
OCL-Lite: A Decidable (Yet Expressive)
Fragment of OCL?

Anna Queralt2, Alessandro Artale1, Diego Calvanese1, and Ernest Teniente2

1 KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy
{artale,calvanese}@inf.unibz.it

2 Dept. of Service and Information System Engineering
UPC – BarcelonaTech, Spain

{aqueralt,teniente}@essi.upc.edu

Abstract. UML has become a de facto standard in conceptual model-
ing. Class diagrams in UML allow one to model the data in the domain
of interest by specifying a set of graphical constraints. However, in most
cases one needs to provide the class diagram with additional semantics
to completely specify the domain, and this is where OCL comes into
play. While reasoning over class diagrams is decidable and has been in-
vestigated intensively, it is well known that checking the correctness of
OCL constraints is undecidable. Thus, we introduce OCL-Lite, a frag-
ment of the full OCL language and prove that reasoning over UML class
diagrams with OCL-Lite constraints is in ExpTime by an encoding in
the description logic ALCI. As a side result, DL techniques and tools
can be used to reason on UML class diagrams annotated with arbitrary
OCL-Lite constraints.

1 Introduction

The Unified Modeling Language (UML) has become a de facto standard in con-
ceptual modeling of information systems. In UML, a conceptual schema is rep-
resented by means of a class diagram, with its graphical constraints, together
with a set of user-defined constraints, which are usually specified in the Object
Constraint Language (OCL). In every application domain the set of instances
that can be stored or managed is necessarily finite and, thus, a schema has
not only to be consistent, but also finitely satisfiable [13]. It is well-known that
reasoning with OCL integrity constraints in their full generality is undecidable
since it amounts to full FOL reasoning [4]. Thus, reasoning with UML concep-
tual schemas in the presence of OCL constraints has been approached in the
following alternative ways:

? This paper is a shortened version of [14]. This work has been partly supported
by the Ministerio de Ciencia e Innovación under the projects TIN2008-03863 and
TIN2008-00444, Grupo Consolidado.

Fig. 1. UML class diagram with OCL constraints

1. Allowing general constraints (in OCL or other languages) without guaran-
teeing termination in all cases [9, 6, 15].

2. Allowing general constraints and ensuring termination without guaranteeing
completeness of the result [1, 17, 12].

3. Ensuring both termination and completeness of finite reasoning by allowing
only specific kinds of constraints [13, 11, 18].

4. Ensuring terminating and complete reasoning by disallowing OCL constraints
and admitting unrestricted models [8, 5, 10, 3, 2].

To our knowledge, none of the existing approaches guarantees complete and
terminating reasoning on UML schemas coupled with OCL constraints able to
capture those in Figure 1. With approaches of the first kind, a result may not be
obtained in some particular cases. On the contrary, the second kind of approaches
may fail to find existing valid solutions. Approaches of the third kind do not allow
arbitrary constraints as the ones in Figure 1. Finally, the last approaches are
based on a Description Logic (DL) encoding of a UML schema. These methods do
not consider OCL constraints and they usually check unrestricted satisfiability.

The main purpose of this paper is to identify a fragment of OCL, which
we call OCL-Lite, that guarantees finite satisfiability while being significantly
expressive at the same time. In other words, we propose the specification of ar-
bitrary constraints within the bounds of OCL-Lite in a UML conceptual schema
to ensure completeness and decidability of reasoning. Such nice properties are
due to the finite model property (FMP) of the language, i.e., it is guaranteed that
a satisfiable UML/OCL-Lite schema is always finitely satisfiable. The proposed
OCL-Lite is the result of identifying a fragment of OCL that can be encoded
into the DL ALCI [7], which has interesting reasoning properties. In particu-

lar, ALCI enjoys the FMP, i.e., every satisfiable set of constraints formalized in
ALCI admits a finite model. Thus, the FMP is also guaranteed for any fragment
of OCL that fits into ALCI.

The contributions of this paper can be summarized as follows:

– The identification of a fragment of OCL that enjoys the FMP. To our knowl-
edge, the reasoning properties of OCL had not been studied before, except
that full OCL leads to undecidability.

