
Ontologies and the Knowledge Acquisition Bottleneck 
 

Mihai Boicu, Gheorghe Tecuci, Bogdan Stanescu, Gabriel C. Balan and Elena Popovici 
Learning Agents Laboratory, Department of Computer Science, MS 4A5 

George Mason University, 4400 University Drive, Fairfax, VA 22030-4444 
{mboicu, tecuci, bstanesc, gbalan, epopovic}@gmu.edu, http://lalab.gmu.edu 

 
 
 

 
Abstract 

Ontologies and information sharing have a major role to play 
in the development of knowledge-based agents and the 
overcome of the knowledge acquisition bottleneck. This 
paper supports this claim by presenting an approach to 
ontology specification, import, and development that is part 
of Disciple-RKF. Disciple-RKF is a theory, methodology, 
and learning agent shell for the rapid development of 
knowledge-based agents by subject matter experts, with 
limited assistance from knowledge engineers. The Disciple 
approach has been subject of intensive evaluations, as part of 
DARPA’s “High Performance Knowledge Bases” and 
“Rapid Knowledge Formation” programs, demonstrating 
very good results. 

1 Introduction 
Ontologies and information sharing have a major role to 
play in the development of knowledge-based agents and the 
overcome of the knowledge acquisition bottleneck 
[Buchanan and Wilkins, 1993]. Indeed, building a 
knowledge base is too difficult a task to always start from 
scratch when a new knowledge-based system needs to be 
created. It makes more sense to reuse knowledge from 
related knowledge bases than to recreate such knowledge 
because this process should, in principle, be easier. 
Moreover, this reuse should also facilitate the 
communication between the systems because of their shared 
knowledge. 
 However, knowledge sharing and reuse are in themselves 
very complicated processes, especially if the systems 
involved have not been specifically designed for this 
purpose. How to design a knowledge-based system to 
facilitate knowledge sharing or reuse is an open research 
question.  
 In this paper we present an approach to rapid 
development of knowledge-based agents that illustrates 
several general methods and ideas related to ontology reuse 
and development. This approach is implemented in the 
Disciple-RKF learning agent shell. 
 Disciple-RKF is a tool for the development of a 
knowledge-based agent directly by a subject matter expert, 
with limited assistance from a knowledge engineer. 
Disciple-RKF contains a general problem solving engine, a 
learning engine and an initially empty knowledge base. The 

process of developing a Disciple agent for a specific 
application relies on importing ontologies from existing 
repositories of knowledge, and on teaching Disciple how to 
perform various tasks, in a way that resembles how an 
expert would teach a human apprentice when solving 
problems in cooperation. While teaching Disciple how to 
solve problems is a major feature of this system, in this 
paper we concentrate on its ontology-related aspects. 
 The next section describes the architecture of the 
Disciple-RKF shell. An important feature of this 
architecture is the structuring of the knowledge base into a 
general object ontology that can be imported and a set of 
problem solving methods or rules that can be learned from a 
subject matter expert. 
 Section 3 presents the general domain modeling 
methodology used with the Disciple approach. A 
characteristic feature of this methodology is that it produces 
an initial specification of the object ontology needed for the 
application knowledge base being developed. This ontology 
specification is the input to the ontology import module that 
is described in section 4. This module implements a general 
approach to ontology import. 
 Section 5 discusses several intelligent assistants that help 
in the complex process of extending and improving the 
object ontology. Then section 6 presents a practical 
approach for eliciting instances from subject matter experts, 
to populate the object ontology. 
  Section 7 discusses briefly the process of agent teaching 
and rule learning. This is continued in section 8 with a 
discussion of the ontology learning issue. 
 The knowledge base developed through the processes 
mentioned above can also be exported into existing 
knowledge servers, for further reuse. The knowledge export 
method of the Disciple approach is presented in section 9. 
 The work reported here has been done as part of the 
DARPA's High Performance Knowledge Bases program 
[Cohen et al., 1998], and continues as part of the Rapid 
Knowledge Formation program [Burke, 1999]. These 
programs included intensive experimentation periods that 
tested the claim that with the latest AI technology 
knowledge bases can be built quickly and efficiently. The 
tests required the development of knowledge-based systems 
for solving several challenge problems, including the 
following ones: 1) the workaround challenge problem: 



 2 
 

planning the repair of damaged bridges and roads [Jones, 
1998; Tecuci et al., 2000a]; 2) the COA challenge problem: 
critiquing military courses of action [Jones, 1999; Tecuci et 
al., 2000b], and 3) the COG challenge problem: identifying 
strategic center of gravity candidates in military conflicts 
[Gilles et al., 1996]. In section 10 we present experimental 
results from these evaluations that support the claims made 
in this paper. 
 We conclude the paper with a discussion of our future 
research related to ontology and information sharing. 

