
Improving the significance of benchmarks
for Petri nets model checkers

Steve Hostettler, Alban Linard, Alexis Marechal, and Matteo Risoldi

Université de Genève, Route de Drize 7, 1227 Carouge - Switzerland
{FirstName.LastName}@unige.ch

Abstract. Benchmarking is a fundamental activity to rigorously quantify the im-
provements of a new approach or tool with respect to the state of the art. Gen-
erally, it consists in comparing results of a given technique with more or less
similar approaches. In the Petri nets community, the comparison is often centered
on model checking and/or state space calculation performance. However, there
is sometimes little justification for the choice of the techniques to compare to.
Also, benchmarks often lack context information, such as the exact model used,
or how to reproduce the results. This makes it difficult to draw conclusions from
the comparisons.
We conducted a survey among the Petri nets community in which we gathered in-
formation about the used formalisms and techniques. This revealed an unanimous
interest for a common repository of benchmarks. The survey shows that existing
efforts in this direction suffer from limitations that prevent their effectiveness.
In this article we report the results of the survey and we outline perspectives for
improving Petri nets benchmark repositories.

1 Introduction

One of the goals of developing modern model checkers is often improving the perfor-
mance of existing tools, whether in terms of time, memory consumption or scalability.
A rigorous scientific method requires these improvements to be quantified in order to
communicate them to the community. Usually this is done by running the model checker
against a set of known benchmarks. A benchmark is

[...] a standard or point of reference against which things may be compared or
assessed.[1]

Benchmarks can range from academic examples which focus on a very specific
aspect (e.g., the dining philosophers for testing scalability) to more general, real-life
examples (e.g., an avionics system with real-time, concurrency and dependability re-
quirements). Benchmark results should be useful when comparing to the state of the
art. However, a meaningful comparison of benchmarks is often difficult for a number of
reasons. One of them is that the typical article has no space to give enough details about
features of the used model that could have greatly influenced the benchmark perfor-
mance. For example, using a low-level modeling formalism with ad-hoc optimizations
for the tool under test can bias the results. Also, even when one tries to use the same
model for benchmarking as has been used for another tool, the translation from one

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, ISSN 1613-0073, Jan/2012, pp. 475–489.



formalism to another can be less than trivial, if not a daunting task. Formalisms differ in
semantics, in the way of expressing information, and in expressive capabilities. Some
are more abstract and can tackle several semantic aspects (e.g., time, concurrency, al-
gebras...) while others are more restricted. Translating, for example, a Coloured Petri
Net (CPN) to a P/T net (PTN) requires some simplifications that have an impact on the
interpretation of performance results.

We ran a survey in the Petri nets community, asking what formalisms are being
used, what type (if any) of model checking is performed and what are the opinions
on the hypothesis of standardizing benchmarks. This article is based on the answers
of the community. In it we propose a way to improve the current situation by helping
standardizing and classifying models used for benchmarks. We review previous efforts
in creating repositories, analyze their limitations and how they can evolve to offer better
functionality. The goal of the article is fostering a discussion towards a better, more
usable repository of models that the community can benefit from.

The structure of the article is as follows. Sec. 2 reports the answers to the survey and
the requirements that have been identified as a consequence. Sec. 3 analyzes existing
related work. Sec. 4 illustrates our proposal. Sec. 5 discusses some critical points and
open questions of the proposal. Sec. 6 draws conclusions, followed by references and
by an appendix with complete diagrams and survey graphs.

2 Requirements

To identify desirable requirements for a repository which improves the current situation,
we performed a survey among the Petri net community members. We asked 40 groups
and individual researchers to participate. We received feedback from 18 (45%) of them.
Here we are only reporting pertinent questions and answers; the complete list is freely
available on request to smv@unige.ch. Graphs with answer percentages for questions
reported here are in appendix A.

A fundamental couple of questions we asked was:

– Would you find useful to have a central repository for models?
– Would you find useful to have test beds1 for each axis of research in verification?

