
Enhancing Workflow Data Interaction Patterns
by a Transaction Model

Sebastian Schick, Holger Meyer, and Andreas Heuer

Database Research Group
University of Rostock

{schick,hme,heuer}@informatik.uni-rostock.de

Abstract. Todays process-aware information systems (PAIS) provide
little support for explicit specification of transactional aspects. PAIS
have to integrate events and data from various external sources as work-
flow relevant data. Furthermore, it should be aware of changes made
externally and write consistently back data used and altered to external
sources. To avoid inconsistencies within redundantly maintained data,
transactional aspects within process and data perspective have to be
supported. We present a layered architecture which overcomes most of
these problems by extending a workflow management system (YAWL)
with facilities to access external data sources, to associate the control
flow perspective with transactional properties like isolation, serializabil-
ity and recovery. To ensure a better data integrity, we define synchroniza-
tion strategies and integrity constraints beyond single objects and tasks.
Furthermore, we integrate transactional and non-transactional sources
to offer better data security, data persistence and data recovery within
our workflow model.

Keywords: Transactional workflows; Integrity constraints; YAWL

1 Introduction

In Process-Aware Information Systems the integration of external data sources is
still a challenging problem. This drives many ongoing initiatives to improve data
integration within workflow systems. In the Perikles project1 [3] we build a PAIS
supporting the operating room (OR) manager in large clinical, peri-operative
centers. The system is driven by events like information from different sources
e.g. patient record or clinical information system. The workflow system has to
integrate events and data from external sources as workflow relevant data to
keep track of the different ORs’ status, from scheduling an OR until the patient
leaves the peri-operative center or the hospital. In clinical environments usually
the operating room (OR) is the facility with the highest costs and revenues.

Since the data in the external sources, like in the clinical information system
or patient record management systems, is altered independently from being used

1 http://www.perikles.org/. The work as part financed by the Federal Ministry of
Education and Research (BMBF), Germany, under grant 01IS09009B.

2 S. Schick, H. Meyer and A. Heuer

within PAIS, the workflow system should be aware of changes made externally
and write consistently back data used and altered to external sources. Further-
more, the data has to be mapped from external systems to workflow internal
data, i.e. onto workflow variables. By this, activities can make use of data from
external sources without arranging the access by itself.

In case of Perikles data source integration of several heterogeneous systems
leads to various problems. Current systems allow explicit data integration only
when executing a task and its related application function [10]. The missing
relation between application data and workflow relevant data, therefore, has
to be modeled in an appropriate way. Approaches like [6] propose an exten-
sion using plug-ins. Nevertheless, issues like global consistency or isolation were
not discussed. The access to external data from within the workflow system is
addressed by some of the workflow data patterns [14], namely Pattern 15, 16,
and 19, 20. For data-based routing, different kinds of data conditions are eval-
uated within the control flow perspective. Since the approach does not define
any data integrity constraints or isolation properties for external data, this is
left to the control-flow perspective. Only few systems partially implement the
data patterns, none fully. The YAWL engine can handle some of the state-based
conditions (e.g. case initiation, case completion).

To avoid inconsistencies within redundantly maintained data, transactional
aspects within the control flow and data perspective have to be supported. Conse-
quently, transactional properties like consistency, isolation, durability, reliability,
robustness, and correctness have to be provided by PAIS.

However, many PAIS provide little support for an explicit specification of
transactional aspects. Many approaches, e.g. [16, 5, 8], have tried to combine
concepts from both, workflow and transactional systems. Grefen [7] presents a
taxonomy of combining transactional systems with workflow engines and po-
sitioned existing approaches. However, transactional properties are desired in
PAIS, too. Therefore, transactional views have to be integrated within the con-
trol flow perspective. Process parts, apart from atomic tasks should be atomic
and isolated building blocks of transactions. Additionally, defining and checking
integrity constraints over whole process parts rather than single task parameters
should be supported, too.

