Source inconsistency and incompleteness
in data integration

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati
Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname@dis.uniromal.it

Abstract

Data integration is the problem of providing users with a unified view of hetero-
geneous data sources, called global schema. In general, data at the sources may
result incomplete in providing answers to queries issued to a data integration
system, and may be inconsistent with respect to integrity constraints expressed
over the global schema. In this paper we present a general semantics for data
integration in the presence of incomplete information sources and inconsistency
of data with respect to constraints of a general form over the global schema. We
define a method for query processing under the above semantics, when the con-
straints over the global schema are key constraints and foreign key constraints,
and characterize the computational complexity of the query processing problem
in such a setting.

1 Introduction

A data integration system deals with the problem of combining the data residing
at different sources, and providing the user with a unified view of them, called global
schema. Users formulate their queries over the global schema, and the system provides
the answers to such queries on the basis of the data stored at the sources, i.e., provides
solutions to the query processing problem. An important aspect that has to be taken
into account in order to process a query is the form of the mapping that specifies
the relationship between the sources and the global schema. By exploiting such a
mapping, the system can access the appropriate sources and answer queries, thus
freeing the users from both having to locate the data relevant for their queries, and
knowing how data are structured at the sources, or how data are to be merged and
reconciled to fit into the global schema.

There are basically two approaches for specifying the mapping. The first approach,
called global-as-view (GAV), requires that a view over the sources is associated with
every element of the global schema, so that its meaning is specified in terms of the
data residing at the sources.

Conversely, the second approach, called local-as-view (LAV), requires the sources
to be defined as views over the global schema.

Whatever form of the mapping or method to process queries is adopted, in a
data integration context the data stored in autonomous and heterogeneous sources
are considered as a whole, and they may result inconsistent due to the presence of
integrity constraints expressed over the global schema. Generally speaking, when
data are considered locally, they must satisfy only the integrity constraints specified
in the source to which they belong, but they are not required to satisfy the integrity
constraints expressed in the global schema. Hence, when data sources are considered
as part of an integration system, and a set of global requirements is expressed in the
system, the data might present inconsistencies that have to be properly taken into
account during query processing.

Another aspect is that the set of available sources might not store exactly the
data needed to answer a query posed to the system, so that the mapping cannot be
considered ezact. It might be that the data that can be retrieved at the sources are
either a subset or a superset of the data that satisfy the corresponding portion of the
global schema, and the mapping has to be considered sound or complete, respectively.
Hence, query processing in a data integration system is, in general, a form of reasoning
with incomplete information [12].

In this paper, we restrict our analysis to the GAV approach, which is generally con-
sidered sufficiently simple and effective for practical purposes. We present a framework
for data integration in GAV that allows for the specification of integrity constraints
of general form over the global schema, and we define a semantics for the integration
system that is able to deal with incomplete and inconsistent data. Then, we propose
a method for query processing under the above semantics, when the constraints over
the global schema are key constraints and foreign key constraints, and we show the
computational characterization of the query processing problem in such a setting.

Our semantics follows the principles that underlie the notion of database repair
introduced by previous work in the area of inconsistent databases. However, such
studies basically apply to a single database setting [4, 2, 3], and the proposed tech-
niques can be employed in a data integration setting only by assuming an “exact”
interpretation of the mapping [11, 7, 9]. Conversely, our approach considers a pure
data integration framework, and our semantics seriously takes into account the inter-
pretation of the mapping. Specifically, in order to capture the incomplete nature of
the sources, we interpret the mapping as sound rather than exact, and in order to
deal with inconsistent data we make the further assumption that this soundness can
be suitably relaxed: hence, we model the mapping in a way that we call loosely-sound.

Moreover, to the best of our knowledge, our method for query answering is the
first one able to deal with foreign key constraints in the global schema: indeed, the
methods proposed in the literature for query answering in inconsistent databases (see
e.g. [9, 3]) consider the class of “universally quantified” constraints only.

