
Ensuring Quality of Web Applications
by Client-side Testing Using TTCN-3

Cosmin Rentea1, Ina Schieferdecker1, and Valentin Cristea2

1 Fraunhofer FOKUS Institute, Berlin
{ cosmin.rentea, ina.schieferdecker }@fokus.fraunhofer.de

2 Politehnica University Bucharest
valentin.cristea@cs.pub.ro

Abstract. Although there are many test systems and languages which were designed and tailored
specifically for the Web, the versatility of standardized test languages makes them good candidates for
such testing activities. TTCN-3 is a standardized test language and test architecture for distributed
reactive black-box testing. In this paper, we present a framework for testing Web applications and Web
services using TTCN-3 as language of choice. Besides this abstract test layer, we have developed a test
adapter and codec that permit seamless integration and usage of browser simulators while providing
for functional testing as well as non-functional testing (e.g. distributed load-testing, security testing).
The capabilities were proved for certain proof-of-concept web applications; a case study illustrates the
relevance of the framework in the context of quality assessment and testing.

1 Introduction

The purpose of work underlying this article is allowing a rich variety of testing methods using TTCN-3 and
applied to Web applications.

Over the last years, there was a spectacular growth of the web applications domain. Dynamic content
generation and scripting languages (server-side like PHP, and client-side as JavaScript) are used to develop
these applications, leading to heterogeneous interactions between the components of the application, which
are aspects of a very error-prone development process. Rigorous testing must be enforced, usually following
the multi-tiered approach of the web application under test.

At the same time, the content formats of the web documents are constantly changing. The appearance of
more semistructured XML-conformant languages like XHTML and information retrieval and tranformation
languages such as XPath, XQuery, XSLT, made the structural aspects of Web documents more important
than the presentational ones. These formats (including SOAP for web services) are standardized by the W3C
and supported by syntactic validators. This means the testing can focus now on the actual semi-structured
content and information flows.

2 Context and Related work

2.1 TTCN-3 – Test Language, Architecture and Tools

TTCN-3 (Testing and Test Control Notation version 3) is an abstract testing language that can be used for
black-box testing of any reactive system, with any communication interface. It provides a way of describing
so called Abstract Test Suites (ATS), that are independent of the test execution environment. TTCN-3 [1] is
the only standardized language for the specification of test cases.

TTCN-3 allows easy and efficient description of complex distributed test behavior. It contains all the fea-
tures necessary to specify test procedures and campaigns. In addition to the pure textual format, the Tabular
and Graphical Presentation Formats have been defined to provide graphical means both for data and behavior
aspects. New concepts are test behavior in asynchronous and synchronous communication environments, test
component concepts to describe concurrent test setups, dynamic concurrent test configurations, integration
of data-definition languages (ASN.1, IDL, XML Schema).

The top-level unit of TTCN-3 is a module, which can import definitions from other modules. Modules
consists of a definitions part and a control part, and can have parameter lists. The control part of a module
calls the test cases and controls their execution (sequences, repetitions and dependencies on test outcomes).
The definitions part of a module (which can be split into groups) defines test components, communication
ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test cases
etc. A collection of test cases is known as a test suite, its execution being a test campaign.

TTCN-3 has a similar look and feel to a typical programming language. Program statements can be used
to specify the selection and execution order of individual test cases. TTCN-3 has a number of predefined basic

data types, and structured types such as records, sets, unions, enumerated types and arrays. Data structures
called templates provide parametrization and matching mechanisms for specifying test data to be sent or
received over the test ports. The operations on these ports provide both message-based and procedure-based
communication capabilities. TTCN-3 program statements include behavior description mechanisms such as
alternative reception of communication and timer events, interleaving and default behavior. Multiple com-
ponents can run their own test logic in cooperation with the others and give their local verdict to establish
the final global verdict of the testcase. Test verdict assignment and logging mechanisms are also supported.
Finally, TTCN-3 language elements may be assigned attributes (even user-defined) such as encoding infor-
mation and display attributes.

A TTCN-3 test system can be conceptually thought of as a set of interacting entities. The part of the test
system which implements interpretation or execution of a TTCN-3 test specification is represented by the
TTCN-3 Executable (TE) entity. This entity corresponds either to an interpreted or an executable test suite
(ETS) produced by a compiler from a TTCN-3 ATS. The remaining parts of the TTCN-3 test system, which
deal with any aspects that can not be concluded from information present in the original ATS alone, can
be decomposed into Test Management (TM), Component Handling (CH), Codec (CD), SUT Adapter (SA),
and Platform Adapter (PA) entities. As depicted in Fig. 1, a TTCN-3 test system has two major interfaces,
the TTCN-3 Control Interface (TCI) and the TTCN-3 Runtime Interface (TRI), which specify the interface
between Test Control TC (comprising TM, CH and CD) and TE entities, and TE and Test Runtime TR (SA
+ PA) entities, respectively. More information about the language can be found on the official webpage [1],
while a good introduction is given in [2].

Fig. 1. TTCN-3 System Architecture

TTCN-3 can test all types of reactive system over a variety of communication ports. Typical areas of
application are protocol testing, services testing, module and API testing, system and middleware testing
(e.g. CORBA, EJB or web services technologies). TTCN-3 is not restricted to conformance testing and can be
used for many other kinds of testing including interoperability, robustness, regression, system and integration
testing.

TTworkbench is a graphical test development and execution environment for TTCN-3, being implemented
in Java on top of Eclipse as a series of plugins that add new perspectives: one for specificaiton of TTCN-3
modules and testcases; one for management, execution and analysis of executable testcases. Once tests have
been defined in TTCN-3, TTworkbench compiles them in an ETS using the TTthree compiler (first Java
classes are generated, then they are compiled using the usual Java compiler).