2 The Disciple-RKF Learning Agent 
Disciple-RKF contains a domain modeling and problem-
solving engine that is based on the general problem (or task) 
reduction paradigm of problem solving, and is therefore 
applicable to a wide range of domains. In this paradigm, a 
problem to be solved (or a task to be performed) is 
successively reduced to simpler problems until the problems 
are simple enough to be immediately solved. Their solutions 
are then successively combined to produce the solution to 
the initial problem.  
 An important feature of Disciple-RKF is the structuring 
of the knowledge base into two distinct components: an 
object ontology and a set of reduction and composition 
rules. The object ontology is a hierarchical representation of 
the objects and types of objects from a particular domain, 
such as military or medicine. That is, it represents the 
different kinds of objects, the properties of each object, and 
the relationships existing between objects. The object 
ontology provides a representation vocabulary that is used 
in the description of the reduction and composition rules. 
Each reduction rule is an IF-THEN structure that expresses 
the conditions under which a problem (or task) P1 can be 
reduced to the simpler problems (tasks) P11, … , P1n. 
Similarly, a composition rule is an IF-THEN structure that 
expresses the conditions under which the solutions S11, … , 
S1n of the problems (tasks) P11, … , P1n can be combined 
into a solution S1 of P1. 
 Dividing the knowledge base into an object ontology and 
a set of rules is very important because it clearly separates 
the most general part of it (the object ontology), from its 
most specific part (the rules). Indeed, an object ontology is 
characteristic to an entire domain. In the military domain, 
for instance, the object ontology will include descriptions of 
military units and of military equipment. These descriptions 
are most likely needed in almost any specific military 
application. Because building the object ontology is a very 
complex task, it makes sense to reuse these descriptions 
when developing a knowledge base for another military 
application, rather than starting from scratch. In the case of 
Disciple-RKF the ontology reuse is further facilitated by the 
fact that the objects and the features are represented as 
frames, based on the knowledge model of the Open 
Knowledge Base Connectivity (OKBC) protocol. OKBC 
has been developed as a standard for accessing knowledge 
bases stored in different frame representation systems 
[Chaudhri et al., 1998]. Therefore, importing an ontology 
from an OKBC compliant knowledge server, such as Loom 

[MacGregor, 1999], Ontolingua [Farquhar et al., 1996], and 
Protégé [Fridman et al., 2000] does not raise translation 
problems. 
 The rules from the knowledge base are much more 
specific than the object ontology. Consider, for instance, 
two agents in the military domain, one that critiques courses 
of action with respect to the principles of war, and another 
that plans the repair of damaged bridges or roads. While 
both agents need to reason with military units and military 
equipment, their reasoning rules are very different, being 
specific not only to their particular application (critiquing vs 
planning), but also to the subject matter experts whose 
expertise they encode.  

3 Domain Modeling and Problem Solving 
Domain modeling is the first and the most difficult 

activity when developing a knowledge base. First, the 
subject matter expert and the knowledge engineer have to 
develop a model of the application domain that will make 
explicit, at a qualitative and informal level, the way the 
subject matter expert performs tasks. In the case of Disciple-
RKF this means modeling the process of performing a 
specific task as a sequence of qualitative and informal task 
reduction and composition steps. The knowledge engineer 
and the subject matter expert will consider a set of specific 
tasks that are representative of the set of tasks that the final 
agent should be able to perform. Then, for each of these 
tasks, they will represent the problem solving process as a 
sequence of task reductions (and, possibly, task 
composition) steps.  

The left hand side of Figure 1, for instance, represents an 
example of task reduction modeling from the Course of 
Action critiquing domain. The task to perform is “Assess 
COA411 with respect to the Principle of Surprise”. To 
perform this assessment, the expert needs a certain amount 
of information about COA411. This information is obtained 
through a series of questions and answers that help reduce 
the initial assessment task to simpler and better-defined 
ones, until the expert has enough information to perform the 
assessment: "Report strength in surprise for COA411 
because of countering enemy recon."  