We present an approach, which allows for a synchronized, consistency-aware
access to data of external sources. Therefore, we extend the workflow language
YAWL [1] with the concepts, to model nested transactions and ease the task
implementors access to external data sources within the control flow perspec-
tive. To ensure a better data integrity, we define synchronization strategies and
integrity constraints beyond single objects and tasks. Furthermore, we integrate
transactional and non transactional sources to offer better data security, data
persistence and data recovery within our workflow model. Besides the data flow
described in the workflow model [15] also the data source integration is described
in more detail. According to the taxonomy in [7], our approach refers to the class
of transactional workflows. In that way, our approach is different from others,
which manage and orchestrate long running transactions across different coordi-

Enhancing Workflow Data Interaction Patterns 3

nated web services but did not support and control data access within the web
service or task implementation [12].

We end with the essence of requirements for transactional workflow support:

– Req. 1: There is a urgent need for transparent access to external data sources
from within the workflow systems.

– Req. 2: The workflow system should manage and control external data
sources and allow access through workflow variables.

– Req. 3: Workflow activities/tasks should access external data through (ex-
ternally bound) workflow variables.

– Req. 4: The workflow system should allow for defining transactional spheres
and inherently support them.

– Req. 5: Transactional spheres should assure integrity, correctness, and recov-
erability over externally bound workflow data.

– Req. 6: The workflow system should support integrity constraint over work-
flow variables, (even if they are bound to external data sources).

– Req. 7: The workflow system should offer suitable integrity violation and
exception handling mechanisms in combination with transactional spheres.

2 Related Work

In the course of time, many advanced transaction models were introduced. They
relax certain properties of the classical ACID transaction like isolation or allow
for nested transactions and different kind of structures within a global transac-
tion. We build our concept mainly upon open nested and multi-layered trans-
actions [4] and used multi-version concurrency [11] control for coping with the
recoverability problem of open nested transactions. The idea of non-vital, con-
tingent, and compensating transactions as alternative building blocks to atomic
ACID transactions are described in detail in [9, 17].

Different approaches in integration transactions and workflows are investi-
gated for the last 20 years. Worah and Sheth [18] and Grefen [7] gave a overview
on different integration concepts and systems for transactional workflows. The
latter suggests a taxonomy for a conceptual and system view on the topic. Long-
running transaction are used in [12].

A better data integration within PAIS is tackled by different approaches.
In [10, 13] the aspect of a close integration of the data control flow perspective
where described. One main demand in [10, 13] are compliant business processes
with the underlying data structures. Hence, different challenges where defined
to summarize Object-aware Process Management Systems [10]. One requirement
is the integration of application data within the control flow perspective, so that
data is manageable and accessible as complex objects. A generic component
for process management is proposed there, which enables data-driven processes.
Therefore, an integrated view on the process and the data is introduced. How-
ever, the data exchange with external data sources is not tackled. Neither aspects
regarding data source integration nor the combination with transactional models
are discussed.

4 S. Schick, H. Meyer and A. Heuer

In [6] Lehmann and Eder present a comprehensive approach for integrating
external data sources. This approach describes an architecture in a way very
similar to ours, e.g. the integration of external data sources into the control flow
perspective is based on XML, too. The integration is also done using data access
plug-ins which are controlled by a data management service. But the approach
just considers data integrity constrains on single variables (data sources). Read
and write operations on data sources are under control of user defined policies
as isolation or correctness of the data access do. Consequently, the approach
didn’t support any kind of global integrity constraints or transactional concepts
required to avoid inconsistencies within redundantly maintained data.

3 Transactional Workflows — The Concepts of tx+YAWL

Now, we present a conceptual extension of the workflow system YAWL [1] called
tx+YAWL. It combines the integration of external data sources into the workflow
systems with transactional properties. The transactional model provided is based
on open nested transaction. In fact, we exploit the multi-layered transaction
approach [4] and combine it with multi-version concurrency control [11] to cope
with recoverability by providing a consistent view on versions of database objects
and avoiding cascading aborts. The approach is structured into four different
layers:

– Layer L0 is responsible for accessing external data sources through workflow
variables. The externally managed data can be described by XML Schema
types and by views established using XQuery. (Req. 1 and 3)

– On Layer L1 workflow tasks are the transaction building blocks. They pro-
vide the basis for different transaction types, like contingent, compensating,
or non-vital (sub-)transactions. (Req. 1, Req. 3 and Req. 7)

– Layer L2 describes the overall control flow and transactional spheres. In-
tegrity constraints, consistency, and recoverability are provided at this layer.
(Req. 2 and Req. 4-7)