– A mapping from OCL-Lite to the DL ALCI to prove that the proposed
fragment has the same reasoning properties as ALCI. To our knowledge,
this is the first attempt to encode OCL constraints in DLs. As a side result,
a DL reasoner can be used to verify the correctness of a schema.

– Thanks to the mapping to ALCI we are able to show both the FMP and that
checking satisfiability in UML/OCL-Lite is an ExpTime-complete problem.

2 OCL-Lite Syntax and Semantics

In this section we present the fragment of OCL that corresponds to OCL-Lite.
We start by an overview of basic concepts of UML and OCL.

A UML class diagram represents the static view of the domain basically
by means of classes and associations between them, representing, respectively,
sets of objects and relations between objects. An association is constrained by
a set of participating classes. An association end is a part of an association
that defines the participation of a class in the association. The name of the
role played by a participant in an association is placed in the association end
near the corresponding class. If the role name is omitted, the role played by the
participant is the name of its class.

An OCL constraint (or invariant) has the form: context C inv: OCLExpr ,
where C is the contextual class, i.e., the class to which the constraint belongs,
and OCLExpr is an expression that results in a boolean value. An OCL constraint
is satisfied by an instantiation of the schema if OCLExpr evaluates to true for
each instance of the contextual class. An OCL expression is defined by means
of navigation paths, combined with predefined OCL operations to specify con-
ditions on those paths. A navigation path is a sequence of role names defined in
the associations of the class diagram. Each role name used in a path indicates
the direction of the navigation.

2.1 OCL-Lite Syntax

In this section we specify the syntax rules that allow one to construct OCL con-
straints belonging to the fragment of OCL that we call OCL-Lite. An OCL-Lite
constraint has the form: context C inv: OCL-LiteExpr . In the syntax rules,
shown in Figure 2, an OCL-Lite expression OCL-LiteExpr is defined recursively.
Intuitively, OCL-LiteExpr allows one to construct a boolean OCL-Lite expres-
sion, which can correspond to the whole constraint, or can be the condition

OCL-LiteExpr ::= Path SelectExpr | oclIsTypeOf(C) | not OCL-LiteExpr |
OCL-LiteExpr and OCL-LiteExpr |
OCL-LiteExpr or OCL-LiteExpr |
OCL-LiteExpr implies OCL-LiteExpr

Path ::= PathItem | PathItem .Path
PathItem ::= r i | oclAsType(C).r i

SelectExpr ::= BooleanOp | ->select(OCL-LiteExpr) SelectExpr

BooleanOp ::= ->exists(OCL-LiteExpr) | ->forall(OCL-LiteExpr) |
->size()>0 | ->size()=0 | ->isEmpty() | ->notEmpty()

Fig. 2. Syntax of OCL-Lite expressions

specified as a parameter in a select operation (see SelectExpr) or in exists

and forall operations (see BooleanOp). An OCL-LiteExpr can be either a Path

to which a SelectExpr is applied, a check of whether an object is of a certain
type, or boolean combinations of these OCL-Lite expressions.

The label Path indicates how a navigation path can be constructed as a
non-empty sequence of PathItem s. Each PathItem can be either a role name
r i specified in the class diagram, or a role name preceded by the operation
oclAsType(C) , when we need to access a role name of a particular class C .
When OCL-LiteExpr corresponds to the whole constraint, each path starts from
a role that is accessible from the contextual class (or a subclass C of the con-
textual class, in which case oclAsType(C) must be specified first). Otherwise,
when OCL-LiteExpr is inside a select, exists, or forall operation, then, the
starting role name will depend on the context where the operation is used. After
a Path , one can apply a (possibly empty) sequence of selections on the collection
of objects obtained through the path, always followed by a BooleanOp .

