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Abstract. Adapting techniques from database theory in order to optimize An-
swer Set Programming (ASP) systems, and in particular the groundmga
nents of ASP systems, is an important topic in ASP. In recent years,dei8et
method has received some interest in this setting, and a variant of it, E&d
has been proposed for ASP. However, this technique has a caveaiskeét is not
correct (in the sense of being query-equivalent) for all ASP progradn recent
work, a large fragment of ASP programs, referred tewgser-coherent programs
has been identified, for which DMS is correct. An open question remakhed
complex is it to determine whether a given program is super-coheraig?jlies-
tion turned out to be quite difficult to answer precisely. In this paper, wadtly
prove that deciding whether a propositional program is super-cohirél. -
complete in the disjunctive case, while iti& -complete for normal programs.
The hardness proofs are the difficult part in this endeavor: We pcoleg charac-
terizing the reductions by the models and reduct models which the ASFapneg
should have, and then provide instantiations that meet the given speaifica

1 Introduction

Answer Set Programming\SP) is a powerful formalism for knowledge representation
and common sense reasoning [5]. Allowing disjunction ireradéads and nonmono-
tonic negation in bodiesASP can express every query belonging to the complexity
classxb (NPNF). Encouraged by the availability of efficient inference ieeg, such
as DLV [17], GnT [15], Cmodels [18], or ClaspD [8ASP has found several prac-
tical applications in various domains, including data gm&tion [16], semantic-based
information extraction [20, 21], e-tourism [24], workf@enanagement [25], and many
more. As a matter of fact, theseSP systems are continuously enhanced to support
novel optimization strategies, enabling them to be effeativer increasingly larger ap-
plication domains.

Frequently, optimization techniques are inspired by masttbat had been proposed
in other fields, for example database theory, satisfialstitying, or constraint satisfac-
tion. Among techniques adapted to ASP from database thdtagic Sets [26, 4, 6]
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gione Calabria and EU under POR Calabria FESR 2007-2013 and withirlAhgréject of
DLVSYSTEM s.r.l., and by MIUR under the PRIN project LoDeN. WecalBank the anony-
mous reviewers for their valuable comments.



have recently achieved a lot of attention. Following soméieravork [14, 7], recently
an adapted method call&MS has been proposed f&SP in [3]. However, this tech-
nigue has a caveat, because it is not correct (in the sensgngf Query-equivalent) for
all ASP programs. In recent work [2, 1], a large fragment of ASP paats, referred
to assuper-coherent program@SP*¢), has been identified, for which DMS can be
proved to be correct.

While our main motivation for studyind SP*¢ stemmed from the applicability of
DMS, this class actually has many more important motivatiemdeed, it can be viewed
as the class ohon-constraining programsAdding extensional information to these
programs will always result in answer sets. One importaplization of this property
is for modular evaluation. For instance, when using thetggdiset theorem of [19], if a
top part of a split program is ahiSP*¢ program, then any answer set of the bottom part
will give rise to at least one answer set of the full program-fesaetermining answer
set existence, there would be no need to evaluate the tap part

On a more abstract level, one of the main criticismsAS#P (being voiced espe-
cially in database theory) is that there are programs whichat admit any answer set
(traditionally this has been considered a more serioud@mothan the related nondeter-
minism in the form of multiple answer sets, cf. [23]). Fronstherspective, programs
which guarantee coherence (existence of an answer setbbawveof interest for quite
some time. In particular, if one considers a fixed program andriable “database,”
one arrives naturally at the cla&d$P* when requiring existence of an answer set. This
also indicates that deciding super-coherence of programslated to some problems
from the area of equivalence checking in ASP [13, 10, 22].ifrstance, when deciding
whether, for a given arbitrary prograf, there is a uniformly equivalent definite pos-
itive (or definite Horn) program, super-coherencefofs a necessary condition—this
is straightforward to see because definite Horn programs dgactly one answer set,
S0 a hon-super-coherent program cannot be uniformly elgumivéo any definite Horn
program.

Since the property of being super-coherent is a semantic anatural question
arises: How difficult is it to decide whether a given prograsongs toASPs¢? It turns
out that the precise complexity is rather difficult to esisthl Some bounds have been
given in [2], in particular showing decidability, but espaty hardness results seemed
quite hard to obtain.

In order to focus on the essentials of this problem, in thjsepave deal with propo-
sitional programs and show the precise complexity (in teofnsompleteness) for de-
ciding whether a given propositionalSP program belongs ta&.SP*. In Section 2 we
first define some terminology needed later on. In Section 3ormdlate the problem
that we analyze and state the results. The remainder of {ier pantains the proofs —
in Section 4 for disjunctive programs and in Section 5 fommalrprograms — and in
Section 6 we briefly discuss the relation to equivalencelprob before concluding the
work in Section 7.



