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Abstract. I will provide an overview of many of the use cases that we
looked at to apply OWL ABox reasoning in the real world. The fields
we covered included (a) healthcare, and life sciences where the plethora
of ontologies might be seen as providing a strong use case for OWL rea-
soning, (b) information retrieval over unstructured text, (c) master data
management, which involves reasoning over product and consumer data
incorporated from multiple data sources within an enterprise. In each
case, we ran into a series of bottlenecks including incorrect modeling of
constructs in the ontology, inherent difficulties in scaling OWL reason-
ing to real world requirements, needing formalisms outside that of OWL,
and needing techniques to semi-automate the construction of ontologies.
At least in the use cases we had seen, there is a need for performing
TBox OWL reasoning over expressive ontologies, but most realistic uses
of ABox reasoning have to be relatively simple in terms of expressivity,
for practical reasons.

1 Introduction

In this paper, I will describe SHER (Scalable Highly Expressive Reasoner), a
technology we developed to provide semantic querying of large Aboxes using
OWL ontologies, and point to lessons learnt from our application of large scale
Abox reasoning on realistic use case scenarios.

SHER provides standard description logic reasoning services including con-
sistency checking and conjunctive query answering, and supports the logic OWL-
DL excluding nominals and datatypes (i.e., SHIN ).

2 SHER System Architecture

SHER relies on a unique combination of an in-memory description logic reasoner
and a database backed RDF Store to scale reasoning to very large Aboxes.
A key feature of our algorithm is that we perform consistency detection on a
summarized version of the Abox rather than the Abox in secondary storage [1]. A
summary Abox A′ can be constructed by mapping all individuals in the original
Abox A, with the same concept set to a single individual in the summaryA′.
The summary has three key properties:



(1) for every individual a in the original ABox A, if a has type C in A, the
summarized individual a′ in A′ also has the same type C

(2) for every pair of individuals (a, b) in the original ABox A, if the relation
R(a, b) exists in A, then a relation R(a′, b′) holds between their respective
summarized individuals in A′.

(3) the same principle as in (2) applies to different-from assertions between pairs
of individuals

We have shown that if the summary Abox A′ is consistent w.r.t. a given Tbox
T and a Rbox R, then A is consistent w.r.t. T and R. However, the converse
does not hold. In general, an inconsistency in the summary may reflect either
a real inconsistency in the original Abox, or could simply be an artifact of the
summarization process.

In the case of an inconsistent summary, we use a process of iterative refine-
ment described in [2] to make the summary more precise, to the point where we
can conclude that an inconsistent summary A′ reflects a real inconsistency in the
actual Abox A. Refinement is a process by which only the part of the summary
that gives rise to the inconsistency is made more precise, while preserving the
summary Abox properties(1)-(3). To pinpoint the portion of the summary that
gives rise to the inconsistency, we focus on the justification for the inconsistency,
where a justification is a minimal set of assertions which, when taken together,
imply a logical contradiction. The refinement process continues until one of two
things happen: either the inconsistency disappears (in which the original ABox
is deemed consistent); or we are left with an inconsistent portion of a summary
that cannot be refined any further (in which case the original ABox is really in-
consistent). A key point here is that in either case, we rarely fallback to dealing
with specific ABox individuals, and the scalability comes from making decisions
on groups of individuals as a whole.

2.1 Scalable Ontology Repository (SOR) subsystem

SOR [3] serves as a high-performance OWL ontology storage system based on
Relational Database Management Systems (RDBMS). It is responsible for load-
ing OWL, RDF and triple files into the underlying RDBMS. It also builds and
maintains, in the RDBMS, the summary Abox of the whole knowledge base. It
can be configured to perform either no inferencing on load or a limited number
of inferences1 on load. Finally, it provides SPARQL and SQL query end-points
to the stored knowledge base.

