
On the Applicability of Rules to Automate Data
Warehouse Logical Design

Verónika Peralta, Alvaro Illarze, Raúl Ruggia

Instituto de Computación, Universidad de la República. Uruguay.
 vperalta@fing.edu.uy, illarze@adinet.com.uy, ruggia@fing.edu.uy

Abstract. Data Warehouse logical design involves the definition of structures
that enable an efficient access to information. The designer builds relational or
multidimensional structures taking into account a conceptual schema represent-
ing the information requirements, the source databases, and non functional
(mainly performance) requirements. Existing work in this area has mainly fo-
cused into aspects like data models, data structures specifically designed for
DWs, and criteria for defining table partitions and indexes. This paper proposes
a step forward on the automation of DW relational design through a rule-based
mechanism, which automatically generates the DW schema by applying exist-
ing DW design knowledge. The proposed rules embed design strategies which
are triggered by conditions on requirements and source databases, and perform
the schema generation through the application of predefined DW design ori-
ented transformations.

1 Introduction

A Data Warehouse (DW) is a database that stores information devoted to satisfy deci-
sion-making requests. DWs have features that distinguish them from transactional da-
tabases [9][17]. Firstly, DWs are mainly populated through batch processes [6] that
implement data integration, quality improvement, and data structure transformations.
In addition, the DW has to support complex queries (grouping, aggregates, crossing of
data) instead of short read-write transactions (which characterises OLTP). Further-
more, end users analyse DW information through a multidimensional perspective us-
ing OLAP tools [10][16].

Adopting the terminology of [4][1], we distinguish three different design phases
based in the concepts managed in each one: conceptual level manages concepts that
are close to the way users perceive data, logical level deals with concepts related to a
certain kind of DBMS (e.g. relational, object oriented,) but are understandable by end
users, and physical level depends on the specific DBMS and describes how data is ac-
tually stored. In this paper we deal with logical design of DWs.

DW logical design processes and techniques differ from the commonly applied on
the OLTP database design. DW considers as input not only the conceptual schema but
also the source databases, and is strongly oriented to queries instead of transactions.
Conceptual schemas are commonly specified by means of conceptual multidimen-
sional models [1]. Concerning the logical relational schema, various data structures

have been proposed in order to optimise queries [17]. These structures are the well-
known star schema, snowflake, and constellations [17][3][19].

An automated DW logical design mechanism should consider as input: a concep-
tual schema, non-functional requirements (e.g. performance) and mappings between
the conceptual schema and the source database. In addition, it should be flexible
enough to enable the application of different design strategies. Furthermore, the map-
pings to the source databases should be stored in order to keep track of the exact ex-
pressions that define the required information items in terms of the source data items.
Mappings are also useful to program the DW loading and refreshment.

This paper addresses DW logical (relational) design issues and proposes a rule-
based mechanism to automate the generation of the DW relational schema, following
the previously described principles.

Some proposals to generate DW relational schemas from DW conceptual schemas
are presented in [12][7][3][14]. We believe that existing work lack in some main as-
pects related to the generation and management of mappings to source databases, and
flexibility to apply different design strategies that enable to build complex DW struc-
tures (for example, explicit structures for historical data management, dimension ver-
sioning, or calculated data).

The here proposed mechanism is based on rules that embed logical design strate-
gies and take into account three constructions: (1) a multidimensional conceptual
schema, (2) mappings, which specify correspondences between the elements of the
conceptual and source schemas, and (3) guidelines, which provide information on
DW logical design criteria and state non functional requirements. The rules are trig-
gered by conditions in these constructions, and perform the schema generation
through the application of predefined DW design oriented transformations.

The main contribution of this paper is the specification of an open rule-based
mechanism that applies design strategies, builds complex DW structures and keeps
mappings with the source database.

The remaining sections of this paper are organized as follows: Section 2 discusses
related work. Section 3 presents a global overview of the proposition and an example.
Section 4 describes the framework components, including the design guidelines, the
mappings between the DW conceptual schema and the source schema and the rule-
based mechanism. Finally, Section 5 points out conclusions and future work.

