
Characterizing Modular Ontologies

Sarra Ben Abbès1, Andreas Scheuermann2, Thomas Meilender3, and Mathieu
d’Aquin4

1Laboratoire d’Informatique de Paris Nord (UMR 7030), CNRS, Paris 13
University, Sorbonne Paris Cité, France. E-mail:

sarra.benabbes@lipn.univ-paris13.fr
2University of Hohenheim, Information Systems 2, 70599 Stuttgart, Germany.

Email: andreas.scheuermann@uni-hohenheim.de
3UHP-Nancy 1, LORIA (UMR 7503 CNRS-INPL-INRIA-Nancy 2-UHP),

France. Email: thomas.meilender@loria.fr
4Knowledge Media Institute, The Open University, Walton Hall, Milton

Keynes, MK7 6AA, UK. E-mail: m.daquin@open.ac.uk

Abstract. Since large monolithic ontologies are difficult to handle and
reuse, ontology modularization has attracted increasing attention. Sev-
eral approaches and tools have been developed to support ontology mod-
ularization. Despite these efforts, a lack of knowledge about character-
istics of modularly organized ontologies prevents further development.
This work aims at characterizing modular ontologies. Therefore, we ana-
lyze existing modular ontologies by applying selected metrics from soft-
ware engineering in order to identify recurring structures, i.e. patterns
in modularly organized ontologies. The contribution is a set of four pat-
terns which characterize modularly organized ontologies.
Keywords: modularization, patterns, modules, ontology.

1 Introduction

Difficulties in reusing and maintaining large monolithic ontologies have resulted
in an increasing interest in modularizing ontologies. In the past, several ap-
proaches and tools (e.g., SWOOP1, NeOn Toolkit2) have been proposed to sup-
port the modularization of ontologies. Each of these approaches and tools re-
spectively incorporates its own definition and notion of modular ontologies and
criteria underpinning ontology modularization [5]. This proliferation is mainly
due to the fact that the area of ontology modularization appears to be still in its
infancy. Thus, it lacks the mature, well-defined, well-understood, and commonly
agreed upon definitions and concepts as sociated with modularization in the area
of software engineering [19]. This lack of knowledge about ontology modulariza-
tion and, particularly, the lack of knowledge about characteristics of modular
ontologies prevents its further development. Being able to characterize modular

1 http://www.mindswap.org/2004/
2 http://neon-toolkit.org/wiki/Main_Page



ontologies would allow for (1) comparing different modularization approaches,
(2) assessing the quality of modular ontologies with respect to manually modu-
larized ontologies, (3) customizing ontology modularization by providing mod-
ularization criteria, and (4) improving the area of ontology modularization as a
whole.
The goal of this work is to characterize modularly organized ontologies to con-
tribute to a better understanding of ontology modularization. For this purpose,
we (1) extract a number of existing ontologies from the web, (2) select and
adopt metrics from software engineering in order to both (3) identify recurring
structures (patterns) in modularly organized ontologies and (4) characterize the
identified patterns. The contribution is a set of four patterns, which characterize
modularly organized ontologies.
The rest of this paper is organized as follows: Section 2 provides an introduction
to ontology modularization and reviews related work. Section 3 reports on the
research design whereas section 4 presents and discusses the results. Section 5
draws a conclusion and points to future avenues of research.

2 Ontology Modularization

2.1 Modular Ontologies

The main idea of modular ontologies originates from the general notion of modu-
lar software in the area of software engineering. Correspondingly, ontology modu-
larization can be interpreted as decomposing potentially large and monolithic on-
tologies into (a set of) smaller and interlinked components (modules). Therefore,
an ontology module can be considered as a loosely coupled and self-contained
component of an ontology maintaining relationships to other ontology modules.
Thereby, ontology modules are themselves ontologies [4].
In general, ontology modularization aims at providing users of ontologies with
the knowledge they require, reducing the scope as much as possible to what is
strictly necessary. In particular, ontology modules (1) facilitate knowledge reuse
across various applications, (2) are easier to build, maintain, and replace, (3)
enable distributed engineering of ontology modules over different locations and
different areas of expertise, and (4) enable effective management and browsing
of modules [12].