2.2 In Memory Summary Builder (IMSB)

The In Memory Summary Builder (IMSB) module builds, for a given reasoning
task, an in-memory version of the relevant subset of the summary Abox stored
in the RDBMS. This summary can then be fed to an in-memory reasoner. The
1 typically application of domain and range inference rules



IMSB module functions in two distinct modes. First, it acts as a filter that
filters out irrelevant assertions (from the point of view of the reasoning task
at hand) from the summary Abox built in the RDBMS by the SOR module.
Second, if a previously built in-memory summary Abox was not precise enough
to be conclusive, the IMSB is responsible for building a more precise in-memory
summary Abox.

2.3 Fast Sound Reasoner (FSR)

Fast, sound, but not necessarily complete, reasoners (as described in the next
section) can be plugged into SHER to quickly find “obvious” answers to a given
reasoning task, which can significantly improve the performance of SHER by
limiting the number of candidates to test. Section 3 discusses the currently im-
plemented FSRs in SHER.

2.4 Consistency Check and Justification Computation modules

As most DL reasoners, SHER operates by reducing all reasoning tasks to con-
sistency detection [4]. However, unlike other DL reasoners, SHER performs the
consistency check on a dramatically reduced in-memory summary Abox. For
example, for a membership query C(x), the in-memory filtered summary ABox
built by the IMSB module is modified by adding the negation of the query to
all summary individuals except those corresponding to “obvious” answers or
“obvious” non-answers as determined by a FSR. The modified in-memory sum-
mary Abox is then checked for consistency. In the membership query example, a
consistent summary indicates that the only solutions are the ones found by the
FSR. For an inconsistent summary, a subset of the justifications for the incon-
sistency is computed. Currently, SHER relies on Pellet [5] for consistency check
and justification computation. Note that previous work [6] has shown that the
complexity of justification computation for OWL-DL entailments is no worse
than the OWL-DL tableau reasoning algorithm, and thus does not affect system
performance much.

2.5 Justification Analyzer

Given a justification J for an inconsistency in the in-memory summary Abox,
the Justification Analyzer module determines, based on the structure of J [2],
whether the portion of the summary corresponding to J needs to be made more
precise by the IMSB or whether it is already precise enough to be conclusive.
Note that a precise justification denotes a real inconsistency in the ABox, and
thus solutions can be derived from information in the justification. On the other
hand, an imprecise justification forces the IMSB to perform further refinement
of the portion of the summary Abox corresponding to the justification to check
for any real inconsistency/solutions. Thus, using justifications makes the entire
process efficient and scalable (without it, randomly refining the summary does
not make sense).



3 Fast, Sound Reasoners (FSRs)

We have implemented several fast, sound reasoners (FSRs) in SHER that can
quickly find a large number of “obvious” solutions to a query. These FSRs can
be used independently or can be used in conjunction with SHER to perform
sound and complete reasoning. In the latter case, we have devised a hybrid
algorithm where the results of the FSR are used to refine the initial summary
to isolate known solutions, and the rest of refinement proceeds normally to find
any remaining solutions to the query. In this section, we discuss the two FSRs
we have implemented and provide an overview of the hybrid algorithm.

3.1 Query Expansion

Query expansion is a well-known technique to find implicit solutions to a query
by expanding the query (in effect, producing a union of conjunctive queries)
based on axioms in the ontology, e.g., expanding a membership query C(x)
by adding query atoms for all subclasses of C in the ontology. QuOnto [7] is
one such implementation of a query expansion algorithm which is sound and
complete for the logic DL-Lite. Our query expansion algorithm is similar in spirit
to QuOnto, however, we differentiate ourselves in a few ways. First, we use an
OWL-DL reasoner to compute explicit plus inferred subclasses for a concept in
the query and use these as a basis for expansion. The inferred results found
by the reasoner helps the algorithm cover more cases. Second, we use a Datalog
engine to compute same individuals in the ABox based on deterministic mergers
(i.e. inferences due to functional and inverse-functional property axioms, and
sameAs axioms), and use the results to expand our solution set. Finally, since
query expansion can produce a large number of queries, we eliminate queries
that have no solutions by checking for potential matches in the summary ABox
(e.g, if the query contains atom C(x) but the concept assertion C(a) is not
present in the summary ABox, we discard the query as it cannot have a match
in the original ABox). Details of our query expansion algorithm are provided in
a related report [8]. Note that our algorithm is sound and complete for DL-Lite,
and for the logic EL when the KB is acyclic, and is otherwise incomplete.

