched with the subset of
superset from a tree. The operation is presented in Algorithm 4

Let us present Algorithm 4 in more detail. The first IF statement checks if we are
already at the end of word. If so, then the parameter word is covered completely with a
superset from tree. Lines 5-6 set the lower and upper bounds of iteration. In each pass
we either skip current child and call existsSuperset on unchanged word (line 11), or,
descend in parallel on both word and tree in the case that we reach the upper bound ie.
the next element in word (line 9).

Again, the operation existsSuperset can be quite easily extended to retrieve all
supersets of a given word in a tree node. However, after word (parameter) is matched
completely (line 2 in Algorithm 4), there remains a subtree of trailers corresponding to a
set of supersets that subsume word. This subtree is rooted in a tree node, let say nodek,
that corresponds to the last element of word. Therefore, after the nodek is matched
against the last element of the set in line 2, the complete subtree has to be traversed to
find all supersets that go through node.

2. Experiments

The performance of the presented operations is analysed in four experiments. The main
parameters of experiments are: the number of words in the tree, the size of the alpha-
bet, and the maximum length of words. The parameters are named: numTreeWord,
alphabetSize, and maxSizeWord, respectively. In every experiment we measure the
number of visited nodes necessary for an operation to terminate.

In the first experiment, SetTrie is used to store real-world data – it stores the words
from English Dictionary. In the following three experiments we use artificial data –
datasets and test data are randomly generated. In these experiments we analyse in de-
tail the interrelations between one of the stated tree parameters on the number of visited
nodes.

In all experiments we observe four operations presented in the previous sec-
tion: existsSubset (abbr. esb) and its extension getAllSubsets (abbr. gsb), and
existsSuperset (abbr. esr) and its extension getAllSupersets (abbr. gsr).

50 I. Savnik / Efficient Subset and Superset Queries

2.1. Experiment with Real-World Data

Table 1. Visited nodes for dictionary words

word length esr gsr esb gsb

2 523 169694 1 1
3 3355 103844 3 3
4 12444 64802 6 6
5 9390 34595 11 12
6 11500 22322 14 19
7 12148 17003 18 32
8 8791 10405 19 46
9 6985 7559 19 78

10 3817 3938 21 102
11 3179 3201 20 159
12 2808 2820 20 221
13 2246 2246 22 290
14 1651 1654 19 403
15 1488 1488 18 575
16 895 895 19 778
17 908 908 20 925
18 785 785 18 1137
19 489 489 22 1519
20 522 522 19 1758
21 474 474 19 2393
22 399 399 17 3044
23 362 362 17 3592
24 327 327 19 4167

Let us now present the first experiment in more detail. The number of words in
test set is 224,712 which results in a tree with 570,462 nodes. The length of words are
between 5 and 24 and the size of the alphabet (alphabetSize) is 25. The test set contains
10,000 words.

Results are presented in Table 1 and Figure 2. Since there are 10,000 words and 23
different word lengths in the test set, approximately 435 input words are of the same
length. Table 1 and Figure 2 present the average number of visited nodes for each input
word length (except for gsr where values below word length 6 are intentionally cut off).

Let us give some comments on the results presented in Table 1. First of all, we can
see that the superset operations (esr and gsr) visit more nodes than subset operations
(esb and gsb).

The number of nodes visited by esr and gsr decreases as the length of words in-
creases. This can be explained by more constrained search in the case of longer words,
while it is very easy to find supersets of shorter words and, furthermore, there are a lot
of supersets of shorter words in the tree.

Since operation gsr returns all supersets (of a given set), it always visits more nodes
than the operation esr. However, searching for the supersets of longer words almost
always results in failure and for this reason the number of visited nodes is the same for
both operations.

I. Savnik / Efficient Subset and Superset Queries 51

Figure 2. Number of visited nodes

The number of visited nodes for esb in the case that words have more than 5 symbols
is very similar to the length of words. Below this length of words both esb and gsb visit
the same number of nodes, because there were no subset words of this length in the tree
and both operations visit the same nodes.