2.2 Approaches for Ontology Modularization

In recent years, the problem of ontology modularization has attracted more and
more attention and, thus, several different approaches for modularizing ontolo-
gies appeared. These approaches can be classified in two main categories.
The first main category comprises approaches that focus on the composition of
existing ontologies by means of integrating and mapping ontologies. On the one
hand, approaches addressing integration of existing ontologies are owl:import,
partial semantic import, e.g., [8, 5], package-based description logics, e.g., [2].



On the other hand, mapping approaches basically aim at (inter-)linking sets of
ontology modules. The following approaches can be assigned to these two for-
malisms: distributed description logics, e.g., [17, 3], ε-connections, e.g., [15, 10].
Other approaches establish the relationship between various modular ontology
formalisms [9] in order to have special syntax in the ontology languages for a
modeling perspective.
The second main category comprises approaches for modularizing ontologies in
terms of ontology partitioning and ontology module extraction. On the one hand,
ontology partitioning aims at splitting up an existing ontology into a set of on-
tology modules. Approaches for partitioning ontologies are proposed by [13, 11]
whereas [18] proposes a tool. On the other hand, ontology module extraction,
which is also called segmentation [16] or traversal view extraction [14], aims at
reducing an ontology to its relevant sub-parts. Approaches for ontology module
extraction are the subject of [14, 16], and the PROMPT tool [14]. More details
of this category of approaches are discussed in [5].

2.3 Criteria for Ontology Modularization

Criteria for modularizing ontologies generally aim at characterizing modular on-
tologies. To the best of our knowledge, only [5] explicitly deals with criteria
for ontology modularization. Therefore, [5] distinguishes between criteria origi-
nating in software engineering, logical criteria, local criteria, structural criteria,
quality of modules, and relations between modules. First, criteria from soft-
ware engineering comprise encapsulation and coherence whereas logical criteria
include local correctness and local completeness. Structural criteria, which are
also discussed by [6], focus on size and intra-module coherence. It is proposed to
determine the quality of modules in terms of module cohesion, richness of the
representation, and domain coverage. At least, to assess the relation between
modules the criteria of connectedness, redundancy, and inter-module distance
can be applied. Against this background, the evaluation of ontology modular-
ization respectively applies a subset of the proposed set of criteria with respect
to different scenarios and ontology modularization techniques.
Based on best practices in Ontology Engineering, ontology design patterns (ODPs)
simplify ontology design by providing a ”modelling solution to solve recurrent
ontology design problems” [1]. Several types of ODPs has already been iden-
tified, e.g., logical patterns that are used to solve problems of expressivity, or
naming patterns that are conventions for naming elements. Among these types,
architectural ontology design patterns (AODPs) aim at describing the overall
shape of the ontology. More precisely, external AODPs describe the modular
architecture of an ontology by considering a modular ontology as an ontology
network. Involved ontologies are considered as modules and are connected by the
import operation. A semantic web portal3 has been proposed as a repository for
ODPs. Unfortunately, to our knowledge, no work has been done on proposing
and describing external AODPs.

3 http://ontologydesignpatterns.org



3 Approach

In order to characterize reoccurring structures in modularly organized ontologies,
the following approach establishes a methodological basis to guide the research
program of this work. This approach comprises six subsequent steps:

1. Search step: the goal of the first step is to gather modularly organized

ontologies. We use the Semantic Web gateway Watson4 to search for available
modular ontologies from the WWW. The search query focused on import-
relationships between ontologies covering the same domain. The result is a
set of 77 modularly organized ontologies.

2. Cleaning up step: the second step aims at cleaning up the initial search
results in order to establish a thorough basis for further experiments. This
is necessary because the set of 77 modular ontologies is afflicted with redun-
dancies and incompleteness. This results in a set of 38 modular organized
ontologies constituting a thorough basis for characterizing ontology modu-
larization.