A main result of this modeling process is that it identifies 
the concepts and the features that need to be part of the 
object ontology in order for the agent to perform the type of 
reasoning illustrated in Figure 1. Indeed, the reasoning steps 
from the left hand side of Figure 1 reveal the need for the 
concepts and the features from the right hand side of Figure 
1. The collection of all these concepts and feature represent 
a specification of the ontology that will have to be 
developed. In our approach, this specification guides the 
import of relevant ontological knowledge from external 
repositories such as CYC [Lenat, 1995], Loom [MacGregor, 
1999], or Ontolingua [Farquhar et al., 1996], as will be 
presented in the next section. 

A second result of the modeling process are the task 
reduction steps themselves. They represent problem solving 
examples from which the Disciple agent will learn general 



 3 
 

rules through the application of a mixed-initiative 
multistrategy learning method [Boicu et al., 2000]. 

4 Ontology Import 
 As presented in the previous section, when the knowledge 
engineer works with the subject matter expert to define an 
initial domain model, they also identify the type of objects 
and features that are needed in the knowledge base (see 
Figure 1). These objects and features will focus the process 
of importing relevant ontological knowledge from existing 
knowledge repositories. The architecture of the ontology 
import module of Disciple is represented in Figure 2. 
Basically there are three phases of the ontology import 

process: 1) mixed-initiative retrieval of potentially relevant 
ontological knowledge from an external knowledge 
repository; 2) automatic translation of the retrieved 
ontological knowledge into an intermediate Disciple 
ontology; and 3) mixed-initiative import from the 
intermediate Disciple ontology into the final Disciple 
ontology. Each of these phases is discussed bellow.  
 In general, one of the practical difficulties encountered in 
ontology import is the fact that the subject matter expert has 
to deal with the additional representation system and tools 
of the knowledge repository from where knowledge has to 
be imported. To alleviate this problem, for each knowledge 
repository from which we are importing knowledge in 
Disciple, a standard ontology retrieval interface is 
developed. This interface allows the subject matter expert to 
retrieve relevant knowledge from different representation 
systems without dealing with the tools or representation of 
that knowledge repository. In the current Disciple 
architecture there are three planned implementations of the 
standard interface, one for the CYC system, which already 
exists, another one for any OKBC-compliant knowledge 
repository, such as Loom [MacGregor, 1999], Ontolingua 
[Farquhar et al., 1996], or Protégé [Fridman et al., 2000], 
and another one for older Disciple repositories.  
 Figure 3 illustrates the process of mixed-initiative 
retrieval of relevant ontological knowledge from the CYC 
knowledge repository. The subject matter expert introduces 
one of the terms needed in the ontology to be developed. A 
specialized CYC-searching module retrieves CYC terms 
that are likely to correspond to the input term, together with 
their documentation and pretty-names. Then the subject 
matter expert selects from the retrieved terms those that 
actually correspond semantically to the input term. This 
process is repeated for all the terms identified as relevant 
during domain modeling and results into a set of relevant 

I consider 
the presence of 
surprise actions

I consider
the presence of

deception actions
I consider

enemy
recon

Does the COA assign appropriate
surprise and deception actions?

Assess COA411 wrt Principle of Surprise

Yes

Is an enemy reconnaissance unit present?

Assess surprise for COA411 wrt 
countering enemy reconnaissance

Assess surprise for COA411
when enemy recon is present

Is the enemy reconnaissance unit destroyed?

Yes

Report strength in surprise for COA411
because of countering enemy recon

surprise actions
deception actions

enemy
reconnaissance

unit

destroyed unit

surprise action deception action

military action

type

military unit

enemy
friendly

recon unit

destroy action

military action

coa411

coa specification

acts on military unit

coa411

I consider 
the presence of 
surprise actions

I consider
the presence of

deception actions
I consider

enemy
recon

Does the COA assign appropriate
surprise and deception actions?

Assess COA411 wrt Principle of Surprise

Yes

Is an enemy reconnaissance unit present?

Assess surprise for COA411 wrt 
countering enemy reconnaissance

Assess surprise for COA411
when enemy recon is present

Is the enemy reconnaissance unit destroyed?