– Layer L3 associates workflow cases with the top level transactional sphere
or global transaction. (Req. 4)

Figure 1 presents a transactional workflow net as described by the tx+YAWL
workflow language. The workflow consists of nine workflow tasks (A, . . . , I). Task
A contains an AND-split and tasks I the corresponding AND-join. The two
branches consist of a sequence F,G and a sub-structure building a transactional
sphere (dashed rectangle) T1. The sphere T1 encompasses tasks which access
external data through input/output variables x, y, z and integrity constraints
{c1, c2} to be ensured for this sphere. All tasks within a sphere are part of a
transaction. Some may be sub-transactions with an associated type. Task D
represents a sub-transaction with compensation and E consists of three contin-
gent sub-transactions E1, E2, and E3. Only one out of this three sub-transactions
must succeed to let E commit. All other tasks are steps of the transaction rep-
resented by the sphere. The concepts of transactional workflows and the details

Enhancing Workflow Data Interaction Patterns 5

tx+YAWL primitives

B

A
C

H

F G

I

x y x z

T1: {c1,c2}
D

-1

E3

c

AND-join

AND-split

XOR-split

XOR-join

Atomic task

Input condition

Output condition

external outputexternal input

x

Ek

c

contingent
transaction

D
-1

compensation
transaction

Ti:c1..cn

transactional
sphere

Fig. 1. Transactional workflow with sub-transactions and constraints

of tx+YAWL model are now explained along the four layers.
Layer L0 (Basic data access) is responsible for the access to data from

external sources through specific plug-ins (denoted by the triangles in Fig. 1).
Actually, the basic operations provided are reading a certain version Ti.r(xj),
writing Ti.w(xj) and enforcing a transaction boundary by committing Ti.c(),
or aborting Ti.a() a local transaction at the data source. The behavior of these
operations depends on the transactional spheres of Ti and is controlled by the
layers above. A plug-in (referenced by an identifier pId) encapsulates the data
source. The structure of the data is described by a XML Schema XSDpId.
The plug-in is responsible for mapping source specific structures to and from
valid XML data. Additionally, the plug-in provides functionality to establish
a connection, transfer data and exchange service information. In Fig. 1 tasks
B,D,E,H accesses external data using plug-ins connected to variables x, y, z.

Layer L1 (Workflow tasks) describes tasks as the building blocks of the
transactions. They have input and output parameters, e.g. external variables x
and y are bound to input parameters of task B,D and E, z is bound to an output
parameter of task H in Fig. 1. A task should not directly perform read and write
operations on external data from within the tasks implementation. In fact, tasks
must access external data through its input and output parameters. Parameters
v are described with their own schema XSDv. The Layer L1 is responsible for
associating the these parameters of atomic or complex tasks with the read and
write operations from Layer L0 defined over the external variables managed by
the plug-ins. In case of a composite task, parameters are mapped from or onto
variables of the workflow net implementing the composite task.

To reuse these external variables by different parameters v a mapping be-
tween the related XSDpId and XSDv has to be defined. This is done using an
XQuery expression. A mapping mv consists of a set of (pId, distKey,map, rp, wp),
where

– pId is a reference to a data source which is encapsulated by a plug-in.
– map is an XQuery expression, which defines transformation between an ex-

ternal variable and the data source managed by plug-in pId.

6 S. Schick, H. Meyer and A. Heuer

– distKey indicates a distinct key value, to unambiguously identify an XML
fragment in the data source.

– rp defines the local read policy
– wp defines the local write policy

The mapping allows only unique XML fragments as a result of a query. The result
has to have a valid subtype of the data source XSD type (XSDv ⊆ XSDpId).

Read operations on external variables yield values for the input parameters
of a task. A read policy rp defines whether the external variable has to be re-read
each time it is accessed or kept isolated from external modification of the original
data. The mode immediate read requires for each read access a synchronisation
with the external data source. The mode consistent read requires a transactional
sphere which determines the version of data object to be read consistently.

Write operations on external variables write back values from output parame-
ters. A write policy wp defines whether modifications of a copy have to be pushed
by the workflow system to the external data source immediately or not. Further-
more, the policy is divided into the modes immediate write, which propagates
changes after each update. With mode consistent write the transactional sphere
determines whether the operation writes back a new version immediatly or the
operation has to be deferred. The mode no write simulates a read only variable
and can be used by hypothetic or read-only transactions. In combination with
transactional sphere only consistent readand write modes are used.

