
Detecting Inconsistencies between UML Models Using

Description Logic

Ragnhild Van Der Straeten, Jocelyn Simmonds
Vrije Universiteit Brussel, System and Software Engineering Lab

Brussels, Belgium
rvdstrae@vub.ac.be, jsimmond@dcc.uchile.cl

Tom Mens
Service de Génie Logiciel, Université de Mons-Hainaut

Mons, Belgium
tom.mens@umh.ac.be

Abstract

An object-oriented software design is often modelled as a collection of UML
diagrams. There is an inherent need to preserve the consistency between these
diagrams. Moreover, through evolution these diagrams get modified and can
become inconsistent. To be able to preserve their consistency the formalism of
description logics is used. Loom, a second generation reasoning tool, and RACER,
a state-of-the-art reasoning tool, are used as particular description logic reasoning
systems. Based on our experience with these tools, we argue that state-of-the-art
description logic tools must offer a more extensive query language.

1 Introduction

An object-oriented software design is often specified as a collection of UML diagrams
[10]. The different diagrams represent different aspects of the software application.
Therefore, there is an inherent risk that the overall specification of the system becomes
inconsistent and as such it is necessary to check the consistency between related UML
diagrams.

Especially in the context of evolution, it is necessary to ensure that the overall
consistency remains preserved. Unfortunately, current-day UML CASE tools provide
poor support for maintaining consistency between UML models. This results in less
maintainable and comprehensible models.

To solve this problem, we need a formal specification of consistency, and a formal
reasoning engine that relies on this specification to detect and resolve inconsisten-
cies between models. To achieve this task we use the formalism of description logic
(DL) [1]. As description logic tools we chose Loom [9], a second generation tool hav-
ing an incomplete reasoning algorithm and RACER [8], a state-of-the-art description
logic tool having a complete reasoning algorithm. We argue that for our purposes it
is necessary that the DL reasoning system consists of an extensive query language.
This allows us to specify UML models and consistency rules in a straightforward and
generic way.



The structure of the paper is as follows. Section 2 introduces the semantics of
UML and presents the translation of the UML metamodel into the DL ALCQHI. In
section 3 we discuss some consistency conflicts and show how they can be detected
using Loom and RACER. Section 4 concludes this paper.

2 Representing UML Metamodel in ALCQHI
The de factomodelling language for the analysis and design of object-oriented software
applications is UML. The visual representation of this language consists of several
diagram types. The UML semantics is described using a metamodel that consists
of three views: (1) The abstract syntax is expressed as a class diagram consisting
of classes, associations, generalizations and attributes. (2) Well-formedness rules,
expressed in the Object Constraint Language (OCL) [10], specify when an instance of
a particular language construct is meaningful. (3) The semantics, described in natural
language, defines the meaning of a well-formed language construct.

We deliberately confine ourselves to three kinds of UML diagrams: class diagrams
representing the static structure of the software application, sequence diagrams repre-
senting the behaviour of the software application in terms of the collaboration between
different objects, and state diagrams modelling the behaviour of one single object.

We treat two types of consistencies. (1) Horizontal consistency indicates consis-
tency between different diagrams within a given model. (2) Evolution consistency
indicates the consistency between different versions of the same (sub)model [6].

A wide range of approaches for checking consistency has been proposed in the
literature ([4], [5], [3], [12], [7]). However, most of these approaches only discuss one
type of UML diagram or do not take into account the UML metamodel.

We chose to translate the different concepts of the UML metamodel into the
logic ALCQHI which is supported by state-of-the-art DL reasoning systems such
as RACER. Loom, on the other hand, supports the description logic ALCQRIFO.
For our experiments, we used RACER, version 1.6.7 and Loom, version 4.0.