2 Preliminaries

In this paper we consider propositional programs, so an atsna member of a count-
able set/. A literal is either an atonp (a positive literal), or an atom preceded by the
negation as failuresymbolnot (a negative literal). Aule r is of the form

b1 Vo Vv Pn < q1, -, qj, nOtQj+17 ey nthm
wherepy, ..., pn, q1, ---, gm @areatomsand > 0, m > j > 0. The disjunctiorp; Vv
-+ V py, is theheadof r, while the conjunction, ..., g;, not ¢j+1, ..., not gn, iS

thebodyof r. Moreover,H () denotes the set of head atoms, wii#e-) denotes the set
of body literals. We also usB™ (r) and B~ (r) for denoting the set of atoms appearing
in positive and negative body literals, respectively, dn@-) for the setd (r)UB™ (r)U
B~ (r). A rule r is normal (or disjunction-free) ifH (r)| = 1 or |H(r)| = 0 (in this
caser is also referred to as eonstrain), positive (or negation-free) iB~(r) = 0, a
factif both B(r) = () and|H(r)| = 1.

A program P is a finite set of rules; if all rules in it are positive (resmrmal),
then P is a positive (resp. normal) program. Odd-cycle-free amdtified programs
constitute two other interesting classes of programs. Amat appearing in the head
of a ruler dependon each atony that belongs taB(r); if ¢ belongs toB™(r), p
depends positively on, otherwise negatively. A program without constraint®dsl-
cycle-freeif there is no cycle of dependencies involving an odd numifaregative
dependencies, while it Stratifiedif each cycle of dependencies involves only positive
dependencies. Programs containing constraints have kekmed by the definition of
odd-cycle-free and stratified programs. In fact, constsaintrinsically introduce odd-
cycles in programs as a constraint of the form

< q1y --vy q5, nOLQjq1, ..., NOLQpy,
can be replaced by the following equivalent rule:
CO <= (q1, ..., qj, MOt Gj11, ..., NOt ¢, NOt co,

whereco is a fresh atom (i.e., an atom that does not occur elsewhéehe iprogram).

Given a programP, let At(P) denote the set of atoms that occur in it, that is, let
At(P) = U, ¢p At(r). Aninterpretation for a programp is a subset ofit(P). An
atomp is true w.r.t. an interpretatiohif p € I; otherwise, it is false. A negative literal
not pis true w.r.t.I if and only if p is false w.r.t.Z. The body of a rule  is true w.r.t.7 if
and only if all the body literals of are true w.r.t7, that s, if and only ifB* (r) C I and
B~(r)n I = 0. An interpretation/ satisfiesa ruler € P if at least one atom i ()
is true w.r.t.I whenever the body of is true w.r.t.I. An interpretation/ is amodelof
a programpP if I satisfies all the rules .

Given an interpretatiofi for a programP, the reduct of? w.r.t. I, denoted byP’, is
obtained by deleting fron® all the rulesr with B~ (r) N I # (), and then by removing
all the negative literals from the remaining rules. The setina of a progran® is given
by the setdS(P) of the answer sets dP, where an interpretatiof/ is an answer set
for P if and only if M is a subset-minimal model @?/.

In the subsequent sections, we will use the following prigethat the models and
models of reducts of programs satisfy (see, e.qg. [9, 13]):



(P1) for any disjunctive progran? and interpretation$ C J C K, if I satisfiesP”,
then! also satisfie®”;

(P2) for any normal progran® and interpretationg, J C K, if I andJ both satisfy
PX  then alsqI N J) satisfiesPX.

We now introduce super-coherent ASP prografiSK*¢ programs), the main class
of programs studied in this paper.

Definition 1 (ASP*¢ programs [1, 2]). A programP is super-cohererit, for every set
of factsF, AS(P U F) # (. Let ASP*¢ denote the set of all super-coherent programs.

Note thatASPs¢ programs include all odd-cycle-free programs (and theecfitso
all stratified programs). Indeed, every odd-cycle-freegpmm admits at least one an-
swer set and remains odd-cycle-free even if an arbitrargfdatts is added to its rules.
On the other hand, there are programs having odd-cycleatéan ASP*¢, cf. [2].

An important question regards wheth&8P*° programs are as expressive&SP
programs. Of course, checking coherence (existence ofarseits) is a trivial task for
ASP*¢ programs. But when considering query answering, it turngtmt expressivity
is not lowered. Indeed, all expressivity results of [12]chédr disjunctive programs
with stratified negation (examining the proofs, actually dasjunctive programs with
input negation, that is, having at most two strata), whichrgatee super-coherence
and are a proper subset A8P*c. It therefore follows that all properties bl or 171
are expressible bASP*¢ programs using a query under brave or cautious reasoning,
respectively. The picture is less clear for nondisjunci#P=¢ programs.