At this layer local integrity constraints are defined, managed and checked on
a per variable basis. If integrities are violated exception handling takes place.
Usually, exceptions are handled by rolling back work, executing a compensat-
ing transaction if defined or proceed with another sub-transaction if part of a
contingent transaction.

Layer L2 (Control flow and transactional spheres) combines tasks
using control flow patterns to form (sub-)transactions. It makes use of the control
flow perspective of the workflow description. Aside basic transactions build upon
sequences of tasks, we support different transaction types to cope with diverse
application requirements. For example contingent, non-vital, and compensating
transactions build upon tasks and appropriate control flow structures (cf. Table
1).

Basic transactions Ti have ACID properties and ensure serializability and
recoverability as known from standard database transactions. Nested trans-
actions Ti allow for composing transactions from different sub-transactions Ti,j

even from other nested transactions. Contingent transactions TC
i,k are a set

of transactions Ti,1 to Ti,k out of which only one transaction must succeed. Sit-
uations where different, alternative ways of performing a business transaction
exist, contingent transactions are the model of choice. In Fig. 1 the task E rep-
resents a set of contingent tasks or sub-transactions within the transactional
sphere. E has three alternative implementations out of which only one needs to
commit for E to be committed. Non-vital transactions TNV

i may fail. That
means the result is an option but not necessary for the overall success. An abort
of non-vital transaction has no effect on the transactional sphere it is part of.

Enhancing Workflow Data Interaction Patterns 7

Table 1. Concepts of tx+YAWL transactional workflows and their YAWL semantics

tx+YAWL Modeling Concept YAWL Representation

T Basic (ACID) transaction T . T

Ti:c1..cn Transactional sphere Ti and en-
forced set of constraints ci over a
sub-workflow.

Ti

T
c

i1,k

Contingent transaction TC
i,k con-

sisting of a set of sub-transactions
{T1..Tk}. System task S arbitrar-
ily give one sub-transaction after
another a try. If one succeeds, the
contingent transaction commits.

T1

S

Tk

a

a

a

Ti
nv

Non-vital Transaction TNV , sys-
tem task S can decide to give TNV

several tries or do terminate.

S T

a

Ti
-1

Transaction T with compensation
T−1, which is executed if T fails or
gets aborted. T

Ti

a
i
-1

Nevertheless, atomicity has to be ensured for non-vital transactions, too, i.e.
partial results of an aborting non-vital transaction have to be undone. Com-
pensated transactions are actually a pair of a ”normal” transaction Ti and
a compensation T−1

i . Normally, the compensation can be done by executing an
inverse transaction which rolls back work. Sometimes in practice, it is impossi-
ble to withdraw the real impact of a transaction. Then some kind of sufficient
compensation specified by the application has to be done. Task D in Fig. 1 is a
compensated task which consists of a regular task D and an inverse task or com-
pensation D−1 which gets executed if D fails. Non-transactional processing
allows to directly work with external data sources. Read and write operations are
unconditionally, immediately executed. The application is expected to ascertain
integrity in this mode. Transactional spheres build a sphere within the flow
of control which is under transactional control. It has:

– A transaction type {non-transactional, basic, read-only, non-vital, compen-
sating, contingent}. The different types and their YAWL counterpart are
shown in Table 1.

– A read and a write set of external variables readset(Ti), writeset(Ti)
– A transaction T is a partial order of steps (actions) of the form r(x) or w(x),

where x ∈ readset(Ti)∪writeset(Ti), set of data objects associated with the
external variables. The order of read and write operations for a single task
or net is evaluated in the order they appear in the parameter list of the net
or task.

8 S. Schick, H. Meyer and A. Heuer

– The semantics or interpretation of a certain step, pj , of T : If pj = r(x), then
the interpretation is assignment vj := x to local variable vj . If pj = w(x),
then the interpretation is assignment x := fj(vj1, ..., vjk) with anonymous
function fj and j1..jk denoting T ’s prior read steps.

– A set of integrity constraints defined over the external variables.