Abstract Syntax Representation For the encoding of this class diagram in
ALCQHI, we used the same approach as in [2]. Because in the UML metamodel all
associations are binary, they can be translated in the same way as an aggregation in
[2], with the extra assertions for an association ASSOC between the classes C1 and C2:
∃ASSOC � C1 and ∃ASSOC− � C2.

Well-formedness Rules Some of the well-formedness rules of the UML meta-
model, specified in OCL, can be expressed on the TBox containing the abstract syntax
of the UML metamodel.

As an example, consider the constraint on state diagrams that “A FinalState
cannot have any outgoing transitions.” The FinalState is a special kind of state signi-
fying that the entire statemachine has completed. In our TBox, a concept FinalState
is defined as a subconcept of State and of StateElement. The specified constraint
is added as a number restriction on the role outgoing, which represents all outgoing
transitions of the particular state and which is defined as a role with domain State
and range Transition. This results in: FinalState ≡ State 
StateElement 
(≤
0 outgoing).



1..1 *

anATM : ATM

checkIfCashAvailable

ejectCard

dispenseCard

Session Transaction aSession : Session

Figure 1: Classless instances conflict

Other well-formedness rules have to be checked using queries on the ABox, con-
taining the user-defined class, sequence and state diagrams. These queries are similar
to the queries used for detecting inconsistencies as discussed in the next section.

3 Detecting Inconsistencies

Based on a detailed analysis of all the UML concepts appearing in the three different
diagrams, several consistency conflicts are identified and classified. Due to space
limitations, we will only discuss the classless instances and reachability conflicts. The
full classification and all the Loom queries can be found in [11].

Classless instance arises when an object in a sequence diagram is the instance of
a class that does not exist in any class diagram. An example of this conflict is shown
in Figure 1, where the object anATM is an instance of ATM in the sequence diagram
on the right side of Figure 1 but this class does not appear in the class diagram on the
left side of the same figure. Classes in a class diagram are represented by the concept
class in our TBox and a class diagram by the concept classmodel. has-classmodel
is a role that contains the associated class diagram of a class.

In this example, the advantage of specifying incomplete knowledge in DL comes
into play. From the user-defined diagrams as shown in Figure 1 it is not explicitly
known that ATM is a class. However, because of the specification that anATM is an
object and it is an instance of ATM, the classification mechanism concludes that ATM
is a class.

In Loom we can use the query language to find all the classes that have no related
class diagram:

(do-retrieve (?object ?class)

(:and

(Object ?object)

(Instance-of-class ?object ?class)

(has-classmodel ?class NIL))

(format t "Classless instance conflict: ~S~%" (get-value ?object ’name)))

In the Lisp version of RACER a similar query to the do-retrieve statement of
Loom can be formulated using the loop facility of Common Lisp. However, this implies
that no optimization of the query can be performed.

(loop for ?object in (concept-instances object) do

(loop with ?name = (first (rerieve-individual-fillers ?object ’name)) do

for ?class in (retrieve-individual-fillers ?object ’instance-of-class)

when (null (retrieve-individual-fillers ?class ’has-classmodel)) do

(format t "Classless instance conflict: ~S~%" ?name)))

However, it would be a big advantage if RACER offers such a query language as
part of the RACER server and not of the language Common Lisp as shown in this
example.



A

B

C

T1()

T2()

T4()T5()

T3()

Figure 2: Reachability Problem.

Reachability conflict appears when in a state diagram a particular state is not
reachable, which implies that there exist no path at all from the start state to that
particular state. For example in Figure 2, the state C is not reachable because there
is no incoming transition.

In RACER this can be checked by exploiting role hierarchies and role transitivity.
In our TBox, we define the transitive role successor between two States and the role
direct-successor which is a subrole of the previous role. The direct-successor
role specifies which states are directly linked to each other. Fillers for the role
direct-successor however, must be created every time a transition between two
states is created. This happens in the ABox and as such implies that there must exist
a rule that introduces the right fillers for the role direct-successor every time a
transition concept is instantiated. Again, this can be specified in the Lisp version
of RACER making use of the Lisp programming language.