The paper is organized as follows. In Section 2, we present our data integration
framework. The loosely-sound semantics of the mapping is defined in Section 3. In
Section 4, we propose our method for query processing in the presence of key and
foreign key constraints over the global schema, and characterize the computational
complexity of query processing in such a setting. Finally, Section 5 describes some
related works and Section 6 provides some discussions and concludes the paper.

2 Framework

In this section, we describe a formal framework for data integration systems based
on the relational model [1]. For the sake of simplicity, we consider to have a fixed
alphabet T" of constants representing real world objects, and will take into account
only databases having I' as domain. Furthermore, we adopt the so-called wunique
name assumption, i.e., we assume that different constants denote different objects.
Formally, a data integration system Z is a triple (G, S, M), where:

e G is the global schema expressed in the relational model with integrity con-
straints. Henceforth, we indicate with Ag the alphabet of the relation symbols
of G and with Cg the set of integrity constraints specified on Ag.

e S is the source schema, constituted by the schemas of the various sources that are
part of the data integration system. We assume that the sources are relational,
and no integrity constraint is expressed on the source schema. Henceforth, we
indicate with Ag the alphabet of the relation symbols of S. Obviously, Ag is
disjoint from Ag.

e M is the mapping between the global and the source schema. In our framework
the mapping is defined in the GAV approach, i.e., each relation in G is associated
with a view, i.e., a query, over the sources. We assume that the language used
to express queries in the mapping is positive DATALOG [1], i.e., recursive DAT-
ALOG without negation, over the alphabet As. We indicate the mapping as a
set of assertions of the form (r, V'), where r is a relation and V is the associated
view over the source schema.

In order to specify the semantics of a data integration system Z, we start by
considering a source database for Z, i.e., a database D for the source schema S. Based
on D, we now specify which is the information content of the global schema G. We
call global database for T any database for G. A global database B for Z is said to be
legal with respect to D, if:

e 3 is coherent with G, i.e., it satisfies the integrity constraints in Cg.
e B satisfies the mapping wrt D. We will explain the exact meaning of the notion
of satisfaction of the mapping in the next section.

Given a source database D for Z, the semantics of Z wrt D, denoted sem(Z, D), is
defined as follows:

sem(Z,D) = { B | B is a legal global database for Z wrt D }

A query over the global schema ¢ is a formula that provides the specification of
which data to retrieve from the integration system, i.e., ¢ is intended to extract a
set of tuples of elements of I'. Thus, every query has an associated arity. While for
the views in the mapping we make use of positive DATALOG queries expressed over
the alphabet Ag, for the queries over the global schema we restrict our analysis to
conjunctive queries [1] expressed over the alphabet Ag.

In order to define the semantics of a query over the global schema, we have to
consider that several global databases may exist that are legal for Z wrt D, and we

are interested in computing the set of tuples that satisfy the query in all databases in
sem(Z, D). Formally, we call certain answers of a query q of arity n wrt Z and D, the
set ¢©'P defined as follows:

&P = {(c1,...,cn) | for each DB € sem(Z,D), (ci,...,cn) € ¢P8 }
where ¢PB denotes the result of evaluating ¢ in the database DB.

Example 1 Consider a data integration system F = (G7, 87, M7) referring to the
context of football teams. The global schema G7 consists of the relation predicates
player(Pcode, Pname, Pteam) and team(Tcode, Tname, Tleader). For the moment we
assume that no constraint is defined in the global schema. The source schema S7
consists of the schemas of three sources comprising the relation s; of arity 4, and the
relations so and s3, both of arity 3. Finally, the mapping M7 is defined by the two

assertions
(player, player(X,Y,Z7) + s1(X,Y, Z,W))
(team, team(X,Y,Z) + s2(X,Y,Z) Vv s3(X,Y, 7))

where team(X,Y, Z) < s2(X,Y, Z) Vs3(X,Y, Z) is equivalent to the DATALOG pro-
gram

team(X,Y, Z) «+ s:(X,Y, Z)

team(X,Y, Z) «+ s3(X,Y, Z)

3 Semantics of the Mapping

As we said before, in this section we turn our attention on the notion of mapping
satisfaction. We recall the reader that in the GAV approach the mapping between the
global and the source schema is given by associating each global relation with a view
over the sources. The intended meaning of such association is that the view represents
the best way to characterize the instances of the global relation using the relations in
the sources.