2.2 Related Work using TTCN-3 Approaches

We reviewed below the contributions that employ TTCN-3 technologies for enabling testing of web applica-
tions and web services.

The authors of [3] proposed a TTCN-3 based architecture for complex web-testing; however, it is just
presented as a theoretical approach. The components of their testing methodology are: (1) multiple test
methods are employed for different models: analysis model, (e.g. use case, object state diagram) and design
model (navigation model, business model, data model, sequence diagrams etc.); (2) TTCN-3 is used to specify
all the testcases on an abstract level (ATS) – this helps separate test design from test implementation and
makes ATS language and platform independent, increases the reusability of TCs and the degree of automated
testing, takes advantage of the commercial tool support enjoyed by TTCN-3; (3) Several other test tools may
be used such as link checkers, and GUI capture-and-playback tools; TTCN-3 translators may be required to
convert ATS to the proprietary scripting languages of test tools.

A life-cycle testing process for e-commerce systems by adapting OO-TTCN-3 (an object-oriented extension
of a formal test language TTCN-3) to enable the efficient specification of tests in object-oriented, e-commerce
development environments, is presented in [4]. This extension is meant to ease life-cycle testing, facilitate test
case reuse between different test phases, and provide a unified ATS interface to test tools. The OO-related
extensions are inheritance hierarchies (extend and override mechanisms, usage of private and public reserved
words) and aggregation relationships between test modules. The author implements only a very basic and
limited test adapter and codec. This is only a theoretical approach, as these extensions are not implemented
in any TTCN-3 tools. Overall, this is does not leverage TTCN-3 – the presented test suite can only be used
for verifying that a URL can be loaded.

In [5] the authors employ TTCN-3 to define test cases at different levels of abstraction that are more robust
in the face of volatile presentation and implementation details. A case study of a shopping cart scenario with
order processing is used as an illustration. Features of TTCN-3 are demonstrated, including a powerful
matching mechanism that allows a separation between behavior and the conditions governing behavior;
TTCN-3s data types and set-based operations allow one to track and verify the information management
done by a web application, independent of implementation details. The advantages and challenges of a
systemic test specification approach are characterized in comparison to approaches based on unit testing and
test automation tools. The main differences between the proposed approach and the is the emphasis put on
reutilisation and automation of TTCN-3 definitions and templates, the aggregation of XPath to check not
only navigational issues but also structural ones, the increadesd complexity of TTCN-3 Adaptation Layer,
and the usage of configurable, complex, visual tools both during identification of test objectives and test
execution.

In [6] a TTCN-3 abstract testing approach is proposed for web services, which distributes the test activities
to both server and client sides, thus facilitating testing while the traditional approaches fail due to the
difficulties brought by the language and platform-independence of web services. Nevertheless, this approach
lacks generality as it is tailored toward specific web services even in the abstract test suite, and the adaptation
layer can hardly be adapted to new real-world services. The binding between web service definition and the
TTCN-3 system is not automated after the test case design phase.

An interesting contribution to the domain of testing web services is done in [7]. The paper discusses the
automated testing of Web services by use of TTCN-3. A mapping between XML data descriptions to TTCN-3
data is presented to enable the automated derivation of test data and test configuration. This is the basis for
functional and load tests of XML interfaces in TTCN-3. The paper describes also theoretically the mapping
rules and prototypical tools (an XML to TTCN-3 conversion tool, a test adapter for XML/SOAP interfaces,
and the compiler) for the development and execution of TTCN-3 tests for XML/SOAP based Web services.

In the same line of generating partial TTCN-3 definitions (data types, templates, even simple behaviour
in the form of stubs) in a generative process starting from XML specifications following W3C web standards,
we could cite the work done by [8] for XML Schema, and by [9], [10] and [11] for WSDL.

The principles of distributed testing using the TTCN-3 TCI are described in [12]. In a similar perspective
applied to the web services domain, [13] describes an automated TTCN-3 test framework whose purpose is
easing the creation and deployment of distributed functional and load tests. The test framework is exemplified
for web service tests and presents results obtained from testing a specific web service.

3 Requirements, Design and Architecture

We want to allow the testing of normal web applications using reactive black-box mechanisms.
What matters is not the technology that is used on the server-side for page generation, but satisfying

the project’s requirements from the user’s point of view – thus, the perspective of ”client-side testing” was
adopted. We want to analyze only the actual content received at the client from the Web servers and see if
they correspond to our expectations; such content includes HTML/XHTML documents, images, JavaScript
embedded in documents or in separate files, even CSS files. The aim is to be able to simulate the behavior
of a browser as accurately as possible. Active components (like Java applets, Flash objects) are excluded
from testing because communication between them and the server can be arbitrary using TCP/IP sockets;
interpretation of these interactions is application-specific, so we’ll test only standardized information passed
at the HTTP protocol level.

A desired requirements is to have not only navigational checks, but also document and content testing.
To achieve this, we use either XPath or XQuery to analyze the structure of the received documents. These
are the established standards that provide the possibility to access fragments of the XML-based documents
(like XHTML) by using a common expression algebra (based on XML Information Set Data Model). Since
these languages contain small textual expressions, we can maintain for each webpage we test a list of queries
that identify respectively the portions we want to check. The results of these queries are in the most general

case sets of nodes (e.g. one row in an HTML table), but can also be single nodes or strings or numeric results.
For instance, one can check the presence of all the required fields in a form by using different queries to select
all the controls (e.g. checking for correct captions or associated actions for buttons, searching for a specific
text etc.). The list of query expressions specified above can be stored in an external repository along with the
identifiers for applications and for current webpages. These identifiers can take into consideration the URL
of the document, its parameters and the history of previously visited pages.