3. Selection of metrics step: the third step selects a set of appropriate met-
rics to characterize modularly organized ontologies. The modular ontologies
could be described by various indicators such as the distribution of classes,
the network of links between modules, the number of internal links in mod-
ules, etc. In general, the literature provides a plethora of various metrics,
which could be applied for characterising modular ontologies. As a starting
point, this work focuses on metrics originating in the area of software en-
gineering, due to its maturity. In particular, this work adopts the following
metrics from software engineering, which are easier to compute, in order to
characterize modular ontologies [7]: (i) size of the module: the number
of classes and properties (object and datatype properties), (ii) cohesion of
the module: this metric is a value which is between 0 and 1 and is specified
as follows:

* Hierarchical Class Cohesion (HCC): the number of direct and indirect
hierarchical class links.

HCC = 2∗(NdHC+NidHC)
NC2−NC

where:NdHC: Number of direct Hierarchical relationships between Classes,
NidHC: Number of indirect Hierarchical relationships between Classes,
and NC: Number of Classes.

* Role Cohesion (RC): the number of direct and indirect hierarchical role
links.

RC = 2∗(NdR+NidR)
NRoles2−NRoles

where: NdR: Number of direct roles between Classes, NidR: Number of
indirect roles between Classes, and NRoles: Number of Roles.

4 http://watson.open.ac.uk/



* Object Property Cohesion (OPC): the number of classes which have been
associated through the particular object property (domain and range).

OPC =
2∗
∑NRoles

i=1
NdC(ri)∗NrC(ri)

NRoles∗(Nc2−NC)

where: NdC(ri): Number of ontology Classes in the domain of the role
ri, NrC(ri): Number of ontology Classes in the range of the role ri, NC:
Number of Classes, and NRoles: Number of Roles.

The cohesion measure is computed as follows:

Cohesion = α∗HCC+β∗RC+δ∗OPC
α+β+δ

where: α, β and δ specify the impact of each type of hierarchical class, role
or object property cohesion. In our case, we choose α = β = δ = 1.
(iii) coupling of the module: it takes an estimation of the inter-dependency
of different modules and is specified as follows:

* Hierarchical class dependency (HCD): the number of all direct and indi-
rect hierarchical class relationships to foreign ontologies.

HCD = 1
2 ∗ (NedHCNdHC + NeidHC

NidHC )
where: NedHC: Number of direct Hierarchical class dependencies be-
tween local classes and external classes, and NeidHC: Number of indi-
rect Hierarchical class dependencies between local classes and external
classes.

* Hierarchical role dependency (HRD): the number of all direct and indi-
rect hierarchical role relationships to foreign ontologies.

HRD = 1
2 ∗ (NdHRNdHR + NeidHR

NidHR )
where NdHR: Number of direct roles dependencies between local classes
and external classes, and NeidHR: Number of indirect roles dependen-
cies between local classes and external classes.

* Object property dependency (OPD): the number of roles that associate
external classes to local ones.

OPD = NeRoles
NRoles

where: NeRoles: Number of all roles that have an external class in their
domain or range, NRoles: Number of all existing roles in the ontology.

* Axiom dependency (AD) : a role or a class is associated to an external
ontological element through an inclusion axiom.

AD =

∑NAxioms

i=1
externalAssociationNumber(axmi)∑NAxioms

i=1
LS(axmi∗RS(axmi)

where: LS(axm): the size of the left sides of the axiom axm, RS(axm):
the size of the right sides of the axiom axm, LSE(axm): the number
of external elements in the left sides of the axiom axm, RSE(axm):
the number of external elements in the right sides of the axiom axm, and
externalAssociationNumber(axm): the number of all external ontologi-
cal elements that have been associated through the axiom axm to internal
elements. externalAssociationNumber(axm) = LSE(axmi)∗RS(axmi)
+ LS(axmi) ∗RSE(axmi) - LSE(axmi) ∗RSE(axmi).



The coupling measure is computed as follows:

Coupling = α∗HCD+β∗HRD+δ∗OPC+γ∗AD
α+β+δ+γ

where, in our case, α = β = δ = γ = 1
4. Metrics implementation step: the fourth step implements the selected

metrics. The computation was performed by the OWL API5 and the reasoner
HermiT6. This step sets up the (technical) evaluation framework.

5. Analysis step: the fifth step is the analysis of the basic population of mod-
ularly organized ontologies.

6. Result step: the sixth step involves synthesis and discussion of the results
from the analysis in order to characterize modular ontologies.