Generally speaking, given a data integration system Z = (G,S, M), in order to
satisfy the mapping a global database B has to respect the assumptions adopted for
the views. More specifically, given a source database D and a mapping assertion (r, V'),
the assumption adopted for the view V is intended to establish how to interpret the
set of the tuples that B assigns to r, i.e., 78, with respect to the tuples retrieved
by the view V, i.e., VP. Traditionally, in GAV data integration systems, the views
are considered exact. This means that each view provides exactly the data needed
to satisfy the corresponding relation of the global schema. However, in more general
cases, the views provide only a subset of the data that satisfy the corresponding
relations of the global schema, thus they have to be considered sound. Formally, we
have that B satisfies the sound mapping assertion (r, V) if VP C 8. We say that B
satisfies the mapping M wrt D if B satisfies every assertion in M.

It is immediate to see that, by simply evaluating each view over the source database
D, we obtain a global database that actually satisfies the sound mapping. We call
such database the retrieved global database ret(Z, D).

Notice that, in general, ret(Z,D) might not satisfy the constraints on the global
schema. Furthermore, according to the above definition of mapping satisfaction, it
could happen that no global database exists that is legal for Z wrt D, because data
retrieved from the sources cannot be completely reconciled in the global schema in such
a way that both the constraints on the global schema and the mapping are satisfied.
For example, this happens when a key constraint specified in the global schema is
violated by the tuples retrieved from the sources, since the assumption of sound views
does not allow us to disregard any tuple from the retrieved global database.

A more general approach would be to provide a formalization that is able to
support query processing even when the data at the sources are incoherent with respect
to the integrity constraints on the global schema. The basic idea is to consider those
global databases that satisfy the integrity constraints in the global schema and that
approximate the satisfaction of the mapping M, i.e., that are as sound as possible.
One way to formalize this idea is to distinguish between strictly-sound mappings,
as the ones considered before, and loosely-sound mappings, in which the assumption
of soundness is suitably relaxed. Then, given a source database D and a mapping
M = {{(r;,Vi) ... (rn,Va)}, we define an ordering over the global databases for 7
that are coherent with G.

If B; and Bs are two such databases, we say that B; is better than Bs wrt D,
denoted as By >p Bo, iff there exists ¢ € {1,...,n} such that

- (r*NVP) D (2 N V), and
- (V) 2 (VP for j =1, m;

Intuitively, this means that the portion of ret(Z,D) contained in the global
database is greater in By than in By, i.e., By approximates the sound mapping better
than Bs. It is easy to verify that the relation >>p is a partial order. With this notion
in place, we say that a global database B coherent with G satisfies the mapping if B is
maximal wrt >>p, i.e., for no other global database B’ coherent with G, we have that
B’ >p B. Hence, with reference to the definition given in Section 2, a global database
for 7 is said to be legal wrt D, if B is coherent with G and is maximal wrt >>p.

Example 2 Let E = (G¥ 8P MPF) be a data integration system, in which G¥ con-
sists of the relation predicate g(X, V), S¥ consists of two relations s; and sz, both of
arity two, and MF is defined by the single assertion (g, g(X,Y) + s1(X,Y)Vso(X,Y)).
Suppose that we have an alphabet containing (among other symbols) the constants
a,b,c,d,e, f,g, and that D is a source database such that sP? = {(a,b),(c,d)} and
s? = {(a,e)}. Finally, assume that the only integrity constraint on G¥ is a key
constraint stating that X is the key of g.

Under such assumptions we have that g™(ZP) = {(a,b), (c,d), (a,e)}, and that
the tuples (a,b) and (a,e) violate the key constraint on g. It is easy to see that
the following global databases are three examples of legal databases for E under the
loosely-sound semantics:

- B; such that gB = {(a,b), (c,d)},
- By such that g? = {(a,e), (c,d)},

- B3 such that ng = {(a’ e)7 (C, d)a (fag)}a

while the following global databases are not legal for E:

- By such that g8 = {(a,e), (a,b)}, since it violates the key constraint;
- Bs such that g® = {(a,e),(f,g)}, since we have that B3 >p Bs.