The answer has been a resounding 100% yes for both questions. This confirms the
suggested lack of a unified resource for benchmarking models that can adapt to different
types of research. There have been some however who expressed doubts about the fact
that previous approaches have been tried and did not completely succeed. Also, a wor-
rying factor among respondents was the burden of maintenance of a model repository.

Following this, the next useful step in understanding the requirements of the com-
munity is identifying what the mentioned axes of research are. This means differentiat-
ing and quantifying the following aspects:

– What modeling formalisms are used (Fig. 9). The vast majority of groups focus
on PTNs or CPNs. Other types of Petri nets are however well represented. In most
cases, the same researchers use multiple formalisms.

1 Test beds can be a range of models with specific characteristics on which different research
groups can perform benchmarks of their approach.

476 Petri Nets & Concurrency Hostettler et al.



– What is the main purpose of the respondents’ research (Fig. 10). 95% is interested
in property validation and verification (the only respondent who isn’t is rather in-
terested in modeling and simulation). Those who use higher-level Petri nets for-
malisms all put an accent on Modeling as a central purpose.

– Among those who are interested in property verification, we asked to specify the
kind of properties (Fig. 11). They all verify invariants, a majority (70%) verifies
CTL, and about 50% verify LTL.

These points underline a need for a repository to manage models using different for-
malisms, and centered on different types of semantics. Also, models should be coupled
with different types of property definitions.

Of the total number of respondents, 95% perform state space exploration, and al-
most half employ structural verification methods (Fig. 12). Among those exploring the
state space, the majority use explicit state space representation, associated in most cases
to some kind of symbolic encoding (Fig. 14). The quasi-totality of respondents is devel-
oping and maintaining a tool (Fig. 13). Also, a relevant 30% is using parallel algorithms
to boost performance. According to these data, it is relevant to have a way to compare
these tools on the basis of their efficiency when managing large state spaces (in terms
of memory, time or other metrics).

Respondents to the survey also had the opportunity of adding free-text remarks to
their answers. One interesting fact that emerged from this is that most of them have
some sort of collection that they routinely use for benchmarks. These models are either
from the literature or, in some cases, by some model collection which may or may not be
publicly available. Apart from the most typical toy use cases (e.g., dining philosophers,
communication protocols...) no overlap was highlighted in the set of models used. This
confirms the difficulty in comparing the benchmarks.

On the basis of these survey results, we think that a suitable repository should fulfill
the following list of requirements:

i. It should allow for formalism-independent descriptions of models.
ii. It should be possible to include one or more formalism-specific implementations

(or instances) of the models, possibly in different formalisms.
iii. It should be possible to express properties to check, using different types of prop-

erty formalisms that focus on different semantic aspects
iv. Models, instances and properties should be classified and searchable by charac-

teristics. These can be seen as a sort of “tags” with which models can be selected
that are suitable for a certain type of verification activity. Characteristics should be
suggested by users when creating models.

v. The repository should store “benchmarks”. A benchmark should be seen here as
a collection of runs, done on a certain platform, and performed in order to verify
some property on a given model. Each run should be characterized by a tool and
tool version, as well as by used source files and possible parameters.

vi. It should be possible for registered users to add or update new models, instances,
properties or benchmarks in a collaborative way, classifying them accordingly.

vii. Registered users should be able to comment and rate existing models, instances
and benchmarks.

Benchmarks for model checkers Petri Nets & Concurrency – 477



viii. The administration workload should be kept to a minimum. Two fundamental tasks
should be managing users (to remove unused profiles or fix access problems) and
characteristics (to solve eventual duplications). Deleting models/instances/benchmarks
should also be an admin’s on-request task, while registered users should rather up-
date them.

We defined use cases for these requirements. Their visual representation is found in
Fig. 7 (we will not give here the full textual representation of each use case). They will
be discussed in more detail in Sec. 4.