3.2 EL+ Reasoner

We have implemented a polynomial-time sound and complete EL+ reasoner
based on the algorithm described in [9]. Note that many ontologies in the health-
care and life-sciences community such as the Gene Ontology (GO) fall in this
fragment, which can express (among other things) general concept inclusions,
sub-roles and transitive relations.

We have two separate implementations – an highly optimized in-memory
version, and a database-backed version that uses a Datalog engine to evaluate
the EL+ rules. In our experiments, the in-memory EL+ reasoner has been able
to fully classify the SNOMED OWL ontology in under 15 mins. Also, the in-
memory version supports incremental updates and provides explanations for
subsumption (i.e., smallest set of axioms responsible for the subsumption).



3.3 Hybrid Reasoner

The main idea of our hybrid reasoning approach is that it can incorporate any
sound and incomplete reasoning algorithm (or FSR) into the core SHER sum-
marization and refinement process to provide efficient, complete, and yet highly
scalable reasoning over large Aboxes. The key insight is that the solutions from
the FSR can be used as a partitioning function for refinement instead of parti-
tioning based on edges. This effectively removes the obvious solutions from the
summary Abox. If the FSR finds all solutions, there will be no solutions left
in the summary Abox after this first refinement, so the algorithm will converge
very quickly. Any remaining inconsistencies are spurious, and can be resolved in
one or a few refinement steps. If the FSR finds only some of the solutions, then
the refinement process will find the rest of the solutions with fewer refinement
steps. We have demonstrated the value of this hybrid approach in our Clinical
Trials use case (described in the next section), where we achieved noticeable
improvement in performance using our query expansion algorithm as the FSR,
and summarization/refinement to find only remaining solutions.

4 Use Cases

We used SHER to build two solutions within the healthcare and life sciences do-
main: the first used SHER to semantically query patient records using SNOMED-
CT, and the second used SHER to provide a semantic search capability over the
medical literature from the National Library of Medicine. Each of these use cases
is described below.

4.1 Semantic Querying of Patient Records

In collaboration with Columbia University Medical Center, we used SHER to
design a solution for the problem of finding matching patient records for clin-
ical trials criteria [10]. Currently, there are approximately 65,000 clinical trials
that are designed to test various drugs and procedures. Each clinical trial posts
the criteria for recruitment on a central website http://clinicaltrials.gov.
Common criteria for recruitment include patients being on drugs with certain
active ingredients, or patients being diagnosed with various medical conditions.
Electronic patient records contain vendor-specific drugs that a patient is taking,
or specific radiological or laboratory findings; they never contain the ingredients
of the drugs that patients are on, nor do they contain detailed diagnostic med-
ical conditions2. In order to find patient records that satisfy the clinical trials
criteria, we need to bridge the semantic gap between, for example, the vendor-
specific drug information that is part of the patient record, and the specific
active ingredients of the drug that is not part of the record, but that is part of
the domain-specific knowledge of medicine. We investigated if we could bridge
2 Medical diagnoses recorded for billing purposes do not necessarily satisfy the gran-

ularity needed for clinical trials recruitment



this semantic gap using SNOMED-CT as our knowledge base, and SHER as
the reasoning engine. There were three key technical challenges in building this
solution:

– (a) Transforming the patient data into a SNOMED-CT knowledge base. This
step included mapping the local terminology of Columbia called MED into
SNOMED-CT.

– (b) Scaling reasoning to SNOMED-CT, with a very large Abox (1 year worth
of patient data for 250K patients at Columbia, which was about 60 million
RDF triples).

– (c) The expressivity of the ontology, which was SHIN due to negation in the
Abox (e.g., we had to model complex negation where a certain laboratory
finding was ruled out).