2 Related Work

There are several proposals concerning to the automation of some tasks of DW rela-
tional design [12][7][3][14][19][5].

Some of them mainly focus on conceptual design [12][7][3][14] and deal with the
generation of relational schemas following fixed design strategies. In [7], the MD
conceptual model is presented (despite authors calling it a logical model) and two al-
gorithms are proposed in order to show that conceptual schemas can be translated to
relational or multidimensional logical models. But the work does not focus on a logi-
cal design methodology. In [12] a methodological framework, based in the DF con-
ceptual model is proposed. Starting from a conceptual model, they propose to gener-

ate relational or multidimensional schemas. Despite not suggesting any particular
model, the star schema is taken as example. The translation process is left to the de-
signer, but interesting strategies and cost models are presented. Other proposals
[3][14] also generate fixed star schemas.

As the proposals do not aim at generating complex DW structures, they do not of-
fer flexibility to apply different design strategies. Furthermore, they do not manage
complex mappings, between the generated relational schemas and the source ones,
though some of them derive the conceptual schema from the source schema.

Other proposals do not take a conceptual schema as input to the logical design task
[19][5][17]. In [19], the logical schema is built from an Entity-Relationship (E/R)
schema of the source database. Several logical models, as star, snowflake and star-
cluster are studied. [17] presents logical design techniques and several examples.

Other works related to automated DW design mainly focus in DW conceptual de-
sign and not logical design, like [15][23] which generate the conceptual schema from
an E/R schema of the source database.

3 The DW Logical Design Environment

Our underlying design methodology for DW logical design takes as input the source
database and a conceptual multidimensional schema ([12][7][15][23][8]). Then, the
design process consists of three main tasks: (i) refine the conceptual schema adding
non functional requirements and obtaining a "refined conceptual schema", (ii) map
the refined conceptual schema to the source database, and (iii) generate the relational
DW schema according to the refined conceptual schema and the source database.

The conceptual schema is refined by adding design guidelines that cover non-
functional requirements. As an example of guideline, the designer indicates that he
wants to fragment historical data or states the desired degree of normalization. Guide-
lines constitute a flexible way to express design strategies and properties of the DW.

refined
conceptualschem a

source
relational
schem a

m appings

DW
relational
schem a

call

generate

…
.

…
.

R1

Ri

R8

T1

Tn

…
.

schem a
transform ations

Design Rules

in

generated m appings

Fig. 1. DW logical design environment. The refined conceptual schema, the source database
and the mappings between them (left side) are the input to the automatic rule-based mechanism
that builds the DW relational schema (right side) applying schema transformations.

The following task consists of mapping the refined conceptual schema to the
source database indicating how to calculate each conceptual structure from the source.

Finally, the DW relational schema should be generated. To do this, we propose a
rule-based mechanism in which the DW relational schema is generated by successive
application of transformations to the source schema [18]. Each rule determines which
transformation must be applied according to the design conditions given by the re-
fined conceptual schema, the source database and the mappings between them, i.e.,
when certain design condition is fulfilled, the rule applies certain transformation.

The proposed environment provides the infrastructure to carry on the specified
process, and consists of: a refined conceptual schema, source and DW relational
schemas, a set of rules, schema mappings and a set of schema transformations. Fig. 1
shows the environment.

Due to space constraints, we omit the formal definitions of guidelines and map-
pings, which can be consulted in [21][22], but sections 3.2 and 3.3 informally present
some concepts that will be referenced in the remaining of the paper.

3.1 Motivation Example

Consider a simple example of a company that brings phone support to its customers
and wants to analyze the amount of time spent in call attentions.