Constraints (e.g. c1, c2 in Fig. 1) are checked using the XQuery expressions
over workflow variables. Reactions to constraints violation, failure or transaction
abort are dictated by exception handling policies and depend on the transaction
type. A compensation is done by executing an associated compensating or inverse
transaction. A rollback is done for basic (or ACID) transactions.

The decision whether to abort or ignore transaction failures depends on the
transaction type of the current context. If the current transaction is the top-level
transactional sphere, the transaction is aborted, which in turn may cancel the
whole case. Failure within non-vital transaction only result in a local rollback and
effect no upper-level transactions or spheres. In case of contingent transaction,
only one out of the contingent set transactions must succeed, i.e., local aborts
are kept local as far as one sub-transaction succeeds.

Layer L3 (Case level and global transactions) is a layer of cases and
associated global transactions. If a global transaction (sphere) fails, exception
handling is done on case level, i.e. it may cause the cancellation of the case.
A case may contain several transactional spheres which are independent with
respect to their semantics but can interfere each other, e.g. if the first global
transaction in a sequence fails and causes the case to be cancelled. The mapping
between L3 and L2 is defined by the composition or nesting of transactional
spheres into a global transaction sphere representing the workflow instance or
case.

4 Implementing tx+YAWL Concepts with YAWL

To begin with we will explain how to transform tx+YAWL elements into a
compliant YAWL representation. Then, we introduce a Data Access Framework
(DAF) to support operations of Layer L1 and Layer L0. The DAF is an extension
of the YAWL workflow engine. Additionally, the DAF implements transactional
concepts like integrity constraint checking described at Layer L2.

Layer L3 + L2, tx+YAWL modeling concepts are not natively supported
by the YAWL engine. First, these concepts must be transformed into a pure
YAWL model. The implementation of Layer L2 is done by utilizing the trans-
formation rules from Table 1.

To exemplify the transformation process, we have applied the rules to the
example from Fig. 1. The result is shown in Fig. 2 (a)–(d). The top-level trans-
action in Fig. 1 is represented using a YAWL root workflow net (cf. Fig. 2 (a)).
We start with applying the rule for a nested transaction on transaction T1. This
results in the corresponding composite task T1 of Fig. 2 (a). Then the composite
task T1 is decomposed into subnet SNT1

, which contains the transactional tasks

Enhancing Workflow Data Interaction Patterns 9

A

F G

I

x z

T1

B

C

H

y x

E

D-1

E1

S

E3

a

a

a

a

E2

D

D
a -1

(a)

(b) (d)

(c)

x

1TSN

ESN

1DSN

Fig. 2. Rewriting tx+YAWL into a YAWL Model

B,C,D,E and H of the original transactional region (cf. Fig. 2 (b)). Within
the new subnet SNT1 the compensating task D−1 is transformed into the new
composite task D−1 using the rule for transactions with compensation. The cor-
responding subnet SND−1 can be seen in Fig. 2 (c). It contains task D and its
compensation D−1. Further on, the contingent transaction E3 is transformed
into composite task E using the rule for contingent transactions. The resulting
subnet SNE contains the three contingent transactions/tasks E1, E2 and E3

(cf. Fig. 2 (d)). External variables of the transactional tasks D−1 and E3 ap-
pear as task parameters of the composite tasks D−1 and E within the subnet
SNT1

. Because, net variables of a subnet are task variables of the corresponding
composite task in YAWL.

Since integrity constraints are tied to transactional spheres, they may only be
verified if transactions are active. To ensure this, we introduce a data controller
definition which checks constraints for active transactions. A data controller
DC = (E,C, n, t, s) is defined as:

– E is a set of external variables (e1, e2, . . . , en), associated with data sources.
– C is a set of dynamic constrains (c1, c2, . . . , cn) defined on E.
– n is the net the DC belongs to.
– t defines the transaction type of the associated transaction.
– s is the state of the DC with s ∈ {active, inactive, deactivated}.

The DC belongs to the net n of a transactional sphere, e.g. task T1 in Fig.
2 (a). The initial state s of a DC is inactive. The DC will be activated if the
corresponding sphere or rather a net is activated. Then a state transition from
inactive to activated take place. Respectively, the DC will be deactivated if
the corresponding net will be terminated. However, the data for the DC is not
generated at run time, but when the model is instantiated.