However, we should point out that many (probably most) exgsiASP programs
follow a “Guess&Check” or “Generate&Test” methodology, iath usually relies on
integrity constraints, the presence of which usually cfitts super-coherence. As
an alternative, violated integrity constraints can deavspecial atom, on which the
query atom should depend negatively. If the Guess/Gengaat@avolves non-stratified
negation, it depends on how this construct is used in thed#ngolf it just encodes a
choice, this can often be easily converted to a disjunctidnile for encodings that
entangle guess and check using unstratified negation, amated conversion to an
ASP*s¢ program seems less straightforward. In general, howewerfeel that for ob-
taining computationally efficienASP*¢ encodings, different encoding methodologies
should be developed.

3 Problem Statement and Main Theorems

In this paper, we study the complexity of the following natysroblem.

— Given a progran®, is P super-coherent, i.e. doesS(P U F') # () hold for any set
F of facts.

We will study the complexity for this problem for the case @jdnctive logic pro-
grams and non-disjunctive (normal) logic programs. We fieste a look at a similar
problem, which turns out to be rather trivial to decide.



Proposition 1. The problem of deciding whether, for a given disjunctivegpam P,
there is a sef” of facts such thatlS(P U F') # @) is NP-complete NP-hardness holds
already for normal programs.

Proof. We start by observing that therefssuch thatdS(P U F) # () if and only if P

has at least one classical model. Indeed/ifs a model ofP, thenP U M hasM as its
answer set. On the other handAfhas no model, then no addition of fadtawill yield

an answer set foP U F. It is well known that deciding whether a program has at least
one (classical) model NP-complete for both disjunctive and normal programs.O

In contrast, the complexity for deciding super-coheresairprisingly high, which
we shall show next. To start, we give a straight-forward oketeon.

Proposition 2. A programP is super-coherent if and only if for each FEtC At(P),
AS(PUF) # 0.

Proof. The only-if direction is by definition. For the if-directiptet F' be any set of
facts. F' can be partitioned intd” = F N A¢(P) andF"” = F \ F'. By assumption,
P U F is coherent. Lef\/ be an answer set d? U . We shall show thad/ U F” is

an answer setaP U F' = P U F’ U F”. This is in fact a consequence of the splitting
set theorem [19], as the atomsii are only defined by facts not occurringihu F’.

a

Our main results are as follows. The proofs are containeldrstbsequent sections.

Theorem 1. The problem of deciding super-coherence for disjunctieg@ms isl14 -
complete.

Theorem 2. The problem of deciding super-coherence for normal prograsnis -
complete.

4 Proof of Theorem 1

Membership follows by the following straight-forward natdrministic algorithm for
the complementary problem, i.e. given a progr&mndoes there exist a sét of facts
such thatd S(P U F') = (): we guess a sdf C At(P) and checkAS(P U F') = () via

an oracle-call. Restricting the guess4¢(P) can be done by Proposition 2. Checking
AS(P U F) = () is known to be in/T£" [11]. This shows/7Z’-membership.

For the hardness we reduce thg -complete problem of deciding whether QBFs
of the formVX3YVZ¢ are true to the problem of super-coherence. Without loss of
generality, we can consideérto be in DNF and, indeedy # (), Y # 0, andZ # (. We
also assume that each disjunct@tontains at least one variable frakh, one fromY
and one fronZ. More precisely, we shall construct for each such @B&programPg
such thatp is true iff Py is super-coherent. Before showing how to actually construc
P from & in polynomial time, we give the required properties foy. We then show
that for programg’; satisfying these properties, the desired relatibis(true iff Py is
super-coherent) holds, and finally we provide the constmdif Ps.



Definition 2. Let® = VX3YVZ¢ be a QBF with¢ in DNF. We call any progranP
satisfying the following properties@&-reduction

1. Pisgivenoveratomt = X UY UZUX UY UZ U {u,v,w}, where all atoms
insetsS = {s| s € S} and{u, v, w} are fresh and mutually disjoint;
2. P has the following models:
-U
— foreach] C X,J CY,

M[I,J]=Tu(X\HuJU (Y \J)UZUZU/{u,v}

and

MLJ =TUX\DHUJUY\JHUZUZU{v,w;
3. foreachl C X, J C Y, the modefof the reductP -7 are M (I, .J] and

Ol = TU (X \ I);

4. foreachl C X, .J C Y, the models of the reduét™'[-/] are M’[I, J] and
— foreachK C Z suchthatl U J U K [~ ¢,

N[I,JK|=TUX\HUJUXY\J)UKU((Z\K)U{v};

5. the models of the reduft’ are given only by the models already mentioned above,
i.e. U itself, M1, J], M'[I, J], andO[]], foreachl C X, J CY,andN[I, J, K]
foreach] C X, JCY,K C Z,suchthatl U J UK [~ ¢.