4 Results and Discussion

A set of four patterns, which characterize M odular Ontologies MO, are proposed
using previous metrics (size, cohesion and coupling). This section presents and
discusses the results and the characteristics of each kind of pattern.

4.1 Pattern type 1: 1 module importing n modules

Pattern 1 contains one module which imports n other modules. For instance (Fig-
ure 1), the module WildNET.owl imports several modules such as Animal.owl,
AnimalSighting.owl, BirdObservers.owl, Birds.owl, etc. The pattern that we pro-
pose conforms to an aggregation. This pattern establishes a relationship be-
tween a single module and a set of modules in the same ontology. This link is
unidirectional. Applying the size metric (Table 1), the first part of the ontol-

Fig. 1. 1 module importing n modules

ogy (one module) is very small (the module WildNET.owl contains 0 concepts)

5 http://owlapi.sourceforge.net/
6 http://hermit-reasoner.com/



and the second part (N modules) is not structured and is respectively bigger
in size. Applying the cohesion and coupling metrics (see Table 1), Pattern 1
has a high cohesion compared to the coupling metric. We consider the pattern
cohesion metric to be an indicator of the degree to which the elements in the
module belong together. The idea of this pattern is that the concepts grouped
in an ontology should be conceptually related for a particular domain in order
to achieve common goals.

Metrics Size Cohesion Coupling

MO11

WildNET.owl 0 0,25 0
SnakeSightings.owl 18331 1 0,25

Snakes.owl 95 0,5 0,25
Sites.owl 8 1 0,25

Observers.owl 7 0,53 0,25
Geography.owl 16 0,41 0,25
Combined.owl 3497 0,67 0,12

ClimateSensors.owl 255 0,61 0,6
ClimateReadings.owl 63 0,5 0,25

Climate.owl 24 0,61 0,15
BirdSites.owl 437 1 0,25

BirdSightings.owl 10401 1 0,5
Birds.owl 1745 0,5 0,25

BirdObservers.owl 303 0,5 0,25
AnimalSighting.owl 26 0,66 0,25

Animal.owl 9 0,82 0,11

Table 1. Results of Pattern 1 to n

4.2 Pattern type 2: n modules importing 1 module

Pattern 2 contains n modules, which respectively import one module. For in-
stance (Figure 2), there are three independent modules importing one mod-
ule, which containes general knowledge (biopax-level1.owl). The pattern that we
propose corresponds to inheritance. This pattern establishes a correspondence
between a set of modules and a single module in the same ontology. This corre-
spondence is unidirectional. Applying the three metrics (Table 2), the first part
of pattern 2 (n modules), biopax-example-ecocyc-glycolysis.owl, biopax-example-
Xwnt-b-catenin.owl and Xwnt-b-catenin xref have a high coupling metric with
regard to the second part of the pattern (one module) biopax-level1.owl. This
means that pattern 2 is characterized by the interconnections between modules.
The degree of coupling depends on how complicated the connections are and
on the type of connections between modules. As we can see, the second part of
pattern 2 has a high cohesion because it encloses all other modules, which are
strongly related.



Fig. 2. n modules importing 1 module

Metrics Size Cohesion Coupling

MO21

biopax-example-ecocyc-glycolysis.owl 2139 0,20 0,72
biopax-example-Xwnt-b-catenin.owl 236 0 0,2

biopax-level1.owl 285 0,25 0,13
Xwnt-b-catenin xref 265 0 0,2

Table 2. Results of Pattern n to 1

4.3 Pattern type 3: n modules importing n-1 modules

Pattern 3 contains n modules, which import n-1 modules. For instance (Figure 3),
we have three dependent modules: dublincore.owl, terms.owl and dcmitype.owl.
The correspondence between modules is bidirectional. The distinguishing charac-
teristic of Pattern 3 is that the n modules each import each other. Applying size,

Fig. 3. n modules importing n-1 modules

cohesion and coupling metrics (Table 3), the module dublincore.owl has a small
size (0 concepts) with regard to other modules dcmitype.owl and terms.owl. All
modules have the same degree of relatedness of concepts (cohesion) 20%. The



coupling metric of the module dublincore.owl is null. In this case, pattern 3 is
transformed to pattern 1 and has the same characteristics.