In the conceptual design phase, the DW analyst has identified two dimensions:
customers and dates. The customers dimension has four levels: state, city, customer
and department, organized in two hierarchies. The dates dimension has two levels:
year and month. The designer also identified a fact table: support that crosses custom-
ers and dates dimensions and takes the call duration as measure. Fig. 2 sketches the
conceptual schema using CMDM notation [8].

custom ercustom er
customer_id#
customer_name
income

custom ers

citycity
city_id#
city_name

statestate
state_id#
state_name
country

m onthm onth
month#

yearyear
year#

dates

departm entdepartm ent
department
version #

custom erscustom ers

datesdates

durationdurationsupport

Fig. 2. Conceptual schema. Dimension representation consists of levels in hierarchies, which
are stated as boxes with their names in bold followed by the attributes (called items). The items
followed by a sharp (#) identify the level. Arrows between levels represent dimension hierar-
chies. Fact tables are represented through dimension crossings, which are stated as boxes.
Measures are distinguished with arrows.

The source database has three master tables: customers, cities and states, a table
with the customers’ incomes and a table that registers customer calls. The underlined
attributes represent primary keys. Foreign keys are also defined (the trivial ones).

�� Customers (customer-code, name, address, telephone, city, department, cate-
gory, registration-date)

�� Cities (city-code, state, name, inhabitants)
�� States (state-code, name, region)
�� Incomes (customer-code, company-code, income)
�� Calls (customer-code, date, hour, request-type, operator, duration)

The logical design process starts from the conceptual schema and the source data-
bases. The first task consists in the refinement of the conceptual schema by adding
non-functional requirements through guidelines.

Guidelines enable to state the desired degrees of normalization [19] or fragmenta-
tion [13] in a high level way. Furthermore, guidelines enable to define which aggrega-
tions (called cubes [8]) are going to be implemented, obtaining derived fact tables.
We can also indicate the degree of fragmentation of fact tables [20], in order to man-
age tables with fewer records and improve query performance, for example, storing a
table with data of the last two years and another with historical data. Finally, guide-
lines can be explicitly defined by the designer or derived using other specific tech-
niques, for example [19][13].

The second design task is to relate the refined conceptual schema with the source
database. For example, we can indicate that the items of the city level are calculated
respectively from the city-code and city-name attributes of the Cities table and the
month and year items of the dates dimension are obtained from the date attribute of
the Calls table performing a calculation. This is done through the schema mappings.

Finally, the DW schema has to be generated. In order to do this manually, the de-
signer takes a sequence of decisions that transform the resulting DW schema in each
step. Different transformations can be applied depending on the different input infor-
mation and the design strategies.

For example, concerning the degree of normalization, there are several alternatives
to define dimension and fact tables. If we want to denormalize the customers dimen-
sion, we have to store attributes corresponding to all the dimension items in the di-
mension table. This implies joining Customers, Cities and States tables and projecting
the desired attributes. But if we want to normalize the dimension this transformation
is not needed. Furthermore, if an item maps to a complex calculated expression sev-
eral transformations are needed to calculate an attribute for it, for example, for calcu-
lating the income item as the sum of all customer job's incomes, stored in the Incomes
table (sum(Incomes.income)).

Analogous decisions can be taken for selecting which aggregates to materialize,
fragmenting fact tables, filtering data, versioning or removing additional attributes.

We propose to automate most of this last task by using a set of rules. The rules
check the conditions that hold and determine which transformations are to be applied.
The rule conditions consider the conceptual schema, the source database, mappings
between them, and additional design guidelines.

3.2 Design Guidelines

Through the guidelines, the designer defines the design style for the DW (snowflakes,
stars, or intermediate strategies [19]) and indicates performance and storage require-
ments. As an example of guideline, we sketch the definition of one:

Exam ple of G uideline: Vertical Fragm entation of Dim ensions. Through this
guideline, the designer specifies the level of normalization he wants to obtain in re-
lational structures for each dimension. In particular, he may be interested in a star
schema, denormalizing all the dimensions, or conversely he may prefer a snowflake
schema, normalizing all the dimensions [19]. This decision can be made globally,
regarding all the dimensions, or specifically for each dimension. An intermediate
strategy is still possible by indicating the levels to be stored in the same table, allow-
ing more flexibility for the designer.
To sum up, to specify this guideline, the designer must indicate which levels of each
dimension he wishes to store together. Each set of levels is called a fragment. To do
so, he corresponds each dimension with a set of fragments.