Another goal is to provide the tester with multiple test approaches. Testing of web applications may
be either functional (testing specified use-cases and scenarios), conformance testing (for the application
specifications and validators for documents, links, objects) stress and performance (simulating multiple clients,
time/load measuring), security. Finally, we want to provide realistic implementation usable for system and
integration and regression testing.

We wanted to provide an open standards-based testing infrastructure for web-applications. TTCN-3 was
selected as the testing language of choice because of its features: a standardized, abstract test-language
designed for black-box reactive testing and having a clearly-defined interaction with the SUT. Having defined
our requirements, the next step was to identify the usable standards, software and tools. A decision was
made to use TTworkbench as the development environment; the arguments were the features, extendability,
development time and quality of support.

The main design components are the following:

Mapping Generator (WebTestGUI) for the identification of parts to be checked on webpages.
Mapping Repository that store pointers or constraints related to various elements on the different pages

of the web application.
TTCN-3 Web API is a high-level API oriented to Web-testing that defines data types, functions, signa-

tures, components.
Test Adaptation Layer comprises the parts of the architecture that are residing at the TRI [14] and

TCI level [15]: Test Codec (TCI, CoDec interface); Test Adapter (TRI, System Adapter interface); Test
External Functions (TRI, Platform Adapter interface). The TTCN-3 API and the Test Adaptation are
collectively named TWeb.

The advantages of this design are conformance to standards (W3C and ETSI), generality (applicable
to every XML-based document), separation of concerns (between identification of testable items and actual
testing, and between the different levels of test abstraction), loose coupling between the software components
(by using a repository), automation (permits the generation of executable tests starting from the repository),
configurability (settings on Adaptation layer); On the source code level, maintainability, reusability and
extensibility are assured: TTCN-3 code and definitions are modularized, new TTCN-3 templates can be
derived, Mapping Repository generates and reuses similar regular expressions for applications webpages,
codec and adapter are reusable and extendable.

3.1 Mapping Repository and Mapping Generator – WebTestGUI

Each Repository consists of Pages which are defined by a set of Addresses which can have multiple URLs
(specified as regular expressions) and HTML parameters (name=value pairs). It can be also possible to
specify a browsing History (the ordered list of pages that had to be visited first before ”activating” the
current entry).

To specify the parts we want to test on the page, we defined the Mapping structure. Each Address
represents a page loaded in the browser or by the test adapter; it can be specified at different moments
in the web-application workflow and with varying parameters or under different URLs. Overall, a Test
contains multiple Adresses with regular expresion URLs and with multiple XPathMappings that contain
Name=XPathExpression associations. The structure of the Mapping repository is described in Fig. 2. This
hides from the TTCN-3 tester the details of the underlying technology used for accessing nodes in the XML
document (XPath or XQuery); the programmer only needs to specify the given name of a query and if the
Mapping is active in the moment of the call (by searching through the list of activated Addresses) then the
test adapter will evaluate the expression and return the results. The programmer needs to indicate to the
test adapter which repository will be used in his testcase and the test adapter will do the rest. In this way,
we can have a great deal of control over the Mappings that are active at a certain time; it is easy to check the
static or the dynamic portions of HTML at runtime because different Addresses will be active depending on
the parameters and browsing history. Also, we can make tests to the same application deployed to different
hosts, ports etc. by using the regular expression mechanism when specifying the URLs that can activate an
Address.

Taking into consideration that the structure is hierarchical, the mapping repository can be easily specified
as an XML file, whose structure can be defined and validated using XML-Schema. After experimenting with

Fig. 2. Mapping Repository Structure

both standards and related tools, we took the decision to use XPath and not XQuery because (1) XPath is
easier to understand and program with, while XQuery is a recent standard; (2) XPath expressions can be
automatically generated (to a certain degree) and are just strings and can be easily kept inside XML files,
while XQuery expressions are more complicated and would need to be kept separately in different files in a
hierarchical structure (which is harder to maintain); (3) Only the XPath addressing was compulsory, while
the complex expression of XQuery could be added at a later stage.

The purpose of the WebTestGUI tool is to obtain Mapping repositories. The software must be able to
export a XML file containing the Mapping repository; this is done by the MappingWriter component, which is
contained by the main component. The selected BrowserSimulator will be a package that implements DOM-
Events Level 2 3. Users will use the GUI which contains also the BrowserSimulator canvas in order to visually
select elements on the page. When selecting such a node (for instance by clicking a hyperlink or entering
a textfield), a DOM-Event will be fired and then handled by the DOM-Events Handlers, and information
about the Node will be analyzed and displayed in the GUI according to its type. In order to permit browsing
and mapping selection, the program needs to work in two modes:

1. Interception: The DOM-Events are collectively intercepted. Nodes on the page can be interactively se-
lected and added to the repository. Every navigation action is canceled (for instance clicking on links has
no effect because after intercepting the DOM-Event, the event is discarded).

2. Navigation: Permits browsing as in a normal browser.

These modes can be selected at any time by a control in the GUI. The functional regime is the following:
after loading a new page (navigation), the tool will switch automatically to interception mode; after the user
has added to the repository all the mappings relevant for the current page, he must change the mode back
to navigation and continue browsing.

3.2 TWeb – Integrated Web Testing Solution with TTCN-3

Web Testing API in TTCN-3 There is unfortunately no standardized notation for expressing TTCN-3
modules (like UML Class Diagrams) because TTCN-3 is not object-oriented (although it is module-oriented).
Also, because we are not describing a process, but a set of functions, signatures and structures, we cannot
use activity diagrams for description of the behavior.

Nevertheless, we can describe the intentions of the modular design. The API in located inside a single
TTCN-3 module, which is structured into several groups, i.e. TTCN-3 convenience functions, definitions
and functions for handling URLs, data structures, signatures and functions for handling HTML pages and
specific content, data structures, signatures and functions for handling HTTP connections, data structures,
signatures, functions that embed a Browser, definitions of procedure-type ports and of components that
embed them.