Metrics Size Cohesion Coupling

MO32

dcmitype.owl 21 0,20 0,02
dublincore.owl 0 0,20 0

terms.owl 47 0,20 0,25

Table 3. Results of Pattern n to n-1

4.4 Pattern type 4: Pattern mix

Pattern 4 combines all previous patterns (Patterns 1, 2 and 3). For instance
(Figure 4), we find partterns 1 (5 * Pattern 1) and 2 (3 * Pattern 2). The
proposed pattern is pattern mix. The correspondence can be undirectional
and bidirectional. The major characteristic of this type of pattern is the highest

Fig. 4. Combination of patterns 1, 2, and 3

coupling metric with regard to the cohesion one. Two modular ontologies iso-
metadata and iso-19115, have the same size, cohesion and coupling but they do
not have a relationship like import.

4.5 Occurrence of Pattern Types

Having introduced and defined four types of patterns in order to characterize
modularly organized ontologies, we consider how often these types of patterns



Metrics Size Cohesion Coupling

MO41

iso-metadata 2214 0,02 0,15
iso-19108 159 0,08 0,16
iso-19103 224 0,15 0,16
iso-19115 2214 0,02 0,15

Table 4. Results of Pattern mix

respectively occur. Figure 5 provides an overview of the occurrence of the differ-
ent types of patterns in a population of 38 modularly organized ontologies. It is

Fig. 5. Occurrence of Pattern Types

interesting to observe that pattern type 1 accounts for about 37%. The reason
for this may be the fact that this type of pattern appears to be very intuitive. It
could therefore be concluded that it implicitly constitutes the rationale under-
lying a large part of (semi-)automatic or manual approaches for modularizing
ontologies. Similarly, pattern type 4 also accounts for about 37% of the basic pop-
ulation, i.e. 14 modularly organized ontologies. Pattern type 4 combines Pattern
1, Pattern 2, and Pattern 3. On the one hand, it is obvious that not all modu-
larly organized ontologies have a rather straightforward structure, which could
be easily characterized. This is especially true when assuming (semi-)automatic
or manual modularizing approaches, which do not use clear and precisely de-
fined criteria. And even when these criteria are clearly and precisely defined, the
modularly organized ontologies could also have such a structure depending on
the overall purpose of modularization. On the other hand, it is interesting to
see that even more complex structures can (almost completely) be characterized
by more simple and straightforward structural forms. Moreover, pattern type 2
and pattern type 3 equally account for about 13%, i.e. 5 modularly organized
ontologies. This is particularly interesting because pattern type 2 is reasonable.
This is due to the fact that it appears obvious that there exists an ontology that
is of significance for several other ontologies. On the contrary, pattern type 3 is
much less reasonable than pattern type 2. It is really hard to understand why
ontology modules respectively import each other.



In this context, it can be observed that domain ontologies combine a clear struc-
ture and organization. This means that modularization of domain ontologies tend
to rely on pattern type 1 or pattern type 2. In contrast, it appears that top-level
ontologies (which represent relevant knowledge to a particular domain such as
medical domain) have a less straightforward structure and organization partic-
ularly when compared to domain ontologies (which represent upper (generic)
ontologies, covered the knowledge of many domain types such as Biomedical
ontology, Dolce). An example for this is dublincore.owl, terms.owl and dcmi-
type.owl, which can be characterized by pattern type 3 (Figure 3).

5 Conclusion and Future Work

This work aims at characterizing modularly organized ontologies to contribute
to a better understanding of ontology modularization. We introduced the no-
tion of modular ontologies, reported on approaches for ontology modularization,
and reviewed existing efforts to characterize modular ontologies. To characterize
modular ontologies, we followed an approach comprising six consecutive steps.
This approach mainly includes the extraction and selection of modular ontolo-
gies, the selection of a set of metrics from software engineering to analyse modu-
lar ontologies, and the evaluation of the analysis results. The evaluation results
in a set of four patterns, which allow for characterizing the modular organization
of ontologies. These patterns show amongst other things that modularly orga-
nized domain ontologies have a clear structure whereas top-level ontologies tend
to have a rather confusing modular organisation.
In the future work, we aim at using firstly further Semantic Web gateways such
as Falcons or Swoogle to identify and extract additional ontologies to gain a
larger basic population. Second, extending the set of metrics and applying them
to the ontologies should provide further insights to modular ontologies. Third, it
would be interesting to create a comparison framework to conduct experiments
with different modularization approaches, comparing them to each other or to
manually modularized ontologies.