The intuitive meaning of the OCL collection operations included in this frag-
ment of OCL is as follows. Let col denote the collection of objects reachable
along a path, and let o denote a single object, then:

– col ->select(OCL-LiteExpr): returns the subset of elements of col that
satisfy OCL-LiteExpr ;

– col ->exists(OCL-LiteExpr): returns true iff there is some element of col
that satisfies OCL-LiteExpr ;

– col ->forall(OCL-LiteExpr): returns true iff all the elements of col sat-
isfy OCL-LiteExpr ;

– col ->size(): returns the number of elements of col ;
– col ->isEmpty(): returns true iff col is empty;
– col ->notEmpty(): returns true iff col is not empty;
– o .oclIsTypeOf(C): returns true iff o is an instance of the class C ;

All constraints in Figure 1 are examples of well-formed OCL-Lite expressions.

2.2 OCL-Lite Semantics

OCL-Lite operations, except for oclIsTypeOf and oclAsType, can be expressed
only in terms of select, isEmpty, and notEmpty. Thus, to specify the seman-

Table 1. Normalization of OCL-Lite expressions

Original expression Normalized expression

a) col ->exists(cond) col ->select(cond)->notEmpty()

b) col ->forall(cond) col ->select(not cond)->isEmpty()

c) col ->select(cond1)->select(cond2) col ->select(cond1 and cond2)

d) col ->size()>0 col ->notEmpty()

e) col ->size()=0 col ->isEmpty()

f) not col ->isEmpty() col ->notEmpty()

g) not col ->notEmpty() col ->isEmpty()

tics of OCL-Lite expressions, we first rewrite each expression as an equivalent
normalized one, which is expressed in terms of these operations only. Table 1
shows the OCL-Lite expressions together with their normal form. These nor-
malizations, together with de Morgan’s laws, are iteratively applied until the
expression only contains the operations select, isEmpty, and notEmpty, and
the boolean operator not only appears before oclIsTypeOf(C). In the table,
col and cond denote, respectively, a collection and a condition, which must be
defined according to the syntax rules.

In our running example, the constraints in Figure 1 that have to be normal-
ized are 1, 3, 4, and 5. The resulting expressions we get after applying the rules
in Table 1 are:

– Constraint 1. We apply rule a) and we get the normalized expression:
context Person inv:

organized->select(oclIsTypeOf(CriticalEvent) and

sponsor->isEmpty())->notEmpty()

– Constraint 3. We first apply rule b) and we get:
context Person inv:

audited->select(not sponsor->notEmpty())->isEmpty()

We then apply rule g) to obtain the normalized expression:
context Person inv:

audited->select(sponsor->isEmpty())->isEmpty()

– Constraint 4. We apply rule f) and we get:
context CriticalEvent inv: responsible.organized->notEmpty()

– Constraint 5. We apply rule a) and we get:
context Sponsor inv:

event->select(oclIsTypeOf(CriticalEvent))->notEmpty() or

event->select(sibling->isEmpty() or

sibling->select(sponsor->isEmpty())->notEmpty())->notEmpty()

It can be seen from Table 1 that the expressions resulting from the normalization
conform to a limited set of patterns, basically consisting of an optional select
operation followed either by isEmpty or notEmpty. Also, the expression may
include the operation oclIsTypeOf.

In the following we consider OCL-Lite expressions in their normal form. For
each of them we specify its semantics by means of an interpretation function, f ,

that maps each OCL-LiteExpr into a FOL formula OCL-LiteExpr f (x) with one
free variable. Other approaches specify the semantics of OCL expressions using
first-order terms instead of formulas [4]. However, as also argued in [4], using
formulas is preferable when dealing with sets, as in our case.

We start by formalizing the semantics of an OCL-Lite constraint

context C inv: OCL-LiteExpr

Its interpretation is: ∀x (C(x) → OCL-LiteExpr f (x)) where C is the unary
predicate corresponding to class C .