The number of visited nodes for gsb linearly increases as the word length increases.
We have to visit all the nodes that are actually used for the representation of all subsets
of a given parameter set.

2.2. Experiments with Artificial Data

In experiment1 we observe the influence of changing the maximal length of word to
the performance of all four operations. We created four trees with alphabetSize 30 and
numTreeWord 50,000. maxSizeWord is different in each tree: 20, 40, 60 and 80,
for tree1, tree2, tree3 and tree4, respectively. The length of word in each tree is evenly
distributed between the minimal and maximal word size. The number of nodes in the
trees are: 332,182, 753,074, 1,180,922 and 1,604,698. The test set contains 10,000 words.

Figure 3 shows the performance of all four operations on all four trees. The perfor-
mance of superset operations is affected more by the change of the word length than the
subset operations.

With an even distribution of data in all four trees, esr visits most nodes for in-
put word lengths that are about half of the size of maxSizeWord (as opposed to dic-
tionary data where it visits most nodes for word lengths approximately one fifth of
maxSizeWord). For word lengths equal to maxSizeWord the number of visited nodes
is roughly the same for all trees, but that number increases slightly as the word length
increases.

esb operation visits fewer than 10 nodes most of the time, but for tree3 it goes up
to 44 which is still a very low number. The experiment was repeated multiple (about
10) times, and in every run the operation “jumped up” in a different tree. As seen later
in experiment2, it seems that numTreeWord 50 is just on the edge of the value
where esb stays constantly below 10 visited nodes. It is safe to say that the change in
maxSizeWord has no major effect on existsSubSet operation.

52 I. Savnik / Efficient Subset and Superset Queries

Figure 3. Experiment 1 – increasing maxSizeWord

In contrast to gsr, gsb visits less nodes for the same input word length in trees with
greater maxSizeWord, but the change is minimal. For example for word length 35 in
tree2 (maxSizeWord 40) gsb visits 7,606 nodes, in tree3 (maxSizeWord 60) it visits
5,300 nodes and in tree4 (maxSizeWord 80) it visits 4,126 nodes.

In experiment2 we are interested about how a change in the number of words
in the tree affects the operations. Ten trees are created all with alphabetSize 30 and
maxSizeWord 30. numTreeWord is increased in each tree by 10,000 words: tree1
has 10,000 words, and tree10 has 100,000 words. The number of nodes in the trees (from
tree1 to tree10) are: 115,780, 225,820, 331,626, 437,966, 541,601, 644,585, 746,801,
846,388, 946,493 and 1,047,192. The test set contains 5,000 words.

Figure 4 shows the number of visited nodes for each operation on four trees: tree1,
tree4, tree7 and tree10 (only every third tree is shown to reduce clutter). When increas-
ing numTreeWord the number of visited nodes increases for esr, gsr and gsb opera-
tions. esb is least affected by the increased number of words in the tree. In contrast to
the other three operations, the number of visited nodes decreases when numTreeWord
increases.

For input word lengths around half the value of maxSizeWord (between 13 and 17)
the number of visited nodes for esr increases with the increase of the number of words
in the tree. For input word lengths up to 10, the difference between trees is minimal.

I. Savnik / Efficient Subset and Superset Queries 53

Figure 4. Experiment 2 – increasing numTreeWord

After word lengths about 20 the difference in the number of visited nodes between trees
starts to decline. Also, trees 7 to 10 have very similar results. It seems that after a certain
number of words in the tree the operation “calms down”.

The increased number of words in the tree affects the gsr operation mostly in the first
quarter of maxSizeWord. The longer the input word, the lesser the difference between
trees. Still, this operation is the most affected by the change of numTreeWord. The
average number of visited nodes for all input word lengths in tree1 is 8,907 and in tree10
it is 68,661. Due to the nature of the operation, this behavior is expected. The more words
there are in the tree, the more supersets can be found for an input word.

As already noted above, when the number of words in the tree increases the number
of visited nodes for esb decreases. After a certain number of words, in our case this was
around 50,000, the operation terminates at a minimum possible visits of nodes for any
word length. The increase of numTreeWord seems to “push down” the operation from
left to right. This can be seen in figure 4 by comparing tree1 and tree4. In tree1 the
operation visits more then 10 after word length 15, and in tree4 it visits more than 10
nodes after word length 23. Overall the number of visited nodes is always very low.