The structure of models @#-reductions and the “countermodels” (see below what
we mean by this term) of the relevant reducts is sketchedguarEil. The center of the
diagram contains the models of tkereduction and their subset relationship. For each
of the model the respective box lists the “countermodelg,iMnich we mean those
reduct models which can serve as counterexamples for tggnakrimodel being an
answer set, that is, those reduct models which are propsetubf the original model.

We just note at this point that the models of the red@€tgiven in Item 5 are not
specified for particular purposes, but are required to altove realization via disjunc-
tive programs. In fact, these models are just an effect qignty (P1) mentioned in Sec-
tion 2. However, before showing a program satisfying theprties of a?-reduction
we first show the rationale behind the conceppateductions.

Lemma 1. For any QBF® = VX3YVZ¢ with ¢ in DNF, a ¢-reduction is super-
coherent iff® is true.

Proof. Suppose thap is false. Hence, there exists anC X such that, forall/ C Y,
there is aKy C Z withZ U J U Ky [~ ¢. Now let P be any®-reduction andF; =
ZU(X \ Z). We show thatdS(P U Fr) = 0, thusP is not super-coherent. Lt be a
model of P U Fz. SinceP is a®-reduction, the only candidates fan areU, M[Z, J],
andM’'[Z, J], whereJ C Y. Indeed, for eacl # Z, M|[I, J] andM'[I, J] cannot be
models ofP U Fz becausd’y £ M|[I, J], resp.Fr £ M'[I,J]. We now analyze these
three types of potential candidates:

% Here and below, for a redué™ we only list models of the fornV C M, since those are the
relevant ones for our purposes. Recall that= M is always a model oP™ in caseM is a
model of P.



M(Io, Jo] -+« ML, Jy) M'[Io, Jo] -+ M'[Im, Jx]

N{lo, Jo, K] sit. NI, Jn, K] sit.

Ollo] -+ OlIn] IWUJUK K¢ — I.UJ UK ¢

Mo, Jo] MLy, J»] M'[Io, Jo] ML, Jn)

pMlTo. o) PMITmTn] pM T Jn]
O[I] N[IQ,J(),K] s.t. N[Im,Jn,K} s.t.
0 IoUJo UK [~ ¢ InUJ, UK (¢

Fig. 1. Models and reduct “countermodels” @#freductions

— M = U: Then, for instance)M|[Z, J] C U is a model of P U F)™ = PM U Fr
foranyJ C Y. Thus,M ¢ AS(P U Fr).

- M = M|[Z, J] for someJ C Y. Then, by the properties di-reductionsO|Z] C
M is amodel of P U Fr)M = PM U Fr. Thus M ¢ AS(P U Fr).

- M = M'[Z, J] forsomeJ C Y. By the initial assumption, there existdg, C Z
with Z U J U Ky = ¢. Then, by the properties df-reductionsN[Z, J, K] C M
is a model ofPM. Thus,M ¢ AS(P U Fr).

In each of the cases we have obtaidetl¢ AS(P U Fr), henceAS(P U Fr) = ()
and P is not super-coherent.

Suppose thad is true. It is sufficient to show that for ea¢h C U, AS(P U F) # 0.
We have the following cases:

If {s,5} C Fforsomes € XUY or{u,w} C F. ThenU € AS(P U F) since
U is a model of P U F and each potential modéll c U of the reductP? (see the
properties ofp-reductions) does not satisfy C M thus each such/ is not a model
of PUUF = (PUF)Y.

Otherwise, we havé” C M[I,J]or FF C M'[I,J] forsomel C X,J C Y.In
caseF C M|[I,J] andF ¢ O[I], we observe that¥/[I, J] € AS(P U F) sinceO|!]
is the only model of the redud /.71, Thus for each suck there cannot be a model
M c M[I,J] of PMIWIYF = (PUF)MILJL As well, in case” C M'[1, .J], where
w € F, M'[I, J] can be shown to be an answer setfol) F'. Indeed, in this case no
M c M'[I,.J] is a model ofPM'lI7] becaus@ is true.