Yes

Report strength in surprise for COA411
because of countering enemy recon

surprise actions
deception actions

enemy
reconnaissance

unit

destroyed unit

surprise action deception action

military action

type

military unit

enemy
friendly

recon unit

destroy action

military action

coa411

coa specification

acts on military unit

coa411

Figure 1: An illustration of the Disciple modeling process in the COA domain. 

Mixed
initiative
Ontology

Import

DISCIPLE
ONTOLOGY

INTERMEDIATE
DISCIPLE

ONTOLOGY

Mixed-initiative ontology retrieval

ONTOLINGUA-KBCYC-KB …

Specialized Ontology Retrieval

…
CYC 

Ontology
Retrieval 

OKBC
Ontology
Retrieval

Intermediate 
OKBC File

Intermediate 
CYC File …

Automatic 
Ontology Translation

Translation
Engine

OKBC
Rule

Library

CYC
Rule

Library

Mixed
initiative
Ontology

Import

DISCIPLE
ONTOLOGY

INTERMEDIATE
DISCIPLE

ONTOLOGY

Mixed
initiative
Ontology

Import

DISCIPLE
ONTOLOGY

INTERMEDIATE
DISCIPLE

ONTOLOGY

Mixed-initiative ontology retrieval

ONTOLINGUA-KBCYC-KB …

Specialized Ontology Retrieval

…
CYC 

Ontology
Retrieval 

OKBC
Ontology
Retrieval

Intermediate 
OKBC File

Intermediate 
CYC File …

Mixed-initiative ontology retrieval

ONTOLINGUA-KBCYC-KB … ONTOLINGUA-KBCYC-KB …

Specialized Ontology Retrieval

…
CYC 

Ontology
Retrieval 

OKBC
Ontology
Retrieval

Specialized Ontology Retrieval

…
CYC 

Ontology
Retrieval 

OKBC
Ontology
Retrieval

Intermediate 
OKBC File

Intermediate 
CYC File … Intermediate 

OKBC File
Intermediate 

CYC File …

Automatic 
Ontology Translation

Translation
Engine

OKBC
Rule

Library

CYC
Rule

Library

Figure 2: The Ontology import module.



 4 
 

CYC terms, called seed. This seed represents the input to an 
automatic retrieval process that extracts from CYC all the 
terms that are related to those in the given seed. The 
automatic retrieval process is based on a breath-first search 
in a graph where the nodes are the terms and the edges are 
the CYC axioms that connect them. The result of this 
process is the transitive closure of the knowledge related to 
the seed, or a subset of it (the user has the possibility to 
specify a bound on the depth of the search or to stop the 
process at any time). The output of this process is a subset 
of the CYC ontology that is potentially relevant for the 
Disciple ontology to be developed. 
 In the second phase of the ontology import process, the 
retrieved CYC ontology is automatically translated into an 
intermediate Disciple ontology by a general rule-based 
translation engine that uses a CYC-Disciple rule translation 
library. Additional rule translation libraries need to be 
defined for each type of knowledge repository (e.g. for an 
OKBC-compliant knowledge server, for older Disciple 
repositories, etc.). Although we are currently using hand-
written libraries of rules, we plan to use Disciple to learn 
general translation rules from the specific examples. 
 One important issue in ontology translation is the relative 
expressive power of the languages between which the 
translation takes place (see [Corcho and Gomez-Perez, 
2000] for a comparison of the expressiveness of several 
ontology specification languages). As mentioned above, the 
representation of the Disciple object ontology is based on 
the OKBC knowledge model and is usually less powerful 
than the representations of the knowledge servers from 
which we need to import knowledge. On the other hand, the 
purpose of ontology import in Disciple is not to import the 
entire knowledge from the knowledge repository, but only 
the relevant knowledge that can be represented in the 
Disciple object ontology. This is because the primary 
purpose of the Disciple object ontology is to serve as a 
generalization hierarchy for learning of problem solving 
rules. Most of the representational and inferential power of 
Disciple does not come from the object ontology, but from 
the learned rules which we consider to be much more 
domain-specific and even expert-specific, and therefore less 
reusable and less likely to require importing. 
 The result of this translation process is an intermediate 
Disciple ontology which is the input for the third phase of 