The chart of gsb operation looks like a mirrored chart of gsr. The increased number
of words in the tree has more effect on input word lengths where the operation visits
more nodes (longer words). Below word length 15 the difference between trees is in the

54 I. Savnik / Efficient Subset and Superset Queries

range of 100 visited nodes. At word length 30 gsb visits 1,729 nodes in tree1 and 8,150
nodes in tree10. The explanation in for the increased number of visited nodes is similar
as for gsr operation: the longer the word, the more subsets it can have, the more words
in the tree, the more words with possible subsets there are.

Figure 5. Experiment 3 – increasing alphabetSize

In experiment3 we are interested about how a change in the alphabet size af-
fects the operations. Five trees are created with maxSizeWord 50 and numTreeWord
50,000. alphabetSize is 20, 40, 60, 80 and 100, for tree1, tree2, tree3, tree4 and
tree5, respectively. The number of nodes in the trees are: 869,373, 1,011,369, 1,069,615,
1,102,827 and 1,118,492. The test set contains 5,000 words.

When increasing alphabetSize the tree becomes sparser–the number of child nodes
of a node is larger, but the number of nodes in all five trees is roughly the same. For
gsr and more notably gsb operation, visit less nodes for the same input word length:
the average number of visited nodes decreased when alphabetSize increases. The esr
operation on the other hand visits more nodes in trees with larger alphabetSize.

The number of visited nodes of esr increases with the increase of alphabetSize.
This is because it is harder to find supersets of given words, when the number of sym-
bols that make up words is larger. The effect is greater on word lengths below half
maxSizeWord. The number of visited nodes starts decreasing rapidly after a certain
word length. At this point the operation does not find any supersets and it returns false.

I. Savnik / Efficient Subset and Superset Queries 55

gsr is not affected much by the change of alphabetSize. The greatest change hap-
pens when increasing alphabetSize over 20 (tree1). The number of visited nodes in
trees 2 to 5 is almost the same, but it does decrease with every increase of alphabetSize.

In tree1 esb visits on average 3 nodes. When we increase alphabetSize the number
of visited nodes also increases, but as in gsr the difference between trees 2 to 5 is small.

The change of alphabetSize has a greater effect on longer input words for the gsr
operation. The number of visited nodes decreased when alphabetSize increased. Here
again the biggest change is when going over alphabetSize 20. With every next increase,
the difference in the number of visited nodes is smaller.

3. Related work

The initial implementation of SetTrie was in the context of a datamining tool fdep
which is used for the induction of functional dependencies from relations [8,9]. SetTrie
serves there for storing and retrieving hypotheses that basically correspond to sets.

The data structure we propose is similar to trie [6,7]. Since we are not storing se-
quences but sets we can exploit the fact that the order in sets is not important. There-
fore, we can take advantage of this to use syntactical order of elements of sets and obtain
additional functionality of tries.

Sets are among important data modeling constructs in object-relational and object-
oriented database systems. Set-valued attributes are used for the representation of prop-
erties that range over sets of atomic values or objects. Database community has shown
significant interest in indexing structures that can be used as access paths for querying
set-valued attributes [10,5,3,11,12].

Set containment queries were studied in the frame of different index structures.
Helmer and Moercotte investigated four index structures for querying set-valued at-
tributes of low cardinality [3]. All four index structures are based on conventional tech-
niques: signatures and inverted files. Index structures compared are: sequential signature
files, signature trees, extendable signature hashing, and B-tree based implementation of
inverted lists. Inverted file index showed best performance over other data structures in
most operations.

Zhang et al. [12] investigated two alternatives for the implementation of containment
queries: a) separate IR engine based on inverted lists and b) native tables of RDBMS.
They have shown that while RDBMS are poorly suited for containment queries they
can outperform inverted list engine in some conditions. Furthermore, they have shown
that with some modifications RDBMS can support containment queries much more effi-
ciently.