It remains to consider the cageC O[] for eachl C X. We show that\/'[, J]
is an answer set aP U F', for someJ C Y. Sinced is true, we know that, for each



I C X, there exists &7 C Y such that, forallKk C Z, TU J; UK [ ¢. As can
be verified by the properties @-reductions, then there is no model Cc M’[I, J;]
of PM'I1.71] Consequently, there is also no such mode®fu F)M'l/-71] and thus
M'[I,J) € AS(PUF).

So in each of these casdsS(P U F') # () and since these cases cover all possible
F C U, we obtain that” is supercoherent.

In total we have shown thak being false implies that ang-reduction P is not
super-coherent, whil@ being true implies that ang-reduction is super-coherent,
which proves the lemma.

|

It remains to show that for any QBF of the desired formp-seduction can be
obtained in polynomial time (w.r.t. the size @). For the construction below, let us
denote a negated atamrin the propositional part of the QBF asa.

Definition 3. For any QBF® = VX3YVZ¢ with¢ = \/7_, L1 A~ Al;m, @a DNF
(i.e., a disjunction of conjunctions over literals), we defi

Py ={aVT+; u+ 2,7, w 2,7, x+u,w, Tu,w|ze XU (1)
YVy— v uey g wey gy uw;

Y u,w, vy vglyeYU (2
{zVZ < v; u+ z,not w; u< Z,not w; v z; V< 7

Z W T Wy 24U Zu; wVu— 2,2 2€ZFU 3)
{wvVu+li,....lim |1 <i<n} (4)
{v + w; v+ u; v not u}. (5)

Obviously, the program from above definition can be congtaién polynomial
time in the size of the reduced QBF. To conclude the proof cdorem 1 it is thus
sufficient to show the following relation.

Lemma 2. For any QBF® = VX 3Y'VZ ¢, the programPy is a ®-reduction.

Proof. Obviously, At(Pg) contains the atoms as required in 1) of Definition 2. We
continue to show 2). To see thidtis a model ofPg is obvious. We next show that the
remaining models\f are all of the formM (I, J] or M'[I, J]. First we havev € M
because of the rules < v andv < not v in (5). In casew € M, ZU Z C M by
the rules in (3). In case ¢ M, we haveK U (Z \ K) C M for someK C Z, since
v € M and by (3). But then, since ¢ M, v € M holds (rulesu « z, not w resp.
u + Z,not w). Hence, also her& U Z C M. In both cases, we observe that by (1)
and (2),/ U(X\U)UJU((Y\J) C M, forsomel C X andJ C Y. This yields
the desired models\/[I, J], M’[I, J]. It can be checked that no other model exists by
showing that forN € M, J], resp.N € M'[I, J], N = U follows.

We next show that, for eachC X andJ C Y, PMIZ.71 and PM'[1:7] possess the
required models. Let us start by showing tbaf] is a model ofPM/:/1, In fact, it can
be observed that all of the rules of the fornv Z < in (1) are satisfied because either




z or T belong toO[I], while all of the other rules iP*[/-/] are satisfied because of a
false body literal. We also note that each strict subséx[éf does not satisfy some rule
of the formz v «, and thus it is not a model @?*[Z-7], Similarly, any interpretation
W such thatO[I] ¢ W c M[I,.J] does not satisfy some rule iR (/7] (note that
rules of the formu «+ z andu « z occur inPMU-7l becausev ¢ M|I, J]; such rules
are obtained by rules in (3)).

Let us now consideP™'["-7] and letW C M'[I,.J] be one of its models. We
shall show that eithe? = M'[I, J], or W = N|[I, J, K] for someK C Z such that
TUJUZ [~ ¢. Note thato is a fact inPM'l-7] hencev must belong tdV. By (1)
and (2), sincey €¢ W andW C M'[I, J], we can conclude that all of the atoms in
TU(X\I)uJU(Y\J) belong toW. Consider now the atorw. If w belongs to
W, by the rules in (3) we conclude that all of the atomsZinu Z belong tol/, and
thusW = M’[I, J]. Otherwise, ifw ¢ W, by the rules of the formz v z + v in (3),
there must be a sé C Z such that U(Z \ K) is contained ifV. Note that no other
atoms inZUZ can belong tdV because of the last rule in (3). Hen®®,= N|[I, J, K|.
Moreover,w ¢ W andu ¢ W imply that] U J U K £~ ¢ holds because of (4).