It is immediate to verify that, if there exists a legal database for Z wrt D under
the strictly-sound semantics, then the strictly-sound and the loosely-sound semantics
coincide, in the sense that the set of legal databases is the same for the two semantics.

4 Query Processing

In this section we consider the particular situation in which two kinds of constraints
are specified in the global schema:

- Key constraints: given a relation r in the schema, a key constraint over r is
expressed in the form key(r) = X, where X is a set of attributes of r. We assume
that there is exactly one key constraint for each relation. Such a constraint is
satisfied in a global database B if for each t1,ts € rB with ¢ # to we have
t1[X] # to[X], where ¢[X] is the projection of the tuple ¢ over X;

- Foreign key constraints: a foreign key constraint is a statement of the form
r1[X] C ro[Y], where r; and ro are relations, X is a sequence of distinct at-
tributes of 1, and Y is a sequence formed by the distinct attributes forming the
key of 7. Such a constraint is satisfied in a global database B if for each tuple
t; in 7P there exists a tuple t5 in 7§ such that ;[X] = t,[Y].

The problem of query answering in this setting has been recently studied under
the strictly-sound semantics of the mapping. In particular, it is possible to compute
the certain answers of a conjunctive query q over the global schema by means of a
query reformulation algorithm, presented in [5, 6], that transforms the original query
q into a new query ezpg(q) over the global schema. Roughly, the algorithm is based
on the idea of expressing foreign key constraints in terms of rules of a logic program
with functional symbols (used as Skolem functions). Then, such a logic program is
used to generate the partial evaluation tree of the query g, whose non-empty leaves
constitute the reformulation ezpg(q) of the query ¢. Notably, exps(q) is independent
of the source database D; moreover, the algorithm has polynomial data complexity.

We now study the problem of computing certain answers to a query in this setting
under a loosely-sound semantics of the mapping. The difference with respect to the
previous case can be seen in a situation in which there exists no global database
that both is coherent with G and satisfies the mapping wrt D: in our setting, this
corresponds to a case in which ret(Z, D) violates the key constraints in G, i.e., there
exist r € G and t1,ty € r™@P) such that key(r) = X, t1[X] = t3[X], and t; # t,.

Under the strictly-sound semantics, this means that there are no legal databases for
T wrt D.

Conversely, under a loosely-sound semantics, it is immediate to see that there
always exists a legal database for Z wrt D, because we are allowed to eliminate tuples
from ret(Z,D) in order to satisfy the constraints, and key constraints and foreign
key constraints can always be satisfied by suitably restricting the set of tuples in the
database. However, the semantics implies that the legal databases are the ones that
are “as sound as possible”, thus we have to consider only databases coherent with the
constraints and that “minimize” elimination of tuples from ret(Z, D). Notice that, in
order to satisfy key constraints, we are forced to eliminate tuples from ret(Z, D), while,
in general, foreign key constraints can be satisfied either by adding new tuples or by
eliminating tuples from ret(Z,D): by the loosely-sound semantics, such constraints
must be satisfied by adding new tuples.

Our method for computing the certain answers to a query g can be informally
explained as follows: we identify the databases corresponding to the legal databases
for Z' wrt D, where 7’ is obtained from Z by eliminating all foreign key constraints in
G. It is immediate to see that each such database B’ is “contained” in ret(Z,D), i.e.
if t € r% then t € r"(@D) for each t and for each r. Then, we make use of the query
reformulation technique for the strictly-sound semantics mentioned above [6], since it
can be shown that ¢ is a certain answer of ¢ wrt Z and D iff t € (ezpgy(q))? for each
database B’ for 7’ that is legal wrt D.