3 State of the Art

As we already said, there is a clear need among the Petri nets community for a cen-
tral repository for models and test beds. There have already been proposals in this di-
rection: we can cite for example Avrunin et al. from the University of Massachusetts
(UMASS) [2] who studied the question and even started an implementation, and [3]
who proposed a set of interesting benchmarks, without adding source codes for them.
We will present here some of the existing repositories and how they fare with the re-
quirements from the previous section.

BEEM Benchmarks for Explicit Model Checkers (BEEM) [4] is a repository of bench-
marks. It contains a predefined set of parametric models expressed in a dedicated
low level language called DVE. This language can be automatically translated to
other formalisms, the repository provides automatic translation to the Promela lan-
guage. Models are organized by categories of problems (e.g. mutual exclusion,
leader election, etc.). Properties are expressed in LTL. Benchmarks are performed
using a model checking tool called DiVinE. BEEM contains 57 benchmarks.

PetriWeb PetriWeb [5] is a collaborative repository of Petri nets, i.e. users can submit
and store their models. It supports a particular variant of Petri nets with special
features like XOR transitions. Models are expressed with a PNML based definition
of these Petri Nets, called EPNML. They are organized by properties that are also
managed by the community. PetriWeb contains 79 models, by 5 different authors.

pnmlWEB pnmlWEB [6] is another collaborative repository of PetriNets. Users can
submit models expressed in PNML, without restriction, along with a description in
natural language. This repository doesn’t have actual models yet.

VLTS The Very Large Transition Systems benchmark suite (VLTS) [7] contains a set
of benchmarks for concurrent systems. These benchmarks are sometimes taken
from industrial examples. They are expressed as Labelled Transition Systems, which
makes it difficult to reuse the same benchmarks on any given tool. VLTS contains
40 different benchmarks.

UMASS repository Avrunin et al. proposed a repository [8] where models would be
expressed in natural language, with implementations written in Ada. Models are
submitted along with examples of properties to check, in different languages (CTL,
QREs, etc.). No benchmarks are stored in the repository. This project has not been
updated since 2003, and it seems that the development is suspended.

478 Petri Nets & Concurrency Hostettler et al.



The summary of the position of these examples with regards to the requirements
expressed in Sec. 2 can be seen in Table 1. We can see that:

– there is no repository that allows the storage of benchmarks for models without
relying on a precise formalism.

– there is no collaborative repository that allows the storage of benchmarks.

– there are some collaborative repositories, but none of them allows evaluation by
other users using comments or ratings.

We should also mention that the collaborative experiments were not completely suc-
cessful: PetriWEB has a set of models but they were submitted by a reduced number of
authors, and pnmlWEB is not actually used. The UMASS repository also aimed to be
collaborative, but this does not seem to be implemented and the project is now aban-
doned.

Repository BEEM PetriWEB pnmlWEB VLTS UMASS

Formalism independent models i X X
Implementations ii X X X X
Properties iii X X X
Classification, search iv X X X
Benchmarks v X X
Collaborative vi X X
Comments, rates vii
Low admin workload viii X X

Table 1. Repositories classification.

4 Proposal

In this section we propose a high level design that partially fulfills the requirements
that have been gathered in Sec. 2. We will go through the requirements and see how
they are satisfied. The proposal’s design is described using standard Unified Modeling
Language (UML) artifacts that are presented in appendix A. Fig. 7 shows the use case
diagram that describes the main functionalities. Fig. 8 presents a class diagram of the
repository’s Domain Object Model (DOM). For the sake of explanation we will extract
and present selected chunks of the main class diagram. We reference classes of the
DOM using the following notation: [DOMClass].

Benchmarks for model checkers Petri Nets & Concurrency – 479



Fig. 1. Detailed view of the Model-Instance semantics group

Requirements i & ii are handled by a clear separation between the problem to rep-
resent and its implementation. This is presented in Fig. 1 by the [Model] class that
represents the problem to model (e.g., the dining philosophers with deadlock) along
with its instances ([Instance]) (a model expressed in a specific formalism, e.g., CPN or
Timed Petri Net (TPN)). The model can be accompanied by [PDF] files, containing a
description that should be agnostic of a specific formalism or Petri net flavor.