Another approach to the efficient implementation of set containment queries is the
use of signature-based structures. Tousidou et al. [11] combine the advantages of two ac-
cess paths: linear hashing and tree-structured methods. They show through the empirical
analysis that S-tree with linear hash partitioning is efficient data structure for subset and
superset queries.

From the other perspective, our problem is similar to searching substrings in strings
for which tries and Suffix trees can be used. Firstly, Rivest examines [6] the problem of
partial matching with the use of hash functions and trie trees. He presents an algorithm
for partial match queries using tries. However, he does not exploit the ordering of indices
that can only be done in the case that sets are stored in tries.

56 I. Savnik / Efficient Subset and Superset Queries

Baeza-Yates and Gonnet present an algorithm [1] for searching regular expressions
using Patricia trees as the logical model for the index. They simulate a finite automata
over a binary Particia tree of words. The result of a regular expression query is a superset
or subset of the search parameter.

Finally, Charikar et al. [2] present two algorithms to deal with a subset query prob-
lem. The purpose of their algorithms is similar to existsSuperSet operation. They ex-
tend their results to a more general problem of orthogonal range searching, and other
problems. They propose a solution for “containment query problem” which is similar to
our 2. query problem introduced in Introduction.

4. Conclusions

The paper presents a data structure SetTrie that can be used for efficient storage and
retrieval of subsets or supersets of a given word. The performance of SetTrie is shown
to be efficient enough for manipulating sets of sets in practical applications.

Enumeration of subsets of a given universal set U is very common in machine learn-
ing [4] algorithms that search hypotheses space ordered in a lattice. Often we have to
see if a given set, a subset or a superset has already been considered by the algorithm.
Such problems include discovery of association rules, functional dependencies as well
as some forms of propositional logic.

Finally, the initial experiments have been done to investigate if SetTrie can be
employed for searching substrings and superstrings in texts. Fur this purpose the data
structure SetTrie has to be augmented with the references to the position of words in
text. While the data structure is relatively large “index tree”, it may still be useful because
of the efficient search.

References

[1] Baeza-Yates, R., Gonnet, G.: Fast text searching for regular expressions or automation searching on
tries. Journal of ACM 43(6) (1996), 915–936.

[2] Charikar, M., Indyk, P., Panigrahy, R.: New algorithms for subset query, partial match, orthogonal range
searching and related problems. In: Proc. 29th International Colloquium on Algorithms, Logic, and
Programming, LNCS 2380 (2002), 451–462.

[3] Helmer, S., Moerkotte, G.: A performance study of four index structures for set-valued attributes of low
cardinality. The VLDB Journal – The International Journal on Very Large Data Bases 12(3) (2003),
244–261.

[4] Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowl-edge discovery. Data
Mining and Knowledge Discovery Journal 1(3) (1997), 241–258.

[5] Melnik, S., Garcia-Molina, H.: Adaptive algorithms for set containment joins. ACM Transactions on
Database Systems 28(2) (2003), 1–38.

[6] Rivest, R.: Partial-match retrieval algorithms. SIAM Journal on Computing 5(1) (1976).
[7] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Second Edition, MIT

Press, 2001.
[8] Savnik, I., Flach, P.A.:, Bottom-up Induction of Functional Dependencies from Relations. In: Proc. of

KDD’93 Workshop: Knowledge Discovery from Databases, AAAI Press, Washington (1993), 174–185.
[9] Flach, P.A., Savnik, I.: Database dependency discovery: a machine learning approach, AI Communica-

tions 12(3) (1999), 139–160.
[10] Terrovitis, M., Passas, S., Vassiliadis, P., Sellis, T.: A Combination of trie-trees and inverted files for

the indexing of set-valued attributes. In: Proc. of ACM International Conference on Information and
Knowledge Management (2006).

I. Savnik / Efficient Subset and Superset Queries 57

[11] Tousidou, E., Bozanis, P., Manolopoulos, Y.: Signature-based structures for objects with set-valued at-
tributes. Information Systems 27 (2002), 93–121.

[12] Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On supporting containment queries in rela-
tional database management systems. In: ACM SIGMOD (2001).