Conceptually, the Browser can create and handle multiple Windows that contain stacks of WebPages.
Each Window can have its specific properties (like using a proxy, disabling JavaScript or object-loading).
Only one Window and one WebPage is active at every moment in time; the possibility exists to go back
and forward in the chain of WebPages in each Window. A WebPage contains in turn a HttpRequest and a
HttpResponse structure.

3 http://www.w3.org/TR/DOM-Level-2-Events/

The API logic is implemented by three means: external functions (implemented in the Platform Adapter),
signatures (implemented in the SUT Adapter), and functions.

External functions are functions implemented in Java and called in TTCN-3 for features that

– are already well-done in Java and difficult to re-implement in TTCN-3, for instance handling URLs with
the standard Java URI class, or more complex logging

– can only be done in Java: issuing database commands (e.g. for reloading the same data in the database to
assure consistent results, not influenced by any possible previous testcase failures), conversion functions,
accessing the execution platform

Signatures are used for things that are related to the communication (HTTP requests and responses,
browser settings) and the page analysis (DOM-handling, evaluation of currently active Mappings, specific
functionality for HTML Tables and Forms etc).

TTCN-3 functions are used to implement associative arrays, analyze the HTTP headers, set the HTML
parameters, analyze the DOM-tree in TTCN-3, for initialization of the browsing session parameters (host,
port etc.), interacting with the page controls and forms and for getting any element(s) from the page, as well
as for testing HTML Tables.

TWeb Adaptation Layer comprises three components:

Test Codec - TCI, implementing the CoDec interface)
Test External Functions - TRI, implementing a part of the Platform Adapter interfaces
Test Adapter - TRI, implementing the SUT Adapter interface

These components are also described in a UML Component Diagram (Fig. 3). They are implemented in
Java as this is the language provided by TTworkbench platform for writing adapters and codecs.

Fig. 3. TWeb Component Diagram

Encoding functionality has to be provided to the TTCN-3 runtime behavior in order to send real data
over a real communication port, or call a real world method on a SUT port. On the other hand incoming data
has to be decoded into a TTCN-3 value, to allow matching against TTCN-3 template definitions [15]. Two
entities have to be implemented: an Encoder (TTCN-3 data to real world data) and a Decoder (real world
data to TTCN-3 data); the new implemented Encoder and Decoder have to be announced to the runtime
behavior using the methods provided by the TCI Interface. Two interfaces are provided by the platform:

– Interface ”Encoder” that offers the encode method, that takes as a parameter a Value value and returns a
TciMessage, encoded message. There is a basic encoder provided by the underlying platform that encodes
all TTCN-3 data into a byte array.

– Interface ”Decoder” that offers the decode method, that takes as parameters, a TciMessage and a Type,
and decodes the message, and the returned Value.type contains the expected type of the decoded message
(decoding hypothesis).

The underlying TTCN-3 platform provides a useful extension for writing external functions by respecting
rules about parameter-access and implementing a generic interface.

The TWeb Adapter includes a BrowserSimulator. A choice had to be made according to the features of
the software tools (e.g. JRex, HtmlUnit4, or Lobo5). Although a single tool was selected, it is possible as well
to use the other packages as browser simulators by rewriting parts of the Adapter.

In the adapter there is an ad-hoc procedure for handling of the incoming triCall() (corresponding to
the port call in TTCN-3). Each signature is implemented in its own Java method, receiving its parameters
(TriParameter). Returning the results is done only in triCall for all the signatures.

The Mapping Loader component reads at first the Mapping entries from the repository and then when the
TTCN-3 user changes the page loaded in the BrowserSimulator (by using for instance the load() signature), it
changes the set of active Mappings depending on the new URL (matched against a set of regular expressions),
parameters and browsing history. Then, if required, it evaluates this modified set of active Mappings using an
XPath package; the class used to implement a Mapping (name, expression along with all its possible results)
is XPathMapping.

4 Implementation

4.1 Software Packages used in the Implementation

Jaxen is an open source cross-API XPath library for Java6. It is a Java class library that can operate on
various XML object models using a standard engine rather than an API that can be offered by many different
engines for one model. Jaxen is a more complete object model for XPath expressions, especially for evaluating
XPath expressions in a a particular document against a context node.

JRex is a Java-browser Component with set of APIs for embedding the Mozilla browser within a Java
application7. It provides a Java wrapper around the required Mozilla embedding interfaces; it does not
require Mozilla to be installed, instead uses GRE (Gecko Runtime Engine – a minimal browser engine);
since Mozilla is composed of multiple interfaces (mostly in C++ and JavaScript), controlling the browser is
simply a matter of accessing these interfaces from Java using Java Native Interface. It’s compatible with the
latest versions of Mozilla Gecko, can run on multiple platforms. It has an easily extendable APIs, permitting
integration of other emerging W3C standards like XHTML 2, XForms etc. JRex is compatible with AWT,
Swing and also with Eclipse’s SWT. JRex supports tabbed and single-pane browser windows, profile and
preferences (to enable/disable plug-in, images, setting web-proxies etc.), Persistence, History, ContextMenu,
ContentUrlListener, Observer, Progress, window and event capturing and management. Most importantly, it
provides native support for accessing DOM objects of rendered page. It implements partly DOM3 HTML for
manipulating loaded HTML Document and also DOM-Events Level 2. The JRex DOM implementation has
additional features: the browser can read and interpret correctly even malformed HTML, while the tags are
always rewritten in an uniform way; the provided DOM is namespace-aware. JRex is similar to a real browser
(e.g. runs the JavaScripts embedded in HTML) and it can be used for accurate user-oriented performance
measuring (capacity, latencies etc.) – for instance, the load-time of the page is more accurate from the user’s
point of view, given that a browser is not only receiving some text on a HTTP connection, but also the
rendering, retrieving other documents and objects etc.