In Loom, we used the query language and Lisp to determine if all the states are
reachable.

(defun find-path (?top-state ?state1 ?state2)

(let* ((?cond (ask (:same-as ?state1 ?state2))))

(if (equal ?cond T)

(format t "State ~S is reachable~%" ?state2)

(do-retrieve ()

(:and

(Is-container-of ?top-state ?state1)

(for-some (?transition ?state)

(:and

(source ?state1 ?transition)

(target ?state ?transition)

(Is-container-of ?top-state ?state)

(:predcall #’find-path ?top-state ?state ?state2))))

()))))

4 Conclusion

Evolution and the fact that each UML diagram represents another view on the applica-
tion are different causes of inconsistencies. To be able to preserve consistency between
different UML diagrams, we use the formalism of description logic. As particular de-
scription logic reasoning systems, we use Loom, a second generation description logic
tool and RACER a state-of-the-art reasoning tool.

Several consistency conflicts are identified and classified. Based on two illustrative
conflicts, we plead for state-of-the-art DL tools having an extensive query language.
This would allow us to specify UML models and consistency rules in a straightforward
and generic way.



References

[1] F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schneider. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge Univer-
sity Press, 2003.

[2] Daniela Berardi. Using DLs to reason on UML class diagrams. In Proc. Workshop
on Applications of Description Logics, Aachen, Germany, pages 1–11, 2002.

[3] H. Ehrig and A. Tsiolakis. Consistency analysis of UML class and sequence
diagrams using attributed graph grammars. In H. Ehrig and G. Taentzer, editors,
ETAPS 2000 workshop on graph transformation systems, pages 77–86, March
2000.

[4] Gregor Engels, Reiko Heckel, and Jochen Malte Küster. Rule-based specification
of behavioral consistency based on the UML meta-model. In Martin Gogolla and
Cris Kobryn, editors, Proc. Int’l Conf. UML 2001 - The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools, number 2185 in Lecture Notes
in Computer Science, pages 272–286. Springer-Verlag, October 2001. Toronto,
Canada.

[5] Gregor Engels, Reiko Heckel, Jochen Malte Küster, and Luuk Groenewegen.
Consistency-preserving model evolution through transformations. In Proc. Int’l
Conf. UML 2002, number 2460 in Lecture Notes in Computer Science, pages
212–227. Springer-Verlag, October 2002.

[6] Gregor Engels, Jochen Malte Küster, Luc Groenewegen, and Reiko Heckel. A
methodology for specifying and analyzing consistency of object-oriented behav-
ioral models. In Proc. ESEC/FSE 2001. ACM Press, 2001.

[7] Pascal Fradet, Daniel Le Métayer, and Michaël Périn. Consistency checking for
multiple view software architectures. In Proc. Int’l Conf. ESEC/FSE’99, volume
1687 of Lecture Notes in Computer Science, pages 410–428. Springer-Verlag, 1999.

[8] Volker Haarslev and Ralf Möller. High performance reasoning with very large
knowledge bases: A practical case study. In Proc. of Seventeenth International
Joint Conference on Artificial Intelligence, pages 161–166. Morgan Kaufmann,
2001.

[9] Robert MacGregor. Inside the LOOM description classifier. SIGART Bull.,
2(3):88–92, 1991.

[10] Object Management Group. Unified Modeling Language specification version 1.5.
formal/2003-03-01, March 2003.

[11] Jocelyn Simmonds. Consistency maintenance of UML models with description
logics. Master’s thesis, Department of Computer Science, Vrije Universiteit Brus-
sel, Belgium and Ecole des Mines de Nantes, France, September 2003.

[12] Aliki Tsiolakis. Semantic analysis and consistency checking of UML sequence
diagrams. Master’s thesis, Technische Universität Berlin, April 2001. Technical
Report No. 2001-06.