the ontology import process. This intermediate ontology 
contains all the ontological knowledge retrieved from CYC 
or another knowledge repository. This is generally a very 
large ontology and only a relatively small part of it is likely 
to be useful for the final Disciple ontology to be built. The 
actual import is therefore taking place from this 
intermediate ontology. However, this is a Disciple ontology, 
and can be browsed using the Disciple tools. Therefore, the 
subject matter expert and the Disciple agent can collaborate 
to effectively import from it into the agent’s ontology the 
object concepts that are considered useful. 
 An important feature of the Disciple approach is that most 
of the ontology import task can be done by the subject 
matter expert and the agent, with only limited assistance 
from the knowledge engineer. Also, the subject matter 
expert does not need to deal with the representation or tools 
of the external knowledge repository, but only with the 
representation of the system to be built (which, in this case, 
is Disciple). Finally, to be able to import knowledge from a 
new knowledge repository, the knowledge engineer would 
only need to implement a retrieval interface like the one in 
Figure 3, and to define rules to translate knowledge from the 
external repository to Disciple. These components are not 
very complicated. All the other components needed are 
independent of the external knowledge server.  

5 Ontology Development 
The imported ontology will generally need to be further 
extended and maintained. Disciple-RKF contains a set of 
browsers and viewers for easy navigation and visualization 
of the ontology. They include hierarchical browsers that 
allow the subject matter expert to navigate the ontology 
along the generalization relationships between the object 
concepts or the object features. There is also an association 
browser that allows the visualization of the object ontology 
as a network where the objects are the nodes and their 
relationships are the links. Navigating through this network 
is done by simply clicking on a object which becomes the 
center of the screen.  
 While visualizing and navigating the ontology are 
relatively simple tasks for a subject matter expert, 
modifying the ontology is a very complex task. For 
instance, let us consider the case where the user wishes to 
delete the subclass-of (is-a) relation between the concept B 
and the concept A (see Figure 4). This operation will not 
generate any inconsistency related to either A or B, but will 
generate an inconsistency for the sub-concept C of B. The 
concept C has the feature f, and this feature has the domain 
A (the domain of a feature represents the set of all objects 
that may have that feature). After removing B as sub-
concept of A, the concept C will no longer be in the domain 
A of f, and therefore C may no longer have the feature f. As 
this example illustrates, a modification in one part of the 
ontology may generate subtle inconsistencies in other parts, 
and this makes ontology modification a very complex 
process. 

CYC-KB
Specialized
CYC Access

Interface

Automatic Retrieval
of Potentially Relevant
Knowledge from CYC

Intermediate 
CYC Ontology File

CYC Seed Terms

Natural
Language Term

Corresponding
CYC Terms

Figure 3: Mixed-initiative retrieval of
relevant ontological knowledge 



 5 
 

Figure 4: Inconsistency generated by a 
modification in the object ontology 

 
In principle, there are two different approaches to ontology 
modification. The first one is to allow the user to introduce 
inconsistencies in the knowledge base and then to correct 
them. This approach is used in the Chimaera system 
[McGuinness et al., 2000]. In this approach the modification 
of the knowledge base becomes an easy process. However, 
removing the inconsistencies is a very difficult process, 
which we think to be well beyond the capabilities that can 
be expected from a subject matter expert. Therefore we did 
not adopt this approach in Disciple. Instead, we adopted an 
approach where specialized ontology management assistants 
(which implement knowledge engineering methods and 
operations) guide and support the user in modifying the 
knowledge base such that the ontology will always be in a 
consistent state. There are assistants to create object 
concepts and features, to change the superconcepts of an 
object concept, to specify the value of a feature, to delete 
objects and features, to rename or copy them, and others. To 
implement these assistants we are developing a hierarchy of 
errors and warnings, as well as corresponding error 
correction methods. 
 The assistants operate according to the following 
scenario. The user formulates a goal, for instance to delete a 
given object concept. Then the corresponding assistant, 
which in this case is the delete assistant, analyses the 
knowledge base to determine all the implications of the 
operation intended by the user. It then notifies the user on 
the consequences of his or her planned action. After that a 
mixed initiative process is started to achieve the user's goal 
without introducing inconsistencies in the knowledge base. 
The assistant will propose specific knowledge management 
operations and the user may select the operations and guide 
the assistant to perform them.  