The reasons to choose JRex were: using a real embedded browser, it offers a graphical view of the web
pages; it is more realistic from the user’s point of view for time measurements and responsiveness; it is
extensible and configurable (through JNI); Mozilla/Seamonkey code-base has many functionalities, being
also maintained and supported; it is a free open-source solution; it can be used in a dual role – also in the
Mapping Generator tool to create Mapping Repositories.

Mozilla 1.8 was compiled using the Cygwin environment and the Microsoft C++ compiler in order to get
a recent Gecko engine. Jrex contains these libraries as well as compilable Java classes that access them using
JNI.
4 http://htmlunit.sourceforge.net/
5 http://lobobrowser.org/
6 http://jaxen.org/
7 http://jrex.mozdev.org/

4.2 WebTestGUI and the Mapping Repository

WebTestGUI is implemented in Java using JRex (integrated in a Swing application), Jaxen, JAXP.
JRex was used as a Java Canvas descendent, embedding it in Swing frames as we would with a normal

component. The program needs to be notified when the browser finished loading a page, and after that it is
needed to install the DOM-Events handlers. In the event handler, after finding the selected DOM Node and
finding its type, the event is consumed because the browser should not actually handle it.

The GUI contains a list of the mappings, with the possibility to add, edit or delete them. Information
shown includes data about the node, its attributes and children, contained text, suggested name of the
Mapping, an automatically generated unique XPath expression identifying the set of selected nodes in the
DOM, along with the evaluation of the current XPath expression. The user can edit the current mapping by
changing its name and XPath expression (with real-time evaluation on the loaded DOM using Jaxen), or by
selecting a different node from the DOM tree that is presented in the GUI. Page URLs can be also edited and
tested in the context of the current page; regular expressions are accepted if they match the current URL.
The tool can intercept any relevant DOM-Events related to visible elements (form controls, tables, text etc.)
on the page, and gives visual feed-back on selection. It can also be used for selecting invisible elements by
using the DOM-tree control in the GUI. Since DOM-Events are closely bound to the DOM structure of the
page, loading a new page in the BrowserSimulator resets these handlers, which have to be installed again. The
current Mapping Repository can be saved or loaded using the MappingWriter/MappingReader components,
using standard Java JAXP package; these mappings can be later referenced in the TTCN-3 API by their
given names. The definitions in the repository will be contained in an XML file. Each mapping entry will be
placed according to the introduced URL regular expression.

4.3 TWeb

Web Testing Library Module in TTCN-3. HttpRequest can specify for instance HTTP method, the full URI,
the protocol, the headers etc. HttpResponse is more complex and contains the loaded URI, the protocol, status
code and string, the load-time (time necessary to load the page), headers and the raw content of the received
stream, and a HtmlPage structure (which can be modified in case of other content type, e.g. regular XML
files). The HtmlPage record has four types of fields: (1) a DOM-like tree structure, composed of structures
describing Nodes; (2) current Mappings for the page; (3) the Controls of the forms on the page; (4) various
properties that can be computed from the page; these fields, depending on preferences on the Browser level,
can be computed either at the adapter level, after loading the page (default), or with signature calls after
receiving the page in TTCN-3 (e.g. for performance measurements).

Also, in the HTTP and HTML groups types are defined types for handling HTTP headers, HTML
parameters, HTML DOM Nodes, XPath Mappings and their evaluation results, all HTML controls and forms,
HTML tables. Templates for HTTP response-matching, HTML page-matching, and HTML table-matching
also were defined here; these can be derived to get more specific templates usable in specific testcases.

As an example, we describe two signature definitions, actually executed in the Adapter:

load takes an HttpRequest, passes it to the Adaptation layer, which loads the page in BrowserSimulator
and evaluates the Mappings; the adapter issues back a HttpResponse which can be interpreted in the
TTCN-3 code.

getFullHtmlTable takes an HtmlPage and the table index and returns an HtmlTable with the table di-
mensions and the cells as a matrix with HTML Nodes.

TTCN-3 functions are used in several places; they implement associative arrays, analyze the HTTP
headers, set the HTML parameters, analyze the DOM-tree in TTCN-3, are used for initialization, interacting
with the page controls and forms, and for getting any element(s) from the page, as well as for testing HTML
Tables.

The definition of a port and a component were also defined; the port must be of procedure type, acting
as in synchronous Remote Procedure Call:
type port HttpPort procedure{
out createBrowser , createWindow , configureWindow , setActiveWindow , load , clickLink , clickButton ,

goForward , goBack , testObjects , testLinks , testConformance ,
getFullHtmlTable;

in WebBrowser , WebWindow , integer , charstring , boolean , float , Map ,
HtmlNode , HtmlNodes , MappingContent , HttpResponse , HtmlTable; }

type component WebComponent { port HttpPort httpPort; }

It is possible to get the results of XPath Mappings evaluation using a function with an XPathMapping
parameter (which contains its name), or to evaluate non-named XPath expressions (which are not already
present in the Mappings Repository). One can search for regular expressions in the text nodes of the page

and to explore nodes, attributes for finding their properties (such as the URL of a link or the link in a table
cell).

Nodes are represented by a HtmlNode structure which mimics a DOM Node by using a TTCN-3 record
with optional fields. For now, the types of nodes received from the adapter can be XML elements, attributes
or text; the usable fields are determined by the node type. Convenience functions are provided for handling
these nodes.