3.3 Mappings between the Conceptual Schema and the Source Database

The use of equivalence correspondences or mappings between different schemas is
widely used in database design. In DWs design, other types of correspondences are
needed to represent calculations and functions on the source database structures. In
our proposal, the mappings indicate where the different conceptual schema objects are
in the logical schema of the source database. They are functions that associate each
conceptual schema item with a mapping expression.

Mapping Expressions. A mapping expression is an expression built using attributes
of source tables. It can be: (i) an attribute of a source table, (ii) a calculation that
involve several attributes from a tuple, (iii) an aggregation that involves several
attributes of several tuples, or (iv) an external value like a constant, a time stamp or
version digits. As examples of expressions we have: Customers.city, Year
(Customers.registration-date), Sum (Incomes.income), and "Uruguay", respectively.

Mapping Functions. Given a set of items (Its), a mapping function associates a
mapping expression to each item of the set. We also define the macro Mapping(Its) as
the set of all possible mapping functions for a given item set.

Mappings(Its) � { f / f : Its MapExpressions }

Mapping functions are used in two contexts: in order to map dimension fragments
with source tables, and to map cubes with source tables. In both contexts, each frag-
ment or cube item is associated with a mapping expression.

4 The Rule-based Mechanism

Different DW design methodologies [13][17][3][19][12][2] divide the global design
problem in smaller design sub-problems and propose algorithms (or simply sequences
of steps) to order and solve them. The here proposed mechanism makes use of rules to
solve those concrete smaller problems (e.g. related with key generalization). At each
design step different rules are applied.

The proposed rules intend to automate the sequence of design decisions that trigger
the application of schema transformations and consequently the generation of the DW
schema. Alike the designer behaviour, rules take into account the conceptual and
source schemas as well as the design guidelines and mappings, and then perform a
schema design operation. Table 1 shows a table with the proposed set of rules.

Table 1. Design rules. The rules marked with * represent families of rules, oriented to solve the
same type of problem with different design strategies.

Rule Description
R1 Merge Combines two tables generating a new one. It is used to denor-

malize when a mapping function involves attributes from more
than one table. In source metadata, there should be a join condi-
tion defined between both tables.

R2 Higher level
names

Renames mapped attributes, using the item names. It is used
when an item maps an attribute but the names are different.

R3 Materialize
calculation *

Adds an attribute to a table to materialize a calculation. It is
used when an item maps to a calculation or aggregation.

R4 Materialize
external
expression *

Adds an attribute to a table to materialize an external expres-
sion, such as a constant, a time stamp or version digits. It is
used when an item maps to an external expression.

R5 Eliminate
not-used data

Deletes not-mapped attributes grouping by the other attributes
and applying a roll-up function to measures.

R6 Roll-up * Reduces the level of detail of a fact table, performing a roll-up
of a dimension. It is used when a cube is expressed as an aggre-
gate of another.

R7 Update key Changes a table primary key, so as to agree the key of a frag-
ment or cube with the attribute that it maps.

R8 Data
constraint

Deletes from a table the tuples that don’t verify a condition. It is
used to impose mapping constraints and to fragment a cube
horizontally.

In order to generate the DW schema, the design rules invoke predefined schema
transformations which are successively applied to the source schema. We use the set
of predefined transformations presented in [18], which take a sub-schema as input and
generate another sub-schema as output, as well as an outline of the transformation of
the corresponding instance. These schema transformations perform operations such
as: table fragmentation, table merge, calculation, versioning, or aggregation. Fig. 3
sketches the context of a rule.

call

generate

T6.3

in
custom ercustom er
customer_id#
customer_name
income

Rule3.2

Fig. 3. Context of application of a rule. Refined conceptual schema structures, source tables and
mappings are the input of the rule. If conditions are verified, the rule calls a transformation,
which generates a new table transforming the input ones. Mappings to the conceptual schema
are updated, and a transformation trace from the source schema is kept.