Specifically, we resort to DATALOG™ under stable model semantics [10, 8], a
well-known extension of DATALOG that allows for using negation in the body of
program rules. In particular, we define a DATALOG™ program P(Z,D) that allows
for computing the legal databases for Z' wrt D. The DATALOG™ program P(Z,D) is
obtained by adding to the set of facts D the following set of rules:

e for each assertion (r, V) € M, with
V=r(X) < conj(X,¥1) V-V conj, (X, ¥m)
the rules

rp(X) < conji(X,¥1)

7"'1)()?) «— conjm (i7 S;m)
e for each relation r € G, the rules

T(i,y) — TD(-)’S;)’ not T()-C),}_")
TXy) « r(X%2Z),¥#2Z

where in r(X,¥) the variables in X correspond to the attributes constituting the
key of the relation r, and y # Z if there exists ¢ such that Y; # Z;.

Informally, for each relation r, P(Z,D) contains (i) a relation rp that represents
rretTP); (ii) a relation r that represents a subset of 7™ (Z:P) that is consistent with

the key constraint for 7; (iii) an auxiliary relation 7. The above rules force each stable
model M of P(Z,D) to be such that ™ is a maximal subset of tuples from r"¢*Z.?)
that are consistent with the key constraint for r.

Then, we add the expg(q) to the program P(Z,D), thus obtaining a DATALOG™
program that allows us to compute the certain answers to the original query.

Theorem 4.1 Let T = (G,S, M) be a data integration system, let q be a query posed
to Z, D be a source database for I, and t be a tuple of constants of the same arity as
g. Then, t € ¢&'P if and only if t € ¢M for each stable model M of the DATALOG™
program P(Z,D) U {expg(q)}.

Finally, we are able to give a computational characterization of the problem of
computing certain answers to queries in our data integration setting (i.e., loosely-
sound mapping, key constraints and foreign key constraints).

Theorem 4.2 Let T = (G,S8, M) be a data integration system, let q be a query posed
to Z, D be a source database for I, and t be a tuple of constants of the same arity as
q. The problem of deciding whether t € ¢©'P is coNP-complete wrt data complezity.

Proof sketch. Membership in coNP follows from the Theorem 4.1, and from the fact
that query answering in DATALOG™ is coNP-complete in data complexity, while
coNP-hardness can be easily proven by a reduction of the validity problem in propo-
sitional logic to the above problem.

Example 1 (cont.) We assume now that the following constraints are defined in the
global schema:
key(player) {Pcode}
key(team) = {Tcode}
player[Pteam] C team[Tcode]
team[Tleader] C player[Pcode].

Moreover, we consider the extension D for the sources shown in Figure 1.

p.| 9 | Batistuta | RM | 31 <D, RM | Roma |10
110 | Rivaldo | BC |29 2| BC | Barcelona | 8

s?:‘RM‘Roma‘Q‘

Figure 1: Data at the sources in the example

The extension of the source s; and the foreign key constraint team|Tleader] C
player[Pcode] impose that 8 is the code of some player. Nonetheless, the source s;
does not say anything about the name and the team of such player. Since the views
are loosely-sound, we can consider as legal databases for the data integration system
all the global databases that provide the name and the team of the player.

Furthermore, the tuples stored in the source so together with the tuple in the
source s3 violate the key constraint key(team) = {Tcode}. According to the loosely-
sound semantics, for all the legal global databases B we have that team? contains
either the tuple (RM, Roma,9) or the tuple (RM, Roma, 10).

Suppose now that the user query is the following: q(X) ¢« player(X,Y,Z). By
evaluating the partial evaluation tree of q, according to the procedure presented in [6],
the following expansion of the query q is obtained:

q(X) <+ player(X,Y; 2)
q(X) — team(Wl,W2,X)

Intuitively, we see that the expanded query searches for player codes not only
in the relation player, but also in team, where, due to the foreign key constraint
team[Tleader]| C player[Pcode], it is known that player codes are stored.