Controls are modeled with TTCN-3 records with optional components following the HTML Forms8 speci-
fication. All their possible attributes are specified, and according to their type they are handled differently by
the convenience functions; for example, setting or resetting the value of text input compared to checkboxes
have different meanings. The Controls can be converted back and forth from regular Nodes. The HtmlForms
records can contain multiple controls; only one form can be submitted at one time, and then if applicable
the values of the successful controls are transmitted as request parameters (either with the GET or POST
method). Another important issue is handling HtmlTables; these are received from the adapter using a sig-
nature and are contained in a record which embeds information about its dimensions, headers, and the cells
represented as TTCN-3 HtmlNodes. Some general tests are also included, e.g. for checking links integrity for
the whole page, or checking for embedded objects.

The TTCN-3 Codec must implement the TciCDProvided (TCI) interface. There is an AbstractBaseCodec
that handles the default encodings if necessary. The TTCN-3 language also provides means to specify the
encoding of a structure/record. The Codec supports Unicode encodings for strings.

The following problem was encountered: the Java representations of TTCN-3 variables (Value clasees)
should be accessed in the Adapter as they are transmitted from the Test Executable. These TTCN-3 values
may come in structured forms like records, and should be passed as parameters to underlying software in
the adapter (such as the Browser Simulator or the XPath engine). The Codecs are supposed to transform
these Values into byte arrays, that should be again decoded again in the Adapter in order to interact with
the SUT. This affects unfortunately many cases of API calls done in the Adapter with parameters from the
TTCN-3 ATS.

Envisioned solutions for bypassing the Codec are (1) Serialization of Value classes representing the pa-
rameters; (2) Encoding Values as XML in the codec and parsing the stream in the Adapter; (3) Using Java
introspection mechanisms to transmit values from TTCN-3 Values representation into Java classes generated
when compiling the TTCN-3 modules; (4) A hashmap with auto-generated string keys and TTCN-3 Values
– transmitted or created Values are put into and taken from this structure. The latter was implemented in
practice, so Values are handled almost entirely in the Adapter.

External Functions were defined in a Java class that implements the functions defined as external in the
TTCN-3 ATS. Such functions are implemented for: Execution of SQL scripts: connection to a database
through JDBC and execution of arbitrary commands – used for resetting the data in a database; URL:
handling and conversion functions are already implemented in Java; Logging: logging of complex objects is
done by a Java logging package rather than the TTCN-3 log() statement.

The TTCN-3 TWebAdapter is derived from TestAdapter, which is a base class provided by the platform to
fulfill basic needs (and extends Thread implementing the standard TriCommunicationSA, TriPlatformPA,
TciEncoding).

We used a RPC approach by using TTCN-3 signature calls. Calling at the TTCN-3 is reflected in the Java
triCall being invoked. Inside this function, the signatures are dispatched to their Java corresponding methods
– each signature is implemented in a method (the TTCN-3 standard exception and reporting mechanisms
were enhanced to allow this).

The selected BrowserSimulator was JRex, as in the case of the mapping-generator tool. A feature pro-
vided by the adapter is ”exporting” the DOM tree of the loaded HTML file obtained from JRex into the
corresponding structures of the TTCN-3 API.

Inside the Adapter, the MappingLoader reads at first the Mapping entries from the XML repository.
Then, when the TTCN-3 user changes the page loaded in the BrowserSimulator (by using for instance the
load() signature), it changes the set of active Mappings depending on the new URL (matched against a set of
regular expressions), parameters and browsing history. Then it evaluates this modified set of active Mappings
using an XPath package (Jaxen).

Another feature provided by the adapter is ”exporting” the DOM tree of the loaded HTML file into the
corresponding structures specified in the TTCN-3 API; this is done in TWebAdapter by generating nested
records of TTCN-3 types HtmlNode. This method can be called with the root Node of the Document as a

8 http://www.w3.org/TR/html5/forms.html

parameter and then the whole tree is received in a TTCN-3 variable, or with a regular Node as a parameter
after the MappingLoader generates MappingResults that represent a single Node or a set of Nodes.

In the implementation we focused on HTML Controls, Forms and Tables because these are very common
among the web-applications of our days, which generate dynamic-content following user-interaction. Handling
of HTML tables is enabled through XPath expressions for selecting the table in the page by its index,
computing its dimensions and providing the content of the cells as HtmlNode structures. The HtmlNodes are
always exported along with all their descendant nodes, attributes etc. Handling of various HTML controls is
done similarly to tables.

The adapter does also timing measurements that accurately indicate the time necessary for fully loading
a page and rendering it. Many important features supported by normal browsers are implemented in the
TWebAdapter, such as (1) Cookie handling; (2) HTTP parameters encoding for GET and POST methods;
(3) Scripting is taken into consideration, JavaScript is enabled but can be programatically disabled; (4) Web
proxies are supported, also by means of Browser/Window properties; (5) Relative URLs are transformed into
absolute URLs; (6) Automatic redirection happens transparently for the TTCN-3 in the case of HTTP or
HTML redirection: the HTTP redirect by analyzing the connection status code and loading the page specified
in the HTTP header; the HTML redirect by analyzing the page and interpreting it like a normal browser
(taking into consideration also the timing).

5 Case studies and Results

BookSearch. Both WebTestGUI application and TWeb testing system were successfully used in a project
having as client a major Japanese company specialized in large-scale banking and government systems.
They were used to test a proof of concept application called ”BookSearch”. Testcases were designed for
testing functional requirements (most frequent user-scenarios), non-functional (performance: load and time
measurements) and regression (re-running the testcases after minor revisions).

vBau. The tools automated the web interface testing in an interoperability scenario for a big German city,
focusing on the OSCI-Transport secure protocol and the XBau standard for the building sector. The TTCN-3
test suite acted as a driver for the scenario workflow, and ensured automation by substituting human users.