In our initial results, the performance of our initial solution on nine queries
drawn from http://clinicaltrials.gov ranged between 26-370 minutes, be-
cause of the expressivity of the knowledge base. Although this performance is
acceptable within a domain where the clinical trial matching is largely a manual
and tedious process, it is less than ideal for other use case scenarios. We gained
a significant performance improvement by adding a Fast Sound Reasoner (FSR)
component into our system to find as many solutions as quickly as possible. With
the addition of the FSR, our performance improved to between 11-21 minutes
for the same data (see [8] for details). For the 9 test queries, the FSR component
found all answers. Although our knowledge base was expressive, and we were in
general not complete for all queries, for the specific sets of queries we used, the
FSR component was sufficient in providing fast answers to the question. In fact,
because FSR uses nothing more than a SQL expansion of the query, performance
for just the FSR component is significantly under the 11-21 minutes range re-
ported in [8]; the majority of the 11-21 minutes is spent in summarization and
refinement steps post FSR to check for completeness.

Some lessons learnt from this use case include (a) the expressivity of the
knowledge base is not in the simpler subsets of OWL-DL, but user expectation is
nevertheless that the system perform like a database (i.e., queries must return in
milliseconds), (b) there is a need for both closed world and open world reasoning
on the same dataset, an issue we did not really address, (c) there is a need to
combine rules and ontologies, but most would fall into DL-safe rules.

4.2 Semantic Search over the Medical Literature: AnatomyLens

In searching the biomedical literature, using the concepts in an ontology can
help improve recall. For instance, if users want to search for medical articles that
mention the heart, they implicitly mean articles that either mention the heart or
any of its subparts. An ontology like the Foundational Model of Anatomy (FMA)
formally defines part hierarchies that can be used to automatically improve recall
of medical data. Similarly, when users want to find genes that are involved in a
certain biological process such as neuron development, they implicitly mean any



subprocesses of neuron development (such as axon or dendrite development).
Ontologies (such as the Gene Ontology (GO)), which formally describe these
subprocesses, can be used to improve recall of relevant genes or articles. Anatomy
Lens3 is a SHER-based solution for semantic search of the medical literature
using ontologies such as GO, FMA, and MeSH.

The data set used in this solution was based in part on the Banff HCLS
Demo4. We integrated the following data into one large knowledge base with
300 million RDF triples:

– PubMed 2008 distribution from NLM (National Library of Medicine) with
only article titles and their links to MeSH.

– Gene annotations GOA, linking genes and gene products to articles, specific
evidence codes, and gene ontology processes (such as dendrite development)
defined in the Gene Ontology.

– The Gene Ontology, which contains definitions of the biological, cellular, and
molecular functions of genes

– The Foundational Model of Anatomy, which contains definitions of anatom-
ical parts and their subparts. We used the OWL version of FMA created by
Golbreich, Zhang, Bodenreider (2006).

– Mappings from the MeSH annotations for PubMed articles to FMA concepts.
This was achieved by using UMLS to map MeSH to FMA, but it missed
some key mappings. We augmented the mappings with additional matches
from the MMTx tool from NLM http://mmtx.nlm.nih.gov/index.shtml,
keeping only matches with a perfect score.

– The MeSH taxonomy, which is really three separate trees. For example,
the concept Program Evaluation appears in three trees, but it contains the
subclass Benchmarking in only two of the three trees. To be consistent in
our reasoning, we treated these separate trees as a directed acyclic graph.

The four key technical challenges in this solution were as follows:

– It is well known that certain combinations of constructors are particularly
problematic for OWL reasoning. An example of this may be seen in reasoning
on FMA. FMA is a deep partonomy, with both hasPart and partOf relations
and an inverse relation between partOf and hasPart. This particular combi-
nation of constructs causes reasoners to fail (see http://www.w3.org/2001/
sw/BestPractices/OEP/SimplePartWhole/index.html). We therefore in-
cluded only partOf relations in FMA, as is recommended. This version of
FMA falls into the OWL dialect EL+, and we used the EL+ reasoner in
SHER to reason on this dataset.