Model creators can also add bibliographies ([RefBiblio]), comments ([Comment])
and characteristics ([Characteristic]) to the problem description. Characteristics are like
tags, defining what interesting aspects the model is concerned with (e.g., concurrency,
state space explosion, real time...). These artifacts should give a clear and detailed rep-
resentation and enable subsequent uses of the model by other scientists, like inferring
new instances of the model using different formalisms in order to model different as-
pects of the problem. The problem description can be instantiated ([Instance]) several
times, for example using different class of Petri nets. Ideally the instance itself should
be described using the Petri Net Markup Language (PNML) ([PNML]) as it provides
a portable and standard way of describing Petri net models, or using PDF documents
([PDF]) if PNML is not possible. As for the model ([Model]), its [Instance] description
can be specified using bibliographies ([RefBiblio]), comments ([Comment]) and char-
acteristics ([Characteristic]). Making these fields searchable would enact requirement
iv. Because we believe that the only applicable way to maintain such a repository in
the long term is a community driven approach (requirement vi), any logged-in user can
modify models or instances. For the sake of simplicity we did not represent the version-
ing mechanism in the DOM, as we consider it a detail concerning the implementation
platform.

To fulfill requirement iii, instances ([Instance]) and goals ([Goal]) are linked to-
gether (see Fig. 2). The [Goal] is what the benchmark is focusing on. It can be some-

480 Petri Nets & Concurrency Hostettler et al.



Fig. 2. Detailed view of the Instance-Property semantics group

thing general, like evaulating state space generation performance, or it can also be a
[Property] to check. Each instance may have several associated goals. Goal descriptions
can be enriched using bibliographies ([RefBiblio]), comments ([Comment]) and char-
acteristics ([Characteristic]) (requirement iv). In case the goal is checking a property,
a property specification [Property] should be included. Unfortunately, there is no stan-
dard language for properties equivalent to what PNML is for models. The greyed class
[PropertyML] represents a future extension to the repository that would allow upload-
ing property files expressed in such a standard language, if and when the community
agrees on one.

Fig. 3 proposes a solution to satisfy requirement v. Benchmarks ([Benchmark]) are
contained by a goal ([Goal]). A benchmark is a set of runs ([Run]) that have been done
on the same platform (to be comparable). Each run contains a result, that is expressed as
free text describing, for example, performance information. A run has one and only one
context ([Context]) that contains all the required information and steps to reproduce the
run. These are namely the source files ([SourceFile]) and the arguments ([Argument])
which the tool ([Tool]) should be launched with.

As for the rest of the DOM, [Benchmark] and [Argument] can be characterized and
commented by any contributor.

Benchmarks for model checkers Petri Nets & Concurrency – 481



Fig. 3. Detailed view of the Benchmark semantics group

From a functional point of view, we identify three user roles (see Fig. 7):

– A guest that can search and browse the repository (requirement iv).
– A registered user, that inherits from the guest and can also create/update objects,

and add comments and evaluations (requirements vi & vii).
– An administrator that can handle basic housekeeping tasks (requirement viii).

Fig. 4 shows the use cases that are executable by the guest user. Guests can apply for
registration to gain access to the repository as a registered user. It is worth noting that
the registration does not have to be validated by the repository administrator. Indeed,
to reduce maintenance cost any human being can register her/himself as a repository
user. The fact that it is a human should be enforced by a Completely Automated Public
Turing test to tell Computers and Humans Apart (CAPTCHA) mechanism. Guests are
also able to search the repository, however Denial of Service (DOS) attack should be
prevented with some limiting mechanism. Once the results of the search have been
returned, users can browse them and eventually they can see the details of a given
record. These details present the complete object graph ([Model], [Instance], [Goal]
or [Benchmark]) related to a given result, as well as their dependencies ([Comment],
[PDF], [Characteristic]. . . ).