6 The Input Ontology 
After the object ontology is created, the agent can be trained 
to solve problems, as will be briefly presented in section 7. 
For this, one has to represent a problem in the agent’s 
knowledge base. The part of the object ontology that is used 
to describe an input problem represents the input ontology. 
Let us consider, for instance, the most recent application of 
Disciple: identification of strategic center of gravity 

candidates in military conflicts. In 1832 Clausewitz 
introduced the concept of a center of gravity of a force as 
“the hub of all power and movement, on which everything 
depends” [Gilles et al., 1996]. In this domain, an input 
problem is a description of a conflict scenario, such as the 
World War II planned invasion of Okinawa by the Allied 
forces in 1945. This includes the specification of the goals 
of the opposing forces, of the relevant factors (such as 
economic and geographical factors), and of the dominant 
factors (such as the composition of forces, the controlling 
and governing elements, and the type of civilization). Only 
after all this information is provided can Disciple reason 
about the potential centers of gravity of the opposing forces. 
From an ontology point of view, specifying an input 
problem (a scenario) consists of defining instances of the 
concepts from the input ontology, together with their 
features. This is not a trivial task for a subject matter expert. 
Therefore specialized elicitation forms are used to facilitate 
it, such as those from the Protégé system. For Disciple, we 
have developed a Scenario Elicitation module that allows 
the subject matter expert to create and update a scenario 
using a simple interface, which is illustrated in figure 5. The 
left hand side of the interface is a tree of titles and subtitles, 
similar to a table of contents. Each title (or node) 
corresponds to a certain type of information. When the 
expert clicks on such a node, Disciple requests relevant 
information about that node in the right hand side of the 
screen. If the expert has previously provided this 
information he can review or update it. The subject matter 
expert can go to any entry in this table of contents, to 
provide or update the information corresponding to that 
entry. Some information provided by the expert may lead to 
the creation of additional nodes in the left hand side of the 
interface. For instance, when the expert defined Japan-1943 
and US-1943 as opposing forces, several nodes have been 
introduced in the left hand side of the interface. 
 The main idea of the implementation of the scenario 
elicitation module is to associate elicitation scripts with the 
concepts from the input ontology. The script associated with 
a concept plays multiple roles: it specifies how an instance 
of that concept is created; what features of the instance need 
to be elicited; how the dialog with the user takes place, and 
what graphical components are used in this dialog. In the 
current version of Disciple these scripts have to be 
developed by a knowledge engineer after the input ontology 
has been created. A single concept from the ontology is also 
marked as the starting concept for the scenario elicitation. In 
the example from figure 5, the starting concept is 
“Scenario”.  The right part of figure 5 shows the dialog 
between the system and the user. Once the user introduced 
the name of the scenario (“Okinawa”), the system created an 
instance of the “Scenario” concept. Then the script to elicit 
the features of the Okinawa scenario was activated. To elicit 
a specific feature, Disciple also uses the information from 
the ontology about that feature, such as the possible values 
and its cardinality. When the subject matter expert specifies 
a value of a feature that is an instance of some other 
concept, the script of that concept is activated and a new 

Initial State Modified State 

f
domain

A

f 7C

A f
domain

A

C can no longer 
have the feature 
f because it is no 

longer in the 
domain of f

B

A

f 7C

B



 6 
 

entry is added to the table of contents for the features of that 
instance. Figure 6 shows a fragment of the elicitation script 
for the concept “Scenario.” This script requires the user to 
specify the opposing forces as illustrated at the bottom right 
of figure 5. Figure 7 shows the corresponding instances and 
relationships that have been introduced in the ontology. 
 

7 Agent Teaching and Rule Learning 
After an object ontology has been developed, the subject 
matter expert starts teaching the agent how to solve 
problems through successive reductions and compositions. 
This process is explained in [Tecuci et al., 2000b]. Here we 
only briefly review it in order to have a complete 
description of the Disciple methodology. In essence, the 
subject matter expert starts from the domain models that 

<object>

Scenario

Force

Opposing_force

Elicitation Script for the instances of the concept: Scenario
. . .
Property: detailed-name

Prompt: “Provide a few words summarizing “ <current-instance>
Control-type: single-line

. . .
Property: has_as_opposing_force

Prompt: “Name the opposing forces in “<current-instance>
Control-type: multiple-names
Other ontology actions: <property-value> instance-of Opposing_force

. . .

subclass-of

subclass-of

subclass-of

<object>

Scenario

Force

Opposing_force

Elicitation Script for the instances of the concept: Scenario
. . .
Property: detailed-name