We show the specification of the rule R3.2 (MaterializeAggregate) of the family
R3. The goal of this rule is to materialize an aggregation. The conditions to apply the
rule are: (i) the mapping function of a cube or fragment corresponds an item to an ag-
gregation expression, and (ii) the attribute and calculation expressions (correspond-
ing to other items) reference only one table. The effect of this last condition is to sim-
plify the application of the corresponding transformation, enforcing to apply join
operations before (The previous application of merge rule assures that this condition
can be satisfied). The rule invokes the transformation T6.3.

For example, consider a fragment (customer level) of the Customers dimension
that maps the income item to the aggregation: SUM(Incomes.income), and the other
items to attributes of the Customers table. Fig 3 shows the application of the rule. It
evaluates the conditions and applies a schema transformation (T6.3), which builds a
new table: Customers-DW with all the attributes of the Customers table and a new at-
tribute named income. The rule application also updates the mapping function to ref-
erence the attributes of the new table and keep the mapping between source tables
(Customers and Incomes) and the generated table.

4.1 Rule Specification.

Rules are specified in 5 sections: Description, Target Structures, Input State, Condi-
tions and Output State. The Description section is a natural language description of
the rule behaviour. The Target Structures section enumerates the refined conceptual
schema structures that are input to the rule. The Input State section enumerates the
rule input state consisting of tables and mapping functions. The Conditions section is
a set of predicates that must be fulfilled before applying the rule. Finally, the Output
State section is the rule output state, consisting of the tables obtained by applying

transformations to the input tables, and mapping functions updated to reflect the trans-
formation. The following scheme sketches a rule:

Input State <mapping, tables>
RuleName: Target Structures

Output State <mapping, tables>
conditions

Table 2 shows the specification of the rule R3.2 of family R3.

Table 2. Specification of a rule. As Target structures we have a fragment or cube and one of its
items. As Input we have the mapping function of the structure and two tables referenced in the
mapping function. The first table is referenced by attribute and calculation expressions, and the
second one is referenced by the aggregation expression (The AttributeExpr, CalculationExpr
and AggregationExpr functions return all the attribute, calculation and aggregation expressions
corresponded by the mapping function). The Conditions have been explained previously. The
Output table is the result of applying the transformation T6.3 and the Output mapping function
is the result of updating mapping expressions in order to reference the new table.

RULE R3.2 – AGGREGATE CALCULATE
Description:

Given an object from the refined conceptual schema, one of its items, its map-
ping function (that corresponds the item to an aggregate expression) and two tables
(referenced in the mapping function), the rule generates a new table adding the cal-
culated attribute.
Target Structures:
- S � Fragments � Cubes // a conceptual structure: either fragment or cube
- I � Items(S) //an item ofS

Input State:
- Mappings: F � Mappings(Items(S)) //the m apping function forS
- Tables: T1 � ReferencedTables (AttributeExpr(F) � CalculationExpr(F))

//a table referenced in allattribute and calculation expressions

T2 � ReferencedTables (F(I)) //a table referenced in the m apping expres-
sions ofthe item

Conditions:
- F(I) � AggregationExpr(F) //the expression forthe item isan aggregation
- #ReferencedTables (AttributeExpr(F) � CalculationExpr(F)) = 1

//allattribute and calculation expressions reference to one table

Output State:
- Tables:

-T’ = Transformation T6.3 ({T1, T2 }, I = F(I), Link (T1, T2))
//argum ents are the source tables,the calculation function forthe
item and the join function between the tables.

-UpdateTable (T’, T) //Update table m etadata
- Mappings:

- F' / F'(I) = T'.I � � J�Items(S), J	I . (F'(J) = UpdateReference(F,T,T'))
//The m apping function willcorrespond the given item with an attribute
expression and update the m apping function to reference the new table

4.2 Rule Execution.

The proposed rules do not include a fixed execution order. Therefore, they need an
algorithm that orders their application.

We propose an algorithm that is based on existing methodologies and some practi-
cal experiences. The algorithm consists of 15 steps. The first 6 steps build dimension
tables. Then, steps 7 to 12 build fact tables, steps 13 and 14 perform the aggregates
and finally step 15 carries on horizontal fragmentations. Each step is associated to the
application of one or more rules.