To define the semantics of OCL-Lite expressions, we first introduce some
notation to deal with navigation paths. Consider a navigation path pn...p1 in an
OCL-Lite expression, where each pi is either a role name or oclAsType(Ci).ri.
To formalize a (binary) association Ai, we introduce a binary predicate, Ai,
whose first argument represents an instance of dom(Ai) (the domain of Ai) and
whose second argument represents an instance of range(Ai) (the range of Ai). To
fix a semantics for role names we conform to the UML convention about role
names [16], i.e., a role name attached to an association end labeled with a class
C is used to navigate from one object to another one belonging to the class C .
Thus, in the following, pfi (x, y) = Ai(x, y) when pi is a role name attached to the

range(Ai)-end of Ai, and, viceversa, pfi (x, y) = Ai(y, x) when pi is a role name

attached to the dom(Ai)-end of Ai. Similarly, pfi (x, y) = Ci(x) ∧ Ai(x, y), when
pi = oclAsType(Ci).ri and ri is a role name attached to the range(Ai)-end of

Ai, while p
f
i (x, y) = Ci(x) ∧ Ai(y, x), when pi = oclAsType(Ci).ri and ri is a

role name attached to the dom(Ai)-end of Ai.

1. OCL-LiteExpr = pn...p1->select(OCL-LiteExpr0)->notEmpty()
The semantics of this expression is

OCL-LiteExpr
f(x) = ∃xn · · · ∃x1(pfn(x, xn)∧· · ·∧pf1 (x2, x1)∧OCL-LiteExpr f

0 (x1))

A particular case of this expression is when no select operation is applied
on the objects obtained from the navigation, which corresponds to the ex-
pression OCL-LiteExpr = pn...p1->notEmpty(). In this case, we have

OCL-LiteExpr
f(x) = ∃xn · · · ∃x1 (pfn(x, xn) ∧ · · · ∧ p

f
1 (x2, x1))

2. OCL-LiteExpr = pn...p1->select(OCL-LiteExpr 0)->isEmpty()
The semantics of this expression is

OCL-LiteExpr
f(x) = ∀xn · · · ∀x1(¬pfn(x, xn)∨· · ·∨¬pf1 (x2, x1)∨¬OCL-LiteExpr f

0 (x1))

Again, we have a particular case of this kind of expression in the absence
of select, namely OCL-LiteExpr = pn...p1->isEmpty(). In this case, the
semantics of the expression is

OCL-LiteExpr
f (x) = ∀xn · · · ∀x1 (¬pfn(x, xn) ∨ · · · ∨ ¬pf1 (x2, x1))

3. OCL-LiteExpr = [not] oclIsTypeOf(C)
where the brackets denote optionality. The semantics of the expression is

OCL-LiteExpr
f (x) = [¬]C(x)

4. OCL-LiteExpr = OCL-LiteExpr1 and OCL-LiteExpr2
The semantics of this expression is

OCL-LiteExpr
f (x) = OCL-LiteExpr

f
1 (x) ∧ OCL-LiteExpr

f
2 (x)

5. OCL-LiteExpr = OCL-LiteExpr 1 or OCL-LiteExpr 2

The semantics of this expression is

OCL-LiteExpr
f (x) = OCL-LiteExpr

f
1 (x) ∨ OCL-LiteExpr

f
2 (x)

6. OCL-LiteExpr = OCL-LiteExpr 1 implies OCL-LiteExpr 2

The semantics of this expression is

OCL-LiteExpr
f (x) = OCL-LiteExpr

f
1 (x)→ OCL-LiteExpr

f
2 (x)

Definition 1 (Satisfiability of OCL-Lite constraints). Let Γ be a set of
OCL-Lite constraints and Γ f the resulting FOL theory. Then, Γ is said to be
satisfiable if there exists a first order interpretation I = (∆I , ·I) that satisfies
Γ f . I is called a model of Γ .

3 Encoding UML/OCL-Lite in ALCI

In this section we show that the proposed fragments of OCL and UML can
both be encoded in the DL ALCI. Thus, finite reasoning is guaranteed for every
conceptual schema expressed in this language. We first present the fragment of
UML we are interested in, and then we provide an encoding for the OCL-Lite
fragment, too.