– Even with the EL+ reasoner, scalability was a serious challenge for a Web
service. The combined Tbox for AnatomyLens has 75,000 FMA concepts,
30,000 GO concepts, and 15,000 MeSH concepts. Reasoning at query time
on this combined Tbox took a few minutes with the EL+ reasoner, which is

3 http://services.alphaworks.ibm.com/anatomylens/
4 http://esw.w3.org/topic/HCLS/Banff2007Demo



not acceptable for a web based application. We exploited the fact that the
Abox in AnatomyLens does not contain any relations which could be used
to infer new types. We therefore precomputed all subclasses and subparts
for each concept in advance, and used this expansion to expand the query
for each concept. For any given queried concept C, we translate the query
into a membership query where we look for all instances of the concept
(∃partOf.C) t C.

– A key issue in semantic search is to be able to rank the returned results. In
keyword search, it is obvious what constitutes a match, and there are various
techniques to rank the result set. For semantic search, one measure that can
be used to rank the results is the semantic distance between an answer
concept Q and the queried concept C. Our metric of semantic distance was
the size of the justification set for any given concept Q which was an answer
to the query (∃partOf.C) t C (i.e., the more the number of axioms needed
to infer a relationship between Q and the query, the greater the semantic
distance between them). We used this metric to rank the returned results,
and grouped each set of results by justifications. We also provided the natural
language descriptions of the justification sets to enable users to understand
why a set of results were a match. The ability to provide explanations for
matches is critical in semantic search, where the link between the query and
the returned results may not always be obvious to the user.

– Another issue in query-expansion based semantic search is dealing with pe-
culiar modeling issues. For example, in the partonomy in FMA, the concept
Cell is a transitive sub-part of each body part, but including articles that
talk about cells when the query is about a specific body part such as the
Lung would produce a lot of extraneous results. To solve this problem, we
ensure that the expanded sub-concept is dominated by the queried concept
in the partonomy tree. Finally, we allow the user to control the expansion by
presenting results closest in semantic distance to the queried concept, and
prompting users for whether they want to continue to expand the semantic
search.

Lessons learnt from this use case include (a) difficulty in modeling constructs
with existentials, when in fact, what is needed is more analogous to a description
graph [11], (b) difficulty in applying generic ontologies to semantic search, (c)
need for a combination of OWL as well as IR techniques to improve coverage in
semantic search, (d) need for expressive reasoning over Aboxes, but inexpressive
reasoning on Tboxes.

4.3 Information retrieval over unstructured text

A key problem in statistical natural language processing is that it is frequently
error prone. It is not uncommon for machine learners for example to make errors
in typing George Bush International Airport as a person. Yet, such typing is
critical to organizing the vast web of unstructured information into structured,
computable information. We explored the use of OWL ontologies in quickly



discovering such typing errors in statistical natural language processing [12].
The core idea was to exploit simple domain and range constraints along with
disjointness axioms to locate typing errors. As an example, if the George Bush
International Airport is associated with a property such as is hub of, then from
a domain restriction, one can infer that it is an airport. Furthermore, because
Airport and Person are disjoint, this would be isolated as a typing error. A
problem in applying such techniques in a large scale to text is the difficulty in
creating and maintaining such ontologies. We’ve explored using simple statistics
on large datasets such as Freebase and DBpedia to automatically construct large
sets of fuzzy domain, range, and disjointness axioms, and explored the validity
of applying these constraints to the linked open dataset to infer new types and
pinpoint inaccuracies in typing in Freebase or DBpedia [13]. Most of this type
of reasoning is however relatively inexpressive, and probabilistic in nature.

4.4 Master Data Management

Product data tends to be organized in deep hierarchies, with many different
hierarchies to represent derived attributes of the data. As one example, retailers
organize products into location hierarchies (often to the point of a particular
store on a shelf), and often want to inherit attributes for products, but also be
able to override these attributes (e.g., override the default price for a particular
location). OWL reasoning did not really fit the requirements of master data
management.

5 Conclusions

At least in the use cases we have seen, the emphasis in real world appears to
be more in terms of fast, highly scalable reasoning over relatively inexpressive
knowledge bases. When more expressive reasoning is required, it appears that the
pragmatic expectations of database-like queries outweigh need for completeness.
Furthermore, many of the more expressive ontologies seem to use existentials to
model elements that might be better modeled using description graphs.
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