Finally, one can show thaV does not yield additional models as those which are
already present by other models. l&t C U be a model ofPY. By (1), O[I] C W
must hold for somd C X. Consider now the atom. If v € W, we conclude that the
model W is actuallyO[I]. We can thus consider the other case,d.es W. By (2),
JU(Y '\ J) C W must hold for som& C Y. Consider now the atom. If v € W, we
haveZ U Z C W because of (3). If no other atom belongsitg thenW = M1, J|
holds. Otherwise, if any other atom belongsitg it can be checked thal” must be
equal toU. We can then consider the case in whiclk W, and the atomw. Again, we
have two possibilities. Ifv belongs tol, by (3) we conclude that all of the atoms in
Z\UZ belong toW, and thus eitheW = M’[I, J] or W = U. Otherwise, ifw ¢ W, by
the rules of the form 'z + v in (3), there mustbe a sé&f C Z suchthatk U(Z \ K)
is contained iff¥’. Note that no other atoms il U Z can belong tdV because of the
last rule in (3). HencdlV = NI, J, K]. Moreover, because of (4; ¢ W andu ¢ W
imply that U J U K [~ ¢ holds. ]

Note that the program from Definition 3 does not contain qaists. As a conse-
quence, thdIX-hardness result presented in this section also holds iflyeamnsider
disjunctiveASP programs without constraints.

5 Proof of Theorem 2

Membership follows by the straight-forward nondeterntiniglgorithm for the com-
plementary problem presented in the previous section. We hast to note that a
co — NP oracle can be used for checking the consistency of a normgtam. Thus,
I1F-membership is established.

For the hardness we reduce tfi¢ -complete problem of deciding whether QBFs of
the formv.X 3Y ¢ are true to the problem of super-coherence. Without lossiérality,
we can considep to be in CNF and, indeed{ # @, andY = (). We also assume that



each clause ap contains at least one variable frakhand one front”. More precisely,
we shall adapt the notion @f-reduction to normal programs. In particular, we have to
take into account a fundamental difference between diiggnand normal programs:
while disjunctive programs allow for using disjunctive eslfor guessing a subset of
atoms, such a guess can be achieved only by means of unstrat#gation within a
normal program. For example, one atom in a{sety} can be guessed by means of the
following disjunctive rule:xx v y <. Within a normal program, the same result can be
obtained by means of the following rules:+ not y andy + not . However, these
last rules would be deleted in the reduced program assdaidtk a model containing
bothz andy, which would allow for an arbitrary subset §f, y} to be part of a model

of the reduct. More generally speaking, we have to take PtpgE2), as introduced
in Section 2, into account. This makes the following defamta bit more cumbersome
compared to Definition 2.

Definition 4. Let® = VX3Y ¢ be a QBF with¢ in CNF. We call any progran?
satisfying the following properties@&-norm-reduction

1. P is given over atom§/ = X UY U X UY U {v,w}, where all atoms in sets
S ={3|se S}and{v,w} are fresh and mutually disjoint;
2. P has the following models:
— for eachJ C Y, and for each/* suchthat/ U (Y \ J) C J* C Y UY

OlJ* ] =XuXuJ*u{v,w};

— foreachl C X,

M1 =TUX\T)U{o};
— foreachl C X, J CY,suchthat U J | ¢,

NILJ) =IUX\NDUJUY\J) U {w);

3. the only models of a redué&™!!! are M[I] and M|[I] \ {v}; the only model of a
reductPN7lis NI, J);
4. each model of a reductP®l’"! satisfies the following properties:
(a) foreachy € Y such thaty € O[J*] andy ¢ O[J*], if w € M, theny € M,
(b) for eachy € Y such thaty € O[J*] andy ¢ O[J*], if w € M, theny € M,
(c) if (YUY)Nn M # 0, thenw € M;
(d) ifthereis aclausé; ; V-V l; m, of ¢ such that{l; 1,...,l;.m,} € M, then
ve M,
(e) if there is anz € X such that{z,z} C M, or there is ay € Y such that
{y,7} € M, or {v,w} C M, then it must hold thak U X U {v,w} C M.

Lemma 3. For any QBF® = VX 3Y ¢ with ¢ in CNF, a®-norm-reduction is super-
coherent iffd is true.

Proof. Suppose tha? is false. Hence, there exists anC X such that, forall/ C Y,
ZUJ = ¢. Now, let P be any®-norm-reduction and’z = ZU (X \ Z). We show that
AS(P U Fz) = 0, thusP is not super-coherent. Le¥¢t be a model ofP U Fr. Since




P is ad-norm-reduction, the only candidates t& areO[J*] for someJ C Y and
J*suchthat/ U (Y \ J) C J* C YUY, M[Z],andN|[Z, J'], whereJ’ C Y satisfies
ZUJ [ ¢. However, from our assumption (forall C Y, Z U J [~ ¢), no such
NI[Z, J'] exists. Thus, it remains to consid@f.J*] and M [Z]. By the properties of-
norm-reductions) [Z]\ {v} is a model ofPMZ], and hencé/[Z]\ {v} is also a model
of PMIEIUF; = (PUF7)MIEL, Thus,M|[Z] is not an answer set &U Fz. On the other
hand, it can be checked thaf[Z] \ {v} is a model ofP°lV"1 U Fr = (P U F7)OU7],
for any O[J*], and so none of these[J*] are answer sets d? U F7 either. Since this
means that no model d? U Fr is an answer set, we concludeS(P U Fr) = (), and
henceP is not super-coherent.