The set of constraints C contains the constraints c1 and c2 in the example
process. Consequently, the set of external variables (E) consists of {x, y, z}. The
transaction type of T1 is basic.

10 S. Schick, H. Meyer and A. Heuer

Layer L1, External variables are not supported by YAWL directly. So, the
YAWL engine got extended with the Data Access Framework (DAF) (cf. Fig. 3).
The framework connects external bound YAWL variables with data sources. The
DAF is responsible for transactional concepts like dynamic integrity constraints
described in Layer L2 as well. Now, the DAF components shown in Fig. 3 are
explained in detail.

SM TM RM

PM CS CP

Data
Gateway

Y
A

W
L E

ngine

Data Integration Chain

data
sourcemap(L1,L0) L2, L3

Data
Source

Manager

Fig. 3. Data Access Framework Architecture

The Data Gateway (DG) is an interface within the YAWL engine which
passes all read and write requests, i.e. operations of Layer L1, to the exter-
nal Data Source Manager and returns results to the YAWL engine. The Data
Source Manager (DSM) configures further processing using the variable map-
ping mv (cf. Sec. 3) of the external variable and selects the plug-in which have
to be invoked. The required services are configured using the read and write
policies defined in Layer L1 and transaction types and constraints defined at
Layer L2. The Data Integration Chain (DIC) combines services to process
the requests (e.g. Synchronizing Manager (SM), Transaction Manager (TM) or
Recovery Manager (RM)). The services have to be deployed at runtime to pro-
vide different configurations. For example, with these configurations TM and RM
are activated only when consistent read or write and recoverability is required.
A service processes the request and passes it on to the next service until the
plug-in at the bottom of the chain is invoked. After the read (xj = Ti.r(x)) or
write (Ti.w(xj)) operation were performed by the plug-in, the result will be sent
back to the DG in reverse order through the chain. Finally, the Data Gateway in
turn passes the result back to the YAWL engine. The Constraint Service (CS)
deploys common exception handling features supported by the YAWL engine,
especially it uses the Exlet approach [2]. This are for example canceling, suspend-
ing, completing, failing and restarting a task, case and/or specifications. Exlets
also can directly specify compensatory tasks which eases the implementation of
compensating transactions.

Layer L0, Uniform data access is provided by plug-ins. The Plug-In
Manager (PM) implements the data access to the data source, which is de-
scribed in Layer L0. It calls an appropriate plug-in after the access to the data

Enhancing Workflow Data Interaction Patterns 11

source has been approved by each service in the DIC. Previously, the Connec-
tion Pool service (CP) has instantiated the plug-in using pId extracted from
the variable mapping. The CP provides simultaneous data source access and con-
nection management for plug-ins. Hereby, the concurrent access of data sources,
established by various process instances, is simplified. If the data source plug-in
supports transactions, the Ti.c() and Ti.a() commands are available here and
initiate a local commit or rollback at the data source. Furthermore, the plug-in
executes the read Ti.r(x) and write Ti.w(x) operations itself, as well as translat-
ing the query (map) into the supported data source language and transforming
data accordingly as results get returned.

The Data Access Framework Prototype implements our approach in a
“proof-of-concept” manner. It is done by a set of Java classes and services ex-
tending the YAWL engine. We extended the YAWL Editor (modeling tool) to
define the mapping between external variables and plug-ins as an XML schema
structure within a YAWL net. Other tx+YAWL modeling concepts are not sup-
ported at the moment.

The data controllers (DC) are defined as XML schema structures within a
YAWL net. In the Perikles project [3] the prototype was used for integrating and
accessing transactional and non-transactional data sources, e.g. clinical informa-
tions systems. Actually, the DAF supports plug-ins for accessing XML native
stores and HL7 sources common in healthcare environments. So, the YAWL sys-
tem is aware of changes to data made externally. Furthermore, it can also write
consistently back data used and altered in the workflow system to external data
sources. A generic XML-object-relational mapper plug-in is under construction.

5 Summary and Future Work

Supporting access to external data and transactional workflows is still a chal-
lenge. We presented an approach which extends an existing workflow engine
and the corresponding workflow model by adding external data access, integrity
constraints, exception handling methodology, and a transaction concept based
on multi-layered transactions. The Data Access Framework, its design princi-
ples and the extension of the YAWL workflow engine were presented. A pro-
totype implementation is used by a tracking and OR-management system for
peri-operative centres in the Perikles project.