Fig. 5 presents the use cases executable by the registered user. This is the main user
role, it inherits from the guest role as described in the main use case diagram. This role
has all the capabilities of the guest, plus the ability to create and modify content in the
repository. There is no authorization mechanism, that is once users have been logged

482 Petri Nets & Concurrency Hostettler et al.



Fig. 4. Detailed view of the guest use cases

they can update any data (in a wikified way: requirement vi). Although ownership is
not used for authorization purposes, the repository is protected against malicious users
as well as against human mistakes by a versioning mechanism.

Finally, Fig. 6 shows the administrator use cases. This is mainly housekeeping,
e.g., removing malicious users or cleaning up characteristics. Since the repository should
be driven by the community in a wikified way, the amount of administration should be
kept to a minimum (requirement viii).

We will now give two example workflows. The first workflow describes a scientist
that is looking for a new model in order to evaluate her own research. The second
presents a typical review process involving benchmarks submitted to a computer science
conference.

Scientist Sue connects to the repository and is looking for interesting models and
properties to check. Since Sue is working on high-level models such as CPN that are
also highly-concurrent, she constraints the search by setting criteria such as the instance
formalism and by setting some characteristics such as a high concurrency level. She
then browses the returned results and finds an interesting model: the dining philoso-
phers. Although the instance is exactly what she is looking for, there is no associated
PNML file. She therefore creates a PNML version of the CPN instance of the problem.
In order to upload the PNML version she registers and logs in as a registered user. She
also leaves some comments about the PNML version of the model and adds some in-
formation such as the theoretical bounds of the domains. She comes back a week later,
logs in and add a bunch of properties to check. After that, she registers her tool and
adds benchmarks. Because she wants to submit a paper to Petri Nets 2012, she gives
the reviewers the address of her benchmarks in the repository.

Here comes the second workflow, reviewer Rob has to evaluate Sue’s paper and
thus has to validate the benchmarks. Rob simply downloads the context [Context] of

Benchmarks for model checkers Petri Nets & Concurrency – 483



Fig. 5. Detailed view of the registered user use cases

Sue’s benchmarks and reproduces them on his multicore machine. He then comments
and rates the benchmarks using a special anonymous referee account. He also adds his
own benchmarks, that quantify how much this highly-concurrent model benefits from
parallel execution on his multiple processors.

5 Discussion

This proposal raises a number of question marks, which should be object for discussion.
We identified a list of open issues and potentially critical aspects.

What is the best type of collaborative form? A shared, multiuser repository where
each user can contribute with custom material demands for a structure that can man-
age multiple contributions and concurrent edit. Given the current state of the art in
web portals, a way to achieve this could be basing the repository on a wiki. How-
ever this raises a number of concerns and points to discuss, e.g., , what is the policy
w.r.t. permissions, updating and creating new models, and approving changes.

484 Petri Nets & Concurrency Hostettler et al.



Fig. 6. Detailed view of the admin use cases

Building on existing work. The state of the art reveals that repositories exist that fulfill
part of the requirements we are aiming for. Would it be reasonable to extend/revisit
existing approaches rather than building new repositories?

Managing characteristics. As it was proposed, characteristics are like a tag cloud. As
with tag clouds, one potential issue is duplication and chaos. Careful consideration
should be given to the mechanism for submitting new features. It could be possible
to rely on users, but this could be weak. Or the admin could approve characteristics
for insertion, but this could slow down insertion and create contrasts between the
admin and the users. Then again, a semi-automated, knowledge-based mechanism
could be devised that tries to detect duplication and suggests to the users to re-use
an existing characteristics instead of creating a new one.

Achieving critical mass. The rate of adoption is a key factor in the success of such
a repository. The Petri nets community seems to express a strong interest in the
repository concept, but probably something should be done to push the repository
forward. For example, it could be used as a required standard form to upload bench-
marks for articles submitted to the Petri Nets conference.