By the above Theorem 4.1, we obtain the DATALOG™ program P U expg(q) for
computing the certain answers of q. Such a program contains the facts in D and the
following rules:

playery(X,Y,Z2) + si(X,Y,Z,W)
teamp(X,Y,Z) « s2(X,Y,2)
teamp(X,Y,Z) « s3(X,Y,2)
player(X,Y,Z) +« playerp(X,Y,Z), not player(X,Y, Z)
player(X,Y,Z) + player(X,V,W),Y #V
player(X,Y,Z) + player(X,V,W), Z#W
team(X,Y,Z) <+ teamp(X,Y,Z), notteam(X,Y,Z)
team(X,Y,Z) + team(X,V,W),Y #V
team(X,Y,7) +« team(X,V,W), Z#W
q(X) <+ player(X,Y, 2)
q(X) <« team(Wy,Ws, X)

By computing the stable models of the above program, it can be seen that the set
of certain answers to the query q is {8,9, 10}.

5 Related Work

Several recent works deal with the problem of database inconsistency. For example,
in [4] the notion of consistent query answers is defined, which can be seen as a spe-
cialization to the case of a single database of our notion of certain answers given in
Section 2. No method for computing consistent answers is provided.

In [11] the authors describe an operator for merging databases under constraints
which allows one to obtain a maximal amount of information from each database by
means of a majority criterion used in case of conflict. Even if a large set of constraints
is considered, namely the constraints that can be expressed as first-order formulas, the
computational complexity of the merging procedure is not explored, and no algorithm
to compute consistent query answers is provided. Furthermore, the problem of dealing
with incomplete databases is not taken into account. Notice also that, differently from
all the other studies mentioned in the following, this approach relies on a cardinality
based ordering between databases (rather than on a set containment one).

In [2] the authors define an algorithm for consistent query answers in inconsistent
databases based on the notion of residues, originally defined in the context of semantic
query optimization. The method is proved to be sound and complete only for the class
of universally quantified binary constraints, i.e., constraints that involve two database
relations. In [3] the same authors propose a new method that can handle arbitrary
universally quantified constraints by specifying the database repairs into logic rules
with exceptions (LPe).

Finally, [9] proposes a technique to deal with inconsistencies that is based on
the reformulation of integrity constraints into a disjunctive DATALOG program with
two different forms of negation: negation as failure and classical negation. Such a
program can be used both to repair databases, i.e., modify the data in the databases
in order to make the integrity constraints be satisfied, and to compute consistent query
answers. The technique is proved to be sound and complete for universally quantified
constraints.

It is worth noticing that none of the above works provides solutions for the case of
existentially quantified constraints, as, for example, the foreign key constraints that
we have treated in Section 4. To the best of our knowledge, our method is the first
one to deal with foreign key constraints.

Moreover, the studies concerning data inconsistencies basically apply to a single
database setting. With regard to the works that deal with inconsistencies in database
integration, the activity of integrating data is commonly conceived as a two-phase
process, where the first one aims at populating the global schema, and the second one is
intended to repair possible inconsistencies among data. Hence, traditional approaches
implicitly interpret the mapping as an exact one. In this sense, our approach is more
general, since it is based on the semantics of the mapping, which we have assumed to
be loosely-sound.

6 Discussion and Conclusions

As we already said in the above section, several semantics underlying the notion of
consistent query answers have been proposed in the literature. Consider, for example,
the semantics defined in [11], which is based on the notion of cardinality based ordering
between databases, or the semantics presented in [2, 3, 9], which, on the contrary, relies
on an ordering based on set containment.

As in these last works, the loosely-sound semantics proposed in this paper is based
on set containment between global databases. According to such an ordering, given
a data integration system 7 and a source database D, a global database B; is said
to be better than a global database By if the portion of ret(Z, D) contained in By is
a subset of the portion of ret(Z,D) contained in B;. In other words, coherently with
the notion of sound mapping, in order to prove if B; is better than Bs we do not take
into account the tuples of B; and By that are not in ret(Z, D).

However, this is only one of the several semantics that can be defined to deal with
inconsistent and incomplete data. For instance, our definition of ordering between
databases could be refined to the aim of comparing also global databases that differ

only for the tuples that are not in ret(Z,D), and we could consider a new semantics
that relies on this different definition. In this case, if B; and By are two databases
coherent with the global schema, we say that By is better than By wrt D, as usually
denoted as B; >p Ba, iff one of the two following conditions holds:

1. there exists ¢ € {1,...,n} such that

- (kP NVP) D (P NVP), and
P NVP) 20NV fr =1,

2. (rfl NVP) = (sz NVP) for k=1,...,n and there exists i € {1,...,n} such

that
- (Pt = VP) C (r{? = V), and
- (’I'J-Bl —VjD) - (7‘]32 —VjD) forj=1,...,n.