5.1 Simple Online Banking Application – SOBA

SOBA was developed by Technical University Berlin and Fraunhofer FOKUS Institute. Three different teams
realized the requirements [16], implementation, and testing. The testcases were designed to check functional
aspects (such as conformance to requirements) as well as non-functional (performance and security).

Requirements Specification. The application enables users to check their bank account balance and to issue
transfers to other accounts. The frontend employs a web-based GUI for entry and display of all data. The
application is used by multiple parallel users, which identify themselves by an account number and a PIN.

The application has to care for the functionality of three basic tasks: identifying an user; display of account
information; performing money transfers. Two Use Cases (UC), ”Perform Transfer” and ”Display Account
Information”, are dependent on the third ”User Identification”.

The identification of an user is done in the UC ”Login” by displaying a welcome page and receiving the
user’s credentials. The application will look up the account and check the PIN. If the credentials do not match
the extension UC ”Login Failed” will be executed. In this case an informative message is displayed, along with
a way to return to the welcome page. The same happens if the account status is ”Locked”. ”Manual Logout”
is executed by an explicit user command, whereas ”Automatic Logout” will implicitly become operative
after a certain time of user idleness. After successful ”Login” or ”Performed Transfer”, the ”Display Account
Information” UC will always be executed. The user can always perform the latter UCs while logged in.

The ”Perform Transfer” UC consists of three Sub-UC: ”Enter Transfer Data”, ”Execute Transfer”, and
”Transfer Result” After the checks for the transfer data, the user submits the transfer by entering a TAN
number. If the TAN is not valid an informative message will appear and the UC ”Execute Transfer” will
restart; if an invalid TAN is entered three times in a row, the account status is set to ”Locked”, and the UC
”Automatic Logout” is executed. After completion, the UC ”Transfer Result” is active and a status message
is displayed.

As seen in 4, the application’s control flow is quite complex, though the application itself only consists of
six screens.

Fig. 4. Activity Diagram - SOBA Control Flow for Application Screens

Implementation of the SUT. A single application server cares for the business logic. The backend consists of
a single database, containing the business data. This information encompasses all data about the account,
namely: account number, account balance, PIN, account status, owner’s full name, list of TAN numbers,
counter for consecutive wrong TAN entries.

The client-side test approach consists of two parts: the TTCN-3 testcases, which is specified by the tester
as TTCN-3 source code, as well as the already defined the Test Adaptation layer, acting similarly to a
Web browser when communicating with the SuT. We considered three important criteria: conformance to
requirements, performance and security.

Conformance or functional testing techniques test the behavior of the system or program. The TTCN-3
type of testing is known as black-box testing – data is sent to the system without knowing how the system is
implemented, and the system is analyzed according to its output only. The requirements to which the SuT
should conform are: user login and logout; after 3 wrong PIN numbers the account will be locked; automatic
logout after 3 idle minutes; user cannot log-in twice; correct transitions between the all the UCs; TAN to
confirm transfer of money; number of wrong, consecutive TAN entry attempts; transfer is limited to 1000
euro; transfer is only possible between known accounts; correct informational messages.

To test the performance of the SUT, we need a mechanism to send data to the SUT at the same time
to find out how the SUT will respond, e.g. how many sessions can be run at the same time. Such tests
require varying load conditions for the SUT, which can be realized by an ensemble of parallel TTCN-3 test
components.

We covered the application security by testing how the SUT responds to receiving fake data or a simple
access attempt, e.g. to get information about the users without login, to load a webpage without calling the
login page, to transfer money with a wrong TAN or without a TAN number.

Implementation of testcases. The tests always need the same initial persistent data (e.g. accounts, PINs) to
get meaningful test results. A mechanism to initialize the SUT with the same data (every time before test
suite execution) is needed. To solve this problem, a TTCN-3 external function was implemented in Java,
which executes a SQL script to initialize the database with the same structure and data.

Below we present an example testcase which tests whether a money transfer can be executed correctly.
The user must login, go to the ”Transfer” page, introduce the target account and the desired amount, enter
a unique TAN to validate the transaction and then finish the transfer by checking its result.
testcase CTC_Transfer_1_1 () runs on WebComponent {
svar HttpRequest req; var HttpResponse response; var Map mp := {}; var XPathMapping xpm;
initDB (); initTTLReq(req , "localhost", 8080); // initialize database and web -app parameters
openWindow("http :// localhost :8080/ soba/", req , response , TIMER_DEFAULT); // open first page
checkWindow("/soba/", response); // and login

putUIValue("account", "11111", req , response , xpm , mp); // fill value
putUIValue("pin", "123", req , response , xpm , mp); // fill value
click("Login", req , response , mp, TIMER_DEFAULT); // perform a click
checkWindow("/soba/LoginControl.jsp", response); // navigation check
click("Transfer", req , response , mp, TIMER_DEFAULT); // transfer money
checkWindow("/soba/AccountStatusControl.jsp", response); mp := {}; // navigation check
putUIValue("targetAccountNumber", "12345", req , response , xpm , mp); // fill account number
putUIValue("transferAmount", "50", req , response , xpm , mp); // give amount to transfer
click("Initiate Transfer", req , response , mp, TIMER_DEFAULT); // perform a click
checkWindow("/soba/TransferControl.jsp", response); mp := {}; // navigation check
putUIValue("TAN","67833", req , response , xpm , mp); // enter TAN
click("Submit", req , response , mp , TIMER_DEFAULT); // submit transfer request
checkWindow("/soba/TransferControl.jsp", response); // check the new page
setverdict(pass); } // give verdict