Workforce. We think that, although the repository can count on the community for
building content, there has to be at least a kernel of people who are constantly
implied in managing it and keeping it clean and functional. Given the nature of
many academic positions, this could be a non-trivial requirement, that demands
careful consideration.

6 Conclusion

We presented a proposal for a common repository of benchmark models for the Petri
nets community. The proposal is based on a survey led in the community at the be-
ginning of 2010. The purpose of this article is fostering a discussion on how to push
forward the state of benchmarking for Petri nets.

Benchmarks for model checkers Petri Nets & Concurrency – 485



While building a repository is a central aspect towards this goal, this is certainly
not the only one. Community members should consider how to adopt practices that im-
prove the quality of their results publications. We feel we can share the advice given
in [2] when it comes to what the community should do to help itself. Tools should be
freely available and accessible, in order to facilitate tuning results. Examples should be
published in full, and not only as partial descriptions in already short articles. Notations
and languages should be standardized to facilitate interchange. Common benchmarks
should be identified, and research articles should really stress the empirical aspects.
Furthermore, the scientific community should enforce a policy where empirical bench-
marking is a required component for sound publication of tool results.

Initiatives in this direction, together with a common repository, can definitely bring
some improvement to the quality of published results.

References

1. Frank R. Abate and Elizabeth Jewell. The new Oxford American dictionary, second edition.
Oxford University Press, New York :, 2005.

2. George S. Avrunin, James C. Corbett, and Matthew B. Dwyer. Benchmarking finite-state
verifiers. STTT, 2(4):317–320, 2000.

3. Diyaa addein Atiya, Néstor Cataño, and Geral Lüttgen. Towards a benchmark for model
checkers of asynchronous concurrent systems. In University of Warwick, United Kingdom,
2005.

4. Radek Pelánek. BEEM: Benchmarks for explicit model checkers. In in SPIN 07, pages 263–
267. Springer, 2007.

5. R. Goud, Kees M. van Hee, R. D. J. Post, and Jan Martijn E. M. van der Werf. Petriweb: A
Repository for Petri Nets. In ICATPN, pages 411–420, 2006.

6. Lom Hillah, Rachid Alahyane, Cuauhtemoc Castellanos, Monir Chaouki, and Issam Saı̈d.
pnmlWEB, 2008. http://pnmlweb.lip6.fr/.

7. Stefan Blom and Hubert Garavel. Very Large Transition Systems, VLTS, 2009. http://
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html.

8. LASER laboratory, University of Massachusetts. Example repository for finite state verifica-
tion tools, 2003. http://laser.cs.umass.edu/verification-examples/.

486 Petri Nets & Concurrency Hostettler et al.



A Appendix

Fig. 7. Requirements for a model repository

Benchmarks for model checkers Petri Nets & Concurrency – 487



Fig. 8. Proposal for a model repository

488 Petri Nets & Concurrency Hostettler et al.



0 20 40 60 80 100%

Others

Stochastic Petri nets

Timed Petri Nets

Algebraic Petri nets

Symmetric nets

Coloured Petri nets

P/T nets

Fig. 9. Which formalism are you using?

0 20 40 60 80 100%

Other

Teaching

Property validation and Verification

Simulation

Modeling

Fig. 10. What is your main purpose?

0 20 40 60 80 100%

Invariants

LTL

CTL

Fig. 11. Which kind of property do you check?

0 20 40 60 80 100%

State Space exploration

Explicit relation construction

Structural verification methods

Fig. 12. Which kind of verification techniques?

0 20 40 60 80 100%

Use Model-based approach

Open source license

Have tool under development

Provide tool support

Use parallel algorithms

Fig. 13. Miscellanea

0 20 40 60 80 100%

Other

SAT

Symbolic (Symmetry-based)

Symbolic encoding

Explicit

Fig. 14. What kind of state space techniques?

Benchmarks for model checkers Petri Nets & Concurrency – 489