Prompt: “Provide a few words summarizing “ <current-instance>
Control-type: single-line

. . .
Property: has_as_opposing_force

Prompt: “Name the opposing forces in “<current-instance>
Control-type: multiple-names
Other ontology actions: <property-value> instance-of Opposing_force

. . .

subclass-of

subclass-of

subclass-of

Figure 5: An interface for scenario elicitation 

<object>

Scenario

Okinawa

Force

Opposing_force

subclass-of

subclass-of

subclass-of

instance-of

Japan-1945has_as_opposing_force
instance-of

US-1945has_as_opposing_force

instance-of

detailed-name
“WW II invasion of the island of Okinawa”

<object>

Scenario

Okinawa

Force

Opposing_force

subclass-of

subclass-of

subclass-of

instance-of

Japan-1945has_as_opposing_force
instance-of

US-1945has_as_opposing_force

instance-of

detailed-name
“WW II invasion of the island of Okinawa”

Figure 7: The result of the elicitation script from figure 6Figure 6: Fragment of the elicitation script for “Scenario” 



 7 
 

have been previously prepared in collaboration with the 
knowledge engineer, as presented in section 3. The left hand 
side of Figure 1 shows an example of the task-reduction 
modeling of the problem solving process. Each abstract task 
reduction step (consisting of a task, a question, an answer, 
and a subtask) is expanded into a training example for the 
Disciple agent, as illustrated in Figure 8. Each task is now 
represented by a name phrase and a set of feature-value 
pairs. The answers are also made more specific. From each 
such task reduction example the agent learns a general task 
reduction rule that will allow it to apply a similar task 
reduction operation in future problem-solving situations. 
For instance, the rule learned from the second task reduction 
step in figure 8 is represented in figure 9. The process of 
learning such a general task reduction rule is a mixed-
initiative one. First the subject matter expert and the agent 
collaborate in finding a formal justification of why the 
current task reduction is correct. Then, based on the found 
justification, the agent generalizes the example into a task 
reduction rule. As shown in figure 9, the learned rule is an 
IF-THEN structure with two applicability conditions, a 
plausible lower bound condition and a plausible upper 
bound condition. These two conditions represent a plausible 
version space for the exact applicability condition of the 
rule. Through further learning, the two conditions converge 
toward one another and toward this exact condition. An 
important thing to notice is that the rule’s conditions are 
expressed in term of the concepts and the features from the 
object ontology. In general, the rule’s conditions could be 

much more complex expressions than the ones illustrated in 
figure 9. 

8 Ontology Learning 
Ontology learning is becoming an important research issue 
[Staab et al. 2000]. It also plays an important role in the 
Disciple agent development methodology. During the 
process of defining or explaining specific task reductions or 
compositions, when training the agent, the subject matter 
expert may need to refer to objects or object features that are 
not yet part of the ontology. From these specific instances 
Disciple-RKF will learn general ontological elements. For 
example, the subject matter expert may point to a specific 
feature of an object, as being responsible for the failure of a 
certain task reduction step. In such a case the agent will 
learn a general object feature definition from that specific 
feature. Any object feature definition specifies a domain (a 
concept that represents the set of objects that could have that 
feature) and a range (another concept that represents the set 
of possible values of that feature). 
 Disciple-RKF generates a plausible version space for the 
domain concept, and another one for the range concept. 
These version spaces are similar to the plausible version 
space condition of the rule shown in figure 9. After the 
versions spaces are generated, Disciple initiates a feature 
refinement experimentation session with the goal of 
reducing the plausible version spaces of the feature’s 
domain and range.  

Yes, RED-CSOP1 is destroyed by DESTROY1

Is the enemy reconnaissance unit destroyed?

Is an enemy reconnaissance unit present?

Does the COA assign appropriate
surprise and deception actions?

Assess surprise wrt countering enemy reconnaissance
for-coa COA411

Assess surprise when enemy recon is present
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1

Yes, RED-CSOP1 which is performing
the reconnaissance action SCREEN1

Report surprise in security because of countering enemy recon
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1
for-action DESTROY1
with-importance “high”

I consider enemy reconnaissance

Assess COA wrt Principle of Surprise
for-coa COA411

R
$AC

W
PO

S-001

R
$ASW

C
ER

-001

R
$ASW

ER
IP-002

Rule
Learning

Rule
Learning

Rule
Learning

Yes, RED-CSOP1 is destroyed by DESTROY1

Is the enemy reconnaissance unit destroyed?