Due to space limitations we present the global structure of the algorithm and the
details of one of its steps (Table 3). The complete specification can be found in [22].

Algorithm Structure:
Phase 1: Build dimension tables for each fragment

Step 1: Denormalize tables referenced in mapping functions (R1)
Step 2: Rename attributes referenced in mapping functions (R2)
Step 3: Materialize calculations (R3, R4)
Step 4: Data Filter following mapping function conditions (R8)
Step 5: Delete attributes non-referenced in mapping functions (R5)
Step 6: Update primary keys of tables referenced in mapping functions (R7)

Phase 2: Build fact tables for each cube
Step 7: Denormalize tables referenced in mapping functions (R1)
Step 8: Rename attributes referenced in mapping functions (R2)
Step 9: Materialize calculations (R3, R4)
Step 10: Data Filter following mapping function conditions (R8)
Step 11: Delete attributes non-referenced in mapping functions and apply meas-

ure roll-up (R5)
Step 12: Update primary keys of tables referenced in mapping functions (R7)

Phase 3: Build aggregates
Step 13: Build an auxiliary table with drill-ups attributes (if it does not exist)

(R1, R2, R3, R5, R6)
Step 14: Build aggregates tables (R5, R6)

Phase 4: Build horizontal fragmentations
Step 15: Data Filter following fragmentations conditions (R8)

5 Conclusions

This paper presents a rule-based mechanism to automate the construction of DW rela-
tional schemas. The kernel of the mechanism consists of a set of design rules that de-
cide the application of the suitable transformations in order to solve different design
problems. The overall framework integrates relevant elements in DW design: map-
pings between source and DW conceptual schemas, design guidelines that refine the
conceptual schema, schema transformations which generate the target DW schema,
and design rules that embed design strategies and call the schema transformations.

The proposed framework is a step forward to the automation of DW logical design.
It provides an open and extensible environment that enables to apply existing design
techniques into a unique place allowing for enhanced productivity and simplicity.
Moreover, new design techniques can be integrated as new rules or transformations.

This framework has been prototyped [21][11]. The system applies the rules and
automatically generates the logical schema by executing an algorithm that considers
the most frequent design problems suggested in existing methodologies and comple-
mented with practical experiences. The prototype also includes a user interface for the
definition of guidelines and mappings, an environment for the interactive application
of the rules and the schema transformations and a graphical editor for the CMDM
conceptual model. All this work has been implemented in a CASE environment for
DW design.

In the near future we intend to enhance the capabilities of our framework, integrat-
ing further design techniques and extending it to cover the design of loading and re-
freshment tasks using the information provided by the mappings and the design trace
of the transformations.

Table 3. Specification of a step of the algorithm

STEP 3: MATERIALIZE CALCULATIONS

For each fragment of the refined conceptual schema, apply: rule R3.1 to each calculated
expression, rule R3.2 to each aggregate expression, and rule R4 to each extern expression.

For each S � Fragments //foreach fragm entS
F = FragmentMapping(S) //F isthe m apping function ofthe fragm ent
{T} = ReferencedTables (AttributeExpr(F) � CalculationExpr(F))

//T is the table referenced by attribute and calculation expressions.There
is only a referenced table because ofprevious execution ofstep 1 */

For each I � Items(S) //foreach item offragm entS
If F(I) � CalculationExpr(F) //F corresponds Ito a calculation expression

<F,T>
Apply Rule3.1: S, I

<F’,T’>

If F(I) � AggregationExpr(F) //F corresponds Ito an aggregation expression

<F,T>
Apply Rule3.2: S, I

<F’,T’>

If F(I) � ExternalExpr(F) //F corresponds Ito an externalexpression

<F,T>
Apply Rule4: S, I

<F’,T’>
T = T’
F = F’ //update loop variables

Next
FragmentMapping(S) = F //update the m apping function forthe fragm ent

Next

References

1 Abello, A.; Samos, J.; Saltor, F.: "A Data Warehouse Multidimensional Data Models
Clasification". Technical Report LSI-2000-6. Dept. Lenguages y Sistemas Informáticos,
Universidad de Granada, 2000.