Acknowledgment

The authors would like to thank the organizers of Summer School on ontology
engineering and the Semantic Web 2001 (SSSW’2011).

References

1. Gangemi A. and Presutti V. Ontology Design Patterns, pages 221–243. Springer,
Berlin, 2009.

2. Jie Bao, George Voutsadakis, Giora Slutzki, and Vasant Honavar. Package-based
description logics. In Modular Ontologies, pages 349–371. Springer, 2009.



3. Alexander Borgida and Luciano Serafini. Distributed description logics: Directed
domain correspondences in federated information sources. In On the Move to
Meaningful Internet Systems, pages 36–53, London, UK, 2002. Springer-Verlag.

4. Mathieu d’Aquin, Peter Haase, Sebastian Rudolph, Jérôme Euzenat, Antoine Zim-
mermann, Martin Dzbor, Marta Iglesias, Yves Jacques, Caterina Caracciolo, Car-
los Buil Aranda, and Jose Manuel Gomez. D1.1.3: Neon formalisms for modular-
ization: Syntax, semantics, algebra. deliverable 1.1.3, NeOn Integrated Project,
2008.

5. Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Marta Sabou. Mod-
ular ontologies. chapter Criteria and Evaluation for Ontology Modularization Tech-
niques, pages 67–89. Springer-Verlag, Berlin, Heidelberg, 2009.

6. Frederico Luiz Gonçalves de Freitas, Zacharias Candeias Jr., and Heiner Stucken-
schmidt. Towards checking laws’ consistency through ontology design: The case of
brazilian vehicles’ laws. JTAER, 6:112–126, 2011.

7. Faezeh Ensan and Weichang Du. A Modular Approach to Scalable Ontology De-
velopment, page 79. Springer Science+Business Media, 2010.

8. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A
logical framework for modularity of ontologies. In JCAI-2007, 2007.

9. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Ex-
tracting modules from ontologies: A logic-based approach. In Modular Ontologies,
pages 159–186. 2009.

10. Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Working with multiple
ontologies on the semantic web. In International Semantic Web Conference, pages
620–634. Springer, 2004.

11. Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Mod-
ularity and web ontologies. In 20th International Conference on Principles of
Knowledge Representation and Reasonin, pages 198–209. AAAI Press, 2006.

12. Mustafa Jarrar. Towards Methodological Principles for Ontology Engineering. PhD
thesis, Vrije Universiteit Brussel, 2005.

13. Bill MacCartney, Sheila McIlraith, Eyal Amir, and Tomás E. Uribe. Practical
partition-based theorem proving for large knowledge bases. In Proceedings of the
18th international joint conference on Artificial intelligence, pages 89–96, San Fran-
cisco, USA, 2003. Morgan Kaufmann Publishers Inc.

14. Natalya F. Noy and Mark A. Musen. Specifying ontology views by traversal.
In International Semantic Web Conference, volume 3298/2004, pages 713–725.
Springer Berlin, 2004.

15. Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks. Modular combi-
nation of reasoners for ontology classification. In Description Logics, 2012.

16. Julian Seidenberg and Alan Rector. Web ontology segmentation: analysis, classifi-
cation and use. In Proceedings of the 15th international conference on World Wide
Web, pages 13–22, New York, USA, 2006. ACM.

17. Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning architecture
for the semantic web. In ESWC, pages 361–376. Springer, 2005.

18. Heiner Stuckenschmidt and Michel Klein. Structure-based partitioning of large
concept hierarchies. In International Semantic Web Conference, pages 289–303,
2004.

19. Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen. The
structure and value of modularity in software design. In Proceedings of the 8th
European software engineering conference, pages 99–108, New York, USA, 2001.
ACM.