We assume the encoding of a fragment of UML class diagrams in ALCI,
based on the encoding in ALCQI proposed in [5]. Since ALCQI is an extension
of ALCI that does not have the FMP [7] (i.e., a schema specified in ALCQI
might be satisfiable only by an infinite number of instances), we focus on a
fragment of UML that can be encoded into ALCI. In particular, we consider
UML class diagrams where the domain of interest is represented through classes
(representing sets of objects), possibly equipped with attributes and associations
(representing relations among objects), and types (representing the domains of
attributes, i.e., integer, string, etc.). The kind of UML constraints that we con-
sider in this paper are the ones typically used in conceptual modeling, namely
hierarchical relations between classes, disjointness and covering between classes,
cardinality constraints for participation of entities in relationships, and multiplic-
ity and typing constraints for attributes. To preserve the FMP we restrict both
cardinality and multiplicity constraints to be of the form * or 1..* (meaning that
either no constraint applies or the class participates at-least once, respectively).

The encoding, starting from a UML class diagram Σ, generates a satisfiability
preserving ALCI knowledge base KΣ (see [5] for details on the encoding). Given
the UML fragment chosen, a model of the knowledge base KΣ can be viewed as
an instantiation of the UML class diagram Σ.

In the following, we provide a mapping to translate OCL-Lite constraints
into ALCI. An OCL-Lite constraint, which has the general form

context C inv: OCL-LiteExpr

is encoded as the following ALCI inclusion assertion:

C v OCL-LiteExpr †

where ·† is a mapping function that assigns to each OCL-Lite expression its cor-
responding ALCI encoding. This inclusion assertion, according to the semantics
of OCL constraints, states that each instance of C must satisfy OCL-LiteExpr .
We now illustrate the encoding of OCL-Lite expressions in ALCI. We consider
OCL-Lite expressions in their normal form, as provided in Section 2.2, and define
OCL-LiteExpr † by induction on the structure of OCL-LiteExpr .

1. OCL-LiteExpr = pn...p1->select(OCL-LiteExpr 0)->notEmpty()

We define the ALCI concept OCL-LiteExpr † by induction on the length n
of the navigation path. For convenience, we consider as base case n = 0, and
in this case we set OCL-LiteExpr † = OCL-LiteExpr

†
0.

For the inductive case, let OCL-LiteExpr n =
pn...p1->select(OCL-LiteExpr 0)->notEmpty(), let pn+1 be an ad-
ditional path item, and let OCL-LiteExpr n+1 = pn+1.OCL-LiteExpr n.
Then OCL-LiteExpr

†
n+1 = p

†
n+1.(OCL-LiteExpr

†
n), where p

†
n+1 (for the

various cases of pn+1, cf. the OCL syntax in Section 2.1) is an abbreviation3

defined as follows (r denotes a role name of an association A , and dom(A)
and range(A) denote respectively the domain and range of A):

r † =

{
∃A if r is attached to range(A)

∃A− if r is attached to dom(A)

(oclAsType(C).r)† =

{
C u ∃A if r is attached to range(A)

C u ∃A− if r is attached to dom(A)

Note that the ALCI concept corresponding to OCL-LiteExpr has the form

p†n.(p
†
n−1.(· · · (p

†
1.(OCL-LiteExpr

†
0)) · · ·))

Intuitively, this concept represents the fact that OCL-LiteExpr evaluates
to true, for a given instance o in the domain of pn, if o is related through
the path pn...p1 to some object o1 that satisfies the condition specified by
OCL-LiteExpr 0. When there is no select operation, i.e., the OCL expres-
sion has the form pn...p1->notEmpty(), then OCL-LiteExpr

†
0 = >, and

the constraint is encoded as p†n.(p†n−1.(· · · (p†1.>)· · ·)).
For example, once it has been normalized in Section 2.2, an expression that
follows this pattern is the one in the body of constraint 4. The ALCI asser-
tion that encodes this constraint is:

CriticalEvent v ∃ResponsibleFor−.(∃Organizes.>)

3 Note that p † is not a valid DL expression.

Note that, the first DL role, ResponsibleFor−, is inverted since the associ-
ation ResponsibleFor has domain Person and range CriticalEvent, and
the role name responsible is attached to Person. Thus, responsible† =
∃ResponsibleFor−. The next role name in the OCL-Lite expression is organized,
which is attached to Event, the range of the association Organizes. Thus,
organized† = ∃Organizes. Finally, since the OCL operation select does
not appear in the constraint, no condition must be imposed on the instances
reached at the end of the path.