2 Adamson, C.; Venerable, M.: “Data Warehouse Design Solutions”. J. Wiley & Sons,
Inc.1998.

3 Ballard, C.; Herreman, D.; Schau, D.; Bell, R.; Kim, E.; Valncic, A.: “Data Modeling
Techniques for Data Warehousing”. SG24-2238-00. IBM Red Book. ISBN number
0738402451. 1998.

4 Batini, C.; Ceri, S.; Navathe, S.: “Conceptual Database Design- an Entity Relationship
Approach”. Benjamin Cummings, 1992.

5 Boehnlein, M.; Ulbrich-vom Ende, A.:”Deriving the Initial Data Warehouse Structures
from the Conceptual Data Models of the Underlying Operational Information Systems".
DOLAP’99, USA, 1999.

6 Bouzeghoub, M.; Fabret, F.; Matulovic-Broqué, M.: “Modeling Data Warehouse
Refreshment Process as a Workflow Application”. DMDW’99, Germany, 1999.

7 Cabibbo, L. Torlone, R.:"A Logical Approach to Multidimensional Databases", EDBT'98,
Spain, 1998.

8 Carpani, F. Ruggia, R.: “An Integrity Constraints Language for a Conceptual
Multidimensional Data Model”. SEKE’01, Argentina, 2001.

9 Chaudhuri, S.; Dayal, U.: "An overview of Data Warehousing and OLAP technology".
SIGMOD Record, 26(1), 1997.

10 Codd, E.F.; Codd, S.B.; Salley, C.T.: "Providing OLAP (on-line analytical processing) to
user- analysts: An IT mandate". Technical report, 1993.

11 Garbusi, P.; Piedrabuena, F.; Vázquez, G.: “Diseño e Implementación de una Herramienta
de ayuda en el Diseño de un Data Warehouse Relacional”. Undergraduate project.
Universidad de la República, Uruguay, 2000.

12 Golfarelli, M. Rizzi, S.: ”Methodological Framework for Data Warehouse Design.",
DOLAP’98, USA, 1998.

13 Golfarelli, M. Maio, D. Rizzi, S.:”Applying Vertical Fragmentation Techniques in Logical
Design of Multidimensional Databases”. DAWAK’00, UK, 2000.

14 Hahn, K.; Sapia, C.; Blaschka, M.: ”Automatically Generating OLAP Schemata from
Conceptual Graphical Models", DOLAP’00, USA, 2000.

15 Hüsemann, B.; Lechtenbörger, J.; Vossen, G.:"Conceptual Data Warehouse Design".
DMDW’00, Sweden, 2000.

16 Kenan Technologies:"An Introduction to Multidimensional Databases”. White Paper,
Kenan Technologies, 1996.

17 Kimball, R.:"The Datawarehouse Toolkit". John Wiley & Son, Inc., 1996.
18 Marotta, A. Ruggia, R.: “Data Warehouse Design: A schema-transformation approach”.

SCCC’2002. Chile. 2002.
19 Moody, D.; Kortnik, M.: “From Enterprise Models to Dimensionals Models: A

Methodology for Data Warehouse and Data Mart Design”. DMDW’00, Sweden, 2000.
20 Ozsu, M.T. Valduriez, P.: “Principles of Distributed Database Systems”. Prentice-Hall Int.

Editors. 1991.
21 Peralta, V.: “Diseño lógico de Data Warehouses a partir de Esquemas Conceptuales

Multidimensionales”. Master Thesis. Universidad de la República, Uruguay. 2001.
22 Peralta, V.: “Towards the Automation of Data Warehouse Logical Design: a Rule-Based

Approach”. Technical Report. Universidad de la República, Uruguay. 2003.
23 Phipps, C.; Davis, K.: "Automating data warehouse conceptual schema design and evalua-

tion". DMDW'02, Canada, 2002.

	Str:
	:3281: 329
	:3291: 330
	:3301: 331
	:3311: 332
	:3321: 333
	:3331: 334
	:3341: 335
	:3351: 336
	:3361: 337
	:3371: 338
	:3381: 339
	:3391: 340