Suppose thab is true. It is sufficient to show that, for ea¢ghC U, AS(P U F) # 0.
We distinguish the following cases fér C U:

FCTITu(X\I)U{v}forsomel C X:If v € F, thenM|[I]is the unique model
of PMUIIy F = (P U F)MU and thusM[I] € AS(P U F). Otherwise, ifv ¢ F,
sinced is true, there exists & C Y such that/ U J = ¢. Thus,N|[I, J] is a model of
P U F, and since no subset &1, .J] is a model of(P U F)NI1/] (by property 3 of
@-norm-reductions)N (1, J] € AS(P U F).

Tu(X\I)CF CNJIJ]forsomel C X andJ C Y such thatl U J |= ¢: In
this caseV|I, J] is a model ofP U F and, by property 3 ob-norm-reductionsN|[I, J]
is also the unique model @/l U F = (P U F)NIJL,

Tu(X\I)c F CNI|I,J]forsomel C X andJ C Y such thatl U J }~ ¢:
We shall show thaO[J] is an answer set aP U F' in this case. LetM be a model
of PPVIUF = (PUF)°Vl. SinceTu (X \I) C F C NI[I,J], eitherw € F or
(YUY)NF # (. Clearly, F C M and sow € M in the first case. Note that € M
holds also in the second case because of property 4@)mafrm-reductions. Thus, as
a consequence of properties 4(a) and 4(bPaform-reductions U (Y \ J) C M
holds. Sincel U J [~ ¢ and because of property 4(d) #tnorm-reductionsy € M
holds. Finally, sincev, w} C M and because of property 4(e) #fnorm-reductions,
X UX C M holds and, thusM = O[I].

In all other cases, eithd, w} C F, or there is aw € X such that{z, T} C F,
or there is ay € Y such thaf{y,y} C F. We shall show that in such cases there is an
O[J*] which is an answer set d@f U F. Let O[J*] be such that* = Fn (Y UY) and
let M be a model ofP®lV 1U F = (PU F)°l"] such thatV/ C O[J*]. We shall show
thatO[J*] C M holds, which would imply tha®[J*] = M is an answer set P U F'.
Clearly, F C M holds. By property 4(e) ob-norm-reductionsX U X U {v,w} C M
holds. Thus, by property 4(a) di-norm-reductions and becaugec M, it holds that
y € M for eachy € Y such thaty € O[J*] andy ¢ O[J*]. Similarly, by property
4(b) of #-norm-reductions and becaugec M, it holds thaty € M for eachy € Y
such thay € O[J*] andy ¢ O[J*]. Moreover, for ally € Y such thaf{y, 5} C O[J*],
it holds that{y,y} C F C M. Therefore,O[J*] C M holds and, consequently,
O[J*] € AS(PUF).

So in each of these casdsS(P U F') # () and since these cases cover all possible
F C U, we obtain thaf” is supercoherent.




Summarizing, we have shown thabeing false implies that ar-norm-reduction
P is not super-coherent, white being true implies that an§-norm-reduction is super-

coherent, which proves the lemma.
O

Definition 5. For any QBF® = VX3Y ¢ with ¢ = /\?:1 lia V-V, in CNF, we
define

No ={z+ notZT, T« notzx |z € X} U (6)
{y < noty,w; g+ noty,w; w+y; w+7y |yeY}U @)
{2+ vw; 22,7 2+ y,7 | z€ XUX U{v,w},

reX,yeY}U (8)
{welityeoslim, | 1<i<n}uU 9)
{w + not v}. (10)

Again, the program from the above definition can be congtlict polynomial time
in the size of the reduced QBF. To conclude the proof, it is thufficient to show the
following relation.

Lemma 4. For any QBF® = VX 3Y ¢ with ¢ in CNF, the programVg is a $-norm-
reduction.

Proof. We shall first show thavg has the requested models. L)dtbe a model ofVg.
Let us consider the atomsandw. Because of the rule < not v in (10), three cases
are possible:

1. {v,w} € M. Thus,X UX C M holds because of (8). Moreover, there exists
J CY suchthat/ U (Y \ J) C M because of (7). Note that any other atontin
could belong tal/. These are the modef3[.J*].