2. OCL-LiteExpr = pn...p1->select(OCL-LiteExpr 0)->isEmpty()

Similarly to the previous case, we define OCL-LiteExpr † by induction on n.
For the base case of n = 0, we set OCL-LiteExpr † = ¬OCL-LiteExpr †0. For
the inductive case, let:
OCL-LiteExpr n = pn...p1->select(OCL-LiteExpr 0)->isEmpty(),

let pn+1 be an additional path item, and let
OCL-LiteExpr n+1 = pn+1.OCL-LiteExpr n.

Then OCL-LiteExpr
†
n+1 = ¬p†n.(¬OCL-LiteExpr †n),

Considering that ¬¬C is equivalent to C, the ALCI concept corresponding
to OCL-LiteExpr has the form

¬(p†n.(p
†
n−1.(· · · (p

†
1.(OCL-LiteExpr

†
0)) · · ·)))

Intuitively, this concept represents the fact that OCL-LiteExpr evaluates to
true, for a given instance o, if o is not related through the path pn...p1 to
any object that satisfies the condition specified by OCL-LiteExpr 0. As in the
previous case, if there is no select operation in the OCL expression, i.e., the
OCL expression has the form pn...p1->isEmpty(), then OCL-LiteExpr

†
0 =

>, and the constraint is encoded as ¬(p†n.(p†n−1.(· · · (p†1.>)· · ·)))
As an example, let us consider constraint 3 in its normal form. The overall
OCL-Lite expression is encoded in ALCI as ¬(∃Audits.(¬∃SponsoredBy.>)),
and the ALCI assertion corresponding to the constraint is:

Person v ¬∃Audits.¬∃SponsoredBy.>

3. OCL-LiteExpr = oclIsTypeOf(C), OCL-LiteExpr = not oclIsTypeOf(C)

The ALCI concept OCL-LiteExpr † corresponding to these OCL-Lite ex-
pressions is respectively

C, and ¬C,

4. OCL-LiteExpr = OCL-LiteExpr 1 and OCL-LiteExpr 2

The corresponding ALCI concept OCL-LiteExpr † is

OCL-LiteExpr
†
1 u OCL-LiteExpr

†
2

5. OCL-LiteExpr = OCL-LiteExpr 1 or OCL-LiteExpr 2

The corresponding ALCI concept OCL-LiteExpr † is

OCL-LiteExpr
†
1 t OCL-LiteExpr

†
2

6. OCL-LiteExpr = OCL-LiteExpr 1 implies OCL-LiteExpr 2

The corresponding ALCI concept OCL-LiteExpr † is

¬OCL-LiteExpr †1 t OCL-LiteExpr
†
2

To further illustrate the mapping, we apply it to some other constraints
of our running example. For instance, consider the normalized expression of
constraint 1. This constraint is of kind 1, and its subexpressions are respectively
of kinds 4, 3, and 2. Applying the corresponding mapping rules we obtain:

Person v ∃Organizes.(CriticalEvent u ¬∃SponsoredBy.>)

As an example of an OCL-Lite expression of kind 6 we have constraint 2. Ac-
cording to the mapping rule, its corresponding ALCI expression is:

Event v ¬∃HeldWith.> t ¬CriticalEvent

Constraint 5 is of kind 5 once normalized. We recursively apply the mapping
rules to each part of the disjunction: rules 1 and 3 to the first subexpression,
and rules 5, 2, 1 to the second subexpression. The resulting ALCI expression is:

Company v∃SponsoredBy−.CriticalEventt
∃SponsoredBy−.(¬∃HeldWith.> t ∃HeldWith.¬∃SponsoredBy.>)

The following theorem states that the mapping from OCL-Lite to ALCI is
correct (we refer to [14] for the proof).