Intuitively, this means that By >p Bs iff By is “closer” to ret(Z,D) than By. With
reference to Example 2, it is easy to see that, according to the new definition of the
semantics, the global database B3 is not legal for £, since now we have that Bs >p Bs,
and the only global legal databases are B; and Bs.

If semq(Z, D) is the semantics of a data integration system based on the ordering
defined in Section 3, and sem2(Z, D) is the semantics based on the refined ordering,
it can be shown that

sema(Z,D) = { B| B € sem1(Z, D) and for each B' € sem1(Z,D) B' ¢ B}

Hence, semy(Z,D) is the set of the minimal databases of sem;(Z, D). Therefore, for
each query ¢, the certain answers to g are the same in the two semantics, hence the
method proposed in Section 4 to compute the set of certain answers to ¢ when key
and foreign key constraints are expressed over the global schema can be used also
when we adopt sema(Z, D) instead of sem1(Z, D). The situation is different if we are
interested in computing the possible answers to a query g, i.e., the set of n-tuples ¢
such that t € ¢P8 for some database DB € sem(Z, D), where n is the arity of ¢. In
general, the set of possible answers to ¢ according to sems(Z, D) is contained in the
set of possible answers according to sem;(Z, D).

This example illustrates that the approach described in this paper is general enough
to be easily extended beyond the setting presented here. In particular, other different
assumptions (complete, exact) on the nature of the mapping between the sources and
the global schema can be captured. Furthermore, we believe that we can generalize
our approach to also take into account LAV mappings.

On the other hand, in order to cope with the high computational complexity of
query processing in the described setting, we are investigating possible restrictions of
our framework to obtain particular and practical cases that allow for more efficient
query processing.

References

[1]

2]

[10]

[11]

[12]

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison Wesley Publ. Co., Reading, Massachussetts, 1995.

Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query
answers in inconsistent databases. In Proc. of the 18th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’99), pages 68-T79,
1999.

Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Specifying and query-
ing database repairs using logic programs with exceptions. In Proc. of the 4th Int.
Conf. on Flezible Query Answering Systems (FQAS’00), pages 27-41. Springer,
2000.

Francois Bry. Query answering in information systems with integrity constraints.
In IFIP WG 11.5 Working Conf. on Integrity and Control in Information System.
Chapman & Hall, 1997.

Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Accessing data integration systems through conceptual schemas. In Proc. of the
20th Int. Conf. on Conceptual Modeling (ER 2001), 2001.

Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Data integration under integrity constraints. In Proc. of the 14th Conf. on Ad-
vanced Information Systems Engineering (CAiSE 2002), 2002. To appear.

Phan Minh Dung. Integrating data from possibly inconsistent databases. In Proc.
of the 4th Int. Conf. on Cooperative Information Systems (CoopIS’96), pages 58—
65, 1996.

Thomas Eiter, Georg Gottlob, and Heikki Mannilla. Disjunctive Datalog. ACM
Trans. on Database Systems, 22(3):364-418, 1997.

Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logic programming ap-
proach to the integration, repairing and querying of inconsistent databases. In
Proc. of the 17th Int. Conf. on Logic Programming (ICLP’01), volume 2237 of
Lecture Notes in Artificial Intelligence, pages 348-364. Springer, 2001.

Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fix-
point? J. of Computer and System Sciences, 43(1):125-144, 1991.

Jinxin Lin and Alberto O. Mendelzon. Merging databases under constraints. Int.
J. of Cooperative Information Systems, 7(1):55-76, 1998.

Ron van der Meyden. Logical approaches to incomplete information. In Jan
Chomicki and Gunter Saake, editors, Logics for Databases and Information Sys-
tems, pages 307-356. Kluwer Academic Publisher, 1998.