The Data Access Framework supports different kinds of update strategies to
work with transactional, recoverable resources but can deal with non-transactional
data stores, too. Data in external source is wrapped by plug-ins and represented
as XML data, which can manipulated using mapping defined by XPath and
XQuery expressions.

Future work will focus on improved design concepts for modeling transac-
tional workflows based on patterns and anti-patterns for the composition of
transactional spheres. For a better understanding of adequate isolation levels
of workflow transaction a detailed analysis of the correspondence of data and

12 S. Schick, H. Meyer and A. Heuer

control flow is under way. Furthermore, we want assist designers by extending
the YAWL editor to directly support our modeling concepts.

References

1. van der Aalst, W.M.P., ter Hofstede, A.: YAWL: Yet another workflow language.
Information Systems 30(4), 245–275 (2005)

2. Adams, M., ter Hofstede, A., van der Aalst, W., Edmond, D.: Dynamic, Extensible
and Context-Aware Exception Handling for Workflows. In: OTM 2007, LNCS, vol.
4803, pp. 95–112. Springer (2007)

3. Bandt, M., Kühn, R., Schick, S., Meyer, H.: Beyond Flexibility – Workflows in
the perioperative Sector of the Healthcare Domain. In: WowKiVS 2011. vol. 37.
Electronic Communications of the EASST (2011)

4. Beeri, C., Schek, H.J., Weikum, G.: Multi-Level Transaction Management, Theo-
retical Art or Practical Need? In: EDBT ’88. LNCS, vol. 303, pp. 134–154. Springer
(1988)

5. Ceri, S., Grefen, P.W.P.J., Sanchez, G.: WIDE: A Distributed Architecture for
Workflow Management. In: RIDE 1997. pp. 76–79 (1997)

6. Eder, J., Lehmann, M.: Synchronizing Copies of External Data in Workflow Man-
agement Systems. In: CAiSE 2005, LNCS, vol. 3520, pp. 248–261. Springer (2005)

7. Grefen, P.W.P.J.: Transactional Workflows or Workflow Transactions? In: DEXA
2002. LNCS, vol. 2453, pp. 327–349. Springer (2002)

8. Hoffner, Y., Ludwig, H., Grefen, P.W.P.J., Aberer, K.: CrossFlow: integrating
workflow management and electronic commerce. SIGecom Exchanges 2(1), 1–10
(2001)

9. Jajodia, S., Kerschberg, L. (eds.): Advanced Transaction Models and Architectures.
Kluwer (1997)

10. Künzle, V., Reichert, M.: Towards Object-Aware Process Management Systems:
Issues, Challenges, Benefits. In: BMMDS/EMMSAD. pp. 197–210 (2009)

11. Muro, S., Kameda, T., Minoura, T.: Multi-version concurrency control scheme for a
database system. Journal of Computer and System Sciences 29(2), 207–224 (1984)

12. Pottinger, S., Mietzner, R., Leymann, F.: Coordinate BPEL Scopes and Processes
by Extending the WS-Business Activity Framework. In: OTM 2007, LNCS, vol.
4803, pp. 336–352. Springer (2007)

13. Rinderle, S., Reichert, M.: DataDriven Process Control and Exception Handling
in Process Management Systems. In: CAiSE 2006, LNCS, vol. 4001, pp. 273–287.
Springer (2006)

14. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow Data
Patterns: Identification, Representation and Tool Support. In: ER 2005, LNCS,
vol. 3716, pp. 353–368. Springer (2005)

15. Sadiq, S., Orlowska, M., Sadiq, W., Foulger, C.: Data flow and validation in work-
flow modelling. In: ADC ’04. pp. 207–214. Australian Computer Society, Inc. (2004)

16. Wächter, H., Reuter, A.: The ConTract Model. In: Database Transaction Models
for Advanced Applications, pp. 219–263. Morgan Kaufmann (1992)

17. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, San
Francisco, CA, USA (2001)

18. Worah, D., Sheth, A.P.: Transactions in Transactional Workflows. In: Advanced
Transaction Models and Architectures, pp. 3–34. Kluwer (1997)