Theorem 1 (Correctness of the OCL-Lite encoding). Let Γ be a set of
OCL-Lite constraints and KΓ its ALCI encoding. Then, Γ is satisfiable if and
only if KΓ is satisfiable.

Concerning the complexity of reasoning over UML/OCL-Lite schemas we
first notice that reasoning just over the UML diagrams as proposed in this paper
is an NP-complete problem. Indeed, the UML language we consider here is a
sub-language of ERbool which was proved to be NP-complete in [3], and the very
same complexity proof applies to the UML language we use.

Theorem 2 (Complexity of UML/OCL-Lite). Checking the satisfiability
of UML/OCL-Lite conceptual schemas is an ExpTime-complete problem.

The upper bound follows from the fact that the ALCI encoding is correct,
and that reasoning in ALCI is in ExpTime. The lower bound is established by
reducing satisfiability of ALC TBoxes, which is known to be ExpTime-complete,
to satisfiability of OCL-Lite constraints (see [14] for the proof).

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software and Systems Modeling 9(1), 69–86 (2010)

2. Artale, A., Calvanese, D., Ibáñez-Garćıa, A.: Full satisfiability of UML class dia-
grams. In: Proc. of the 29th Int. Conf. on Conceptual Modeling (ER 2010). LNCS,
vol. 6412, pp. 317–331. Springer (2010)

3. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended ER models. In: Proc. of the 26th Int. Conf. on Conceptual
Modeling (ER 2007). LNCS, vol. 4801, pp. 277–292. Springer (2007)

4. Beckert, B., Keller, U., Schmitt, P.H.: Translating the Object Constraint Language
into first-order predicate logic. In: Proc. of the VERIFY Workshop at Federated
Logic Conferences (FLoC). pp. 113–123 (2002)

5. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1-2), 70–118 (2005)

6. Brucker, A.D., Wolff, B. (eds.): The HOL-OCL Book. Swiss Federal Institute of
Technology (2006)

7. Calvanese, D., De Giacomo, G.: Expressive description logics. In: Baader, F., Cal-
vanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. pp. 178–218.
Cambridge University Press (2003)

8. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. J. of Artificial Intelligence Research (JAIR) 11, 199–240 (1999)

9. Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An overview of RoZ: A tool for inte-
grating UML and Z specifications. In: Proc. of the 12th Int. Conf. on Advanced
Information Systems Engineering (CAiSE 2000). LNCS, vol. 1789, pp. 417–430.
Springer (2000)

10. Fillottrani, P.R., Franconi, E., Tessaris, S.: The new ICOM ontology editor. In:
Proc. of the 19th Int. Workshop on Description Logic (DL 2006). CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/, vol. 189 (2006)

11. Hartmann, S.: Coping with inconsistent constraint specifications. In: Proc. of the
20th Int. Conf. on Conceptual Modeling (ER 2001). LNCS, vol. 2224, pp. 241–255.
Springer (2001)

12. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solvers into USE. In: Proc. of the 49th Int. Conf. on Technology
of Object-Oriented Languages and Systems (TOOLS 2011). LNCS, vol. 6705, pp.
290–306. Springer (2011)

13. Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-
relationship schemata. Information Systems 15(4), 453–461 (1990)

14. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning
on UML/OCL conceptual schemas. Data and Knowledge Engineering (DKE) 73,
1–22 (2012)

15. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM Transactions on Software Engineering and Method-
ology 21(2), 13:1–13:41 (2012)

16. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison Wesley Publ. Co. (1998)

17. Snook, C.F., Butler, M.J.: UML-B: Formal modeling and design aided by UML.
ACM Transactions on Software Engineering and Methodology 15(1), 92–122 (2006)

18. Wahler, M., Basin, D., Brucker, A.D., Koehler, J.: Efficient analysis of pattern-
based constraint specifications. Software and Systems Modeling 9(2), 225–255
(2010)