2. v e M andw ¢ M. Thus, there exists C X such that? U (X \ I) C M because
of (6). Moreover, no atoms ifv U Y belong toM because of (7) and ¢ M by
assumption. Thus\f = M|I] in this case.

3. v ¢ Mandw € M. Thus, there exist C X andJ C Y suchthafU(X \I) C M
andJ U (Y \ J) € M because of (6) and (7). Hence, in this cdde= N|[I, J|
and, because of (9), it holds thAtU J | ¢.

Let us consider a redud®™!!] and one of its modeld/ C M][I]. First of all,
note thatPM "] contains a fact for each atom inu (X \ I). Thus,7 U (X \I) C M
holds. Note also that, since each clause abntains at least one variable frar all
of the rules of (9) have at least one false body literal. Heedter M = M|I] or
M = M[I]\ {v}, as required byp-norm-reductions.

For a reductPN-/] such thatf U .J = ¢ it is enough to note tha®¥!/-/] contains
a fact for each atom V|1, J].

Let us consider a redu@®(’"] and one of its model3/ C O[.J*]. The first obser-
vation is that for eacly € Y such thaty € O[J*] andy ¢ O[J*], the reductP®l/’]
contains a rule of the form <+ w (obtained by some rule in (7)). Similarly, for each




y € Y such thaj € O[J*] andy ¢ O[J*], the reductP®[’"! contains a rule of the
form 7 < w (obtained by some rule in (7)). Henc®, must satisfy properties 4(a) and
4(b) of &-norm-reductions. Property 4(c) is a consequence of (@pety 4(d) follows
from (9) and, finally, property 4(e) must hold because of (8). |

Note that the program from Definition 5 does not contain aasts. As a conse-
quence, thdIF-hardness result presented in this section also holds ifnlyecmnsider
normal ASP programs without constraints.

6 Some Implications

In [22] the following problem has been studied under the namméorm equivalence
with projection:”

Given two programg” and@, and two setsi, B of atoms,P =4 Q iff for each
setFF C Aoffacts,{INB|I € AS(PUF)}={INB|Ie€ AS(QUF)}.

Let us callA the context alphabet anfd the projection alphabet. As is easily verified
the following relation holds.

Proposition 3. A programP over atomd/ is super-coherent ifP zg @, whereq is
an arbitrary definite Horn program.

Note thatP =’ @ means{INQ | I € AS(PUF)} ={IN0|I e AS(QUF)}
for all setsF* C U. Now observe that for any’ C U, both of these sets are either
empty or contain the empty set, depending on whether therqmg (extended by")
have answer sets.

{Iﬂ(Z)|IeAS(PUF)}:{{g} i ar o) 20
0 iff ASQQUF) =0
{0 iff AS(QU F) #0

If Q is a definite Horn program, thefS(Q U F') # () for all F C U, and therefore
the statement of Proposition 3 becomes equivalent to chgekhetherd S(PUF) #
forall FF C U, and thus whetheP is super-coherent.

In [22], the complexity of the problem of deciding uniformuéeplence with pro-
jection has also been investigated, reportifig-completeness for disjunctive programs
and/1f-completeness for normal programs. However, these hasdesslts use bound
context alphabetsl C U (whereU are all atoms from the compared programs). Our
results thus strengthen the observations in [22]. Usingésition 3 and the main re-
sults in this paper, we obtaiffy’ -hardness (resglZ’-hardness in the case of normal
programs) for uniform equivalence with projection eventfog particular parameteri-
zation where the context alphabet is unrestricted, theeption set is empty, and one of
the compared programs are of a very simple structure (in é&eh the empty program
is sufficient for@ in Proposition 3).

{Iﬂ(Z)lIeAS(QUF)}:{



7 Conclusion

Many recent advances in ASP rely on the adaptions of techesidrom other ar-
eas. One important example is the Magic Set method, whigchssfeom the area of
databases and is used in state-of-the-art ASP groundecenReork showed that a
particular variant of this technique only applies to a dartdass of programs called
super-coherent [2]. Super-coherent programs are thosehvgluissess at least one an-
swer set, no matter which set of facts is added to them. Weusethat this class of
programs is interesting of its own (for instance, sinceghem certain relation to some
problems in equivalence checking) and thus studied herextdet complexity of recog-
nizing the property of super-coherence for disjunctive monal programs. Our results
show that the problems are surprisingly hard, viz. comgtatél!” and respIlf’. One
direction of future work is to search for methods to turn ey programs into super-
coherent ones with minimal changes. Our proofs might pewvialuable foundations
for such methods. That said, for using super-coherent progiefficiently for applica-
tions, we believe that an approach that uses a methodoldfgyatit from the currently
prevailing “Guess&Check” or “Generate&Test” should be eleped.
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