This high-level view uses convenience TTCN-3 functions implemented in the TWeb module as a Web testing
library. The following function is an example:
function openWindow(in charstring path , inout HttpRequest req ,

out HttpResponse response , in float timerValue) runs on WebComponent {
req.uri.path := path; req.method := REQ_GET;
httpPort.call (load: {req}, timerValue) {
[] httpPort.getreply (load: {-} value ResponseTemplate) -> value response

[] any port.getreply { setverdict(fail); stop; }
[] httpPort.catch (timeout) { setverdict(fail); stop; }}

if (not (ispresent (response.htmlPage))) { log("No HTML"); setverdict(fail);stop;} }

Test Results. Most of the functions in the SOBA application could be tested successfully. However, a small
number did not comply with the conformance tests, i.e. a user can log-in twice, and a misleading page is
shown when the transfer is above 1000 euro. The application was tested and sustained an average load of
approx. 50 simultaneous users. As mentioned, the security tests were written in order to test whether any
information can be obtained without login, or whether a transfer can be made without PIN or TAN – and
the web application indeed didn’t allow access.

6 Conclusions, Open Issues and Outlook

This article shows how TTCN-3 is an appropriate solution for testing regular Web applications. The practical
results show that the design was appropriate and the implementation matched the expectations. The devel-
oped software provides black-box distributed reactive testing for HTML and XHTML (including JavaScript)
transmitted over the HTTP/HTTPS protocol.

One of the next things to be done is the actual integration of WebTestGUI and TWeb as Eclipse plugins.
Distributed test setups for efficient load, performance, scalability tests are possible using the TTCN-3 test

platform. Tools such as TTworkbench Professional enable distribution and creation of parallel user behaviors.
There are some envisioned extensions regarding the Mapping Repository: one repository per application

for increased readability and easier management of mappings; avoidance of name clashes for active mappings
if they are contained in more Address entries; extended syntax, i.e. multiple URL-like regular expressions,
page parameters, current browsing history.

XHTML 2 and XForms, XHTML 5 and WebForms 2.0 are flexible structured XML-based formats designed
for the replacement of current HTML/XHTML formats. The advantage of using XPath/XQuery while testing
still remains, because these languages are applicable not only to current XHTML, but to any valid XML
format. The current architecture doesn’t need to be modified, only extended; the Adapter needs to be modified
to handle other data structures passing on the HTTP level.

With regard to testing of Web Services, communication of applications that use SOAP protocol can
be tested using TTCN-3, because the messages transported are in an XML-based format. Testing Web
Services is enabled because JRex support querying Web Services using SOAP through Mozilla Web Services
Component9. This makes it easier to integrate the testing of Web Services in the current Adapter – the change
will be in the format of the document, by switching from HTML/XHTML to SOAP messages/envelopes.

Generally, high-level constructs and quality assessments models can be based upon this framework, which
enable measurements of non-functional quality attributes (like response times, capacity, reliability, security),
as well as a fine-grained interaction with web users through control of the browser.

References

1. ETSI: TTCN-3 Standard Part 1: ES 201 873-1 V3.1.1 - TTCN-3 Core Language

9 http://www.mozilla.org/projects/webservices/

2. Grabowski, J., Hogrefe, D., Rethy, G., Schieferdecker, I., Wiles, A., Willcock, C.: An Introduction into the Testing
and Test Control Notation (TTCN-3). Computer Networks, Volume 42, Issue 3 (2003) 375–403

3. Xiong, P., Probert, R.L.: A Multi-Approach Testing Methodology in TTCN for Web Applications. (2003)
4. Probert, R.L., Xiong, P., Stepien, B.: Life-Cycle E-commerce Testing with OO-TTCN-3. (2004)
5. Stepien, B., Peyton, L., Xiong, P.: Framework Testing of Web Applications using TTCN-3. International Journal

on Software Tools for Technology Transfer (STTT) 10 (2008) 371–381
6. Xiong, P., Probert, R.L., Stepien, B.: An Efficient Formal Testing Approach for Web Service with TTCN-3. In:

International Conference on Software, Telecommunications and Computer Networks. (2005)
7. Schieferdecker, I., Stepien, B.: Automated Testing of XML/SOAP Based Web Services. In: 13th Fachkonferenz

”Kommunikation in Verteilten Systemen” der Gesellschaft fur Informatik (GI). (2003)
8. Jeaca, D.M.: XML Schema to TTCN-3 Mapping - Importing XML Schema Datatypes into TTCN-3. Diploma

paper, UPB Bucharest (March-August 2004)
9. Vega, D., Rentea, C., Din, G.: An Approach of Model-based Testing with TTCN-3: Definitions Generation for

Testing of Web Services. In: 4th Workshop on System Testing and Validation. (2006)
10. Schieferdecker, I., Vega, D., Rentea, C.: Import of WSDL Definitions in TTCN-3 Targeting Testing of Web

Services. In: 9th International Conference on Integrated Design and Process Technology (IDPT). (2006)
11. Troschutz, S.: Web Service Test Framework with TTCN-3. Master’s thesis, University of Gottingen, Institute for

Computer Science, Gottingen, Germany, (2007)
12. Schieferdecker, I., Vassiliou-Gioles, T.: Realizing distributed TTCN-3 test systems with TCI. (2003)
13. Schieferdecker, I., Din, G., Apostolidis, D.: Distributed functional and load tests for Web services. International

Journal on Software Tools for Technology Transfer (STTT), Volume 7, Issue 4 (2005) 351–360
14. ETSI: TTCN-3 Standard Part 5: ES 201 873-5 V3.1.1 - TTCN-3 Runtime Interface (TRI)
15. ETSI: TTCN-3 Standard Part 6: ES 201 873-6 V3.1.1 - TTCN-3 Control Interface (TCI)
16. Hoefig, E.: Simple Online Banking Application - Requirements Specification. Fraunhofer FOKUS, unpublished

script (2005)