Is an enemy reconnaissance unit present?

Does the COA assign appropriate
surprise and deception actions?

Assess surprise wrt countering enemy reconnaissance
for-coa COA411

Assess surprise when enemy recon is present
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1

Yes, RED-CSOP1 which is performing
the reconnaissance action SCREEN1

Report surprise in security because of countering enemy recon
for-coa COA411
for-unit RED-CSOP1
for-recon-action SCREEN1
for-action DESTROY1
with-importance “high”

I consider enemy reconnaissance

Assess COA wrt Principle of Surprise
for-coa COA411

R
$AC

W
PO

S-001

R
$ASW

C
ER

-001

R
$ASW

ER
IP-002

Rule
Learning

Rule
Learning

Rule
Learning

Rule
Learning

Rule
Learning

Figure 8: Sample teaching and learning scenario



 8 
 

9 Knowledge Base Export 
 Figure 10 illustrates the synergistic relationship between 
the Disciple-RKF agent development tool and an external 
knowledge server, such as CYC. To develop a knowledge-
based agent with Disciple-RKF one starts by importing an 
initial object ontology from the CYC knowledge server, as 
discussed in section 4. Then the subject matter expert 
interacts with Disciple, teaching it to solve problems, and 
thus developing the knowledge base of Disciple to 
incorporate the expertise of the subject matter expert. After 
the Disciple knowledge base has been developed, it is 
exported back into CYC, as a separate CYC microtheory. 
This is an automatic translation process that does not raise 
any problems because CYC's knowledge representation is 
more powerful than that of Disciple-RKF. Then this CYC 
microtheory can be semantically integrated with the rest of 
the CYC knowledge repository, by the developers of CYC. 
This semantic integration is a difficult task, but it is 
facilitated in this case by the fact that the initial Disciple 
ontology has been imported from CYC, to begin with.  
 We have performed a preliminary experiment during 
which the knowledge base of Disciple corresponding to the 
Course of Action challenge problem has been automatically 
translated into a CYC microtheory. Then, using its inference 
engine, CYC generated the same critiques of a course of 
action as Disciple. The integration model described above 
can be adapted for any other knowledge server, with only 
minor modifications. For instance, in the case of an OKBC 
knowledge server, only the object ontology of Disciple will 
be exported because the rules cannot be represented using 
the OKBC frame-based knowledge model.  

10 Experimental Results 
Successive versions of the Disciple approach and other 
competing knowledge base development approaches have 
been evaluated in several intensive studies requiring the 
rapid development and maintenance of knowledge bases for 
solving the workaround challenge problem (consisting of 
planning the repair of damaged bridges and roads [Jones, 
1998]), and the COA challenge problem (consisting of 
generating critiques of military courses of action [Jones, 
1999]). These evaluations were performed by Alphatech, as 
part of the DARPA’s HPKB program, and involved, in 
addition to Disciple, the following teams and approaches: 1) 
Teknowledge and Cycorp that used the CYC system [Lenat, 
1995].  

Figure 9: Sample task reduction rule learned by Disciple 

R$ASWCER-001
IF the task to accomplish is:
ASSESS-SURPRISE-WRT-COUNTERING-ENEMY-RECONNAISSANCE

FOR-COA ?O1

Question: Is an enemy reconnaissance unit present?
Answer: Yes, ?O2 which is performing the reconnaissance

action?O3.

Then accomplish the task:
ASSESS-SURPRISE-WHEN-ENEMY-RECON-IS-PRESENT

FOR-COA ?O1
FOR-UNIT ?O2
FOR-RECON-ACTION ?O3

Plausible Upper Bound Condition:
?O1  IS  COA-SPECIFICATION-MICROTHEORY
?O2  IS  MODERN-MILITARY-UNIT--DEPLOYABLE

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4  IS  RED--SIDE

Plausible Lower Bound Condition:
?O1  IS  COA411
?O2  IS  RED-CSOP1

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3  IS  SCREEN1
?O4  IS  RED--SIDE

Justification: 
?O2  SOVEREIGN-ALLEGIANCE-OF-ORG  ?O4  IS  RED--SIDE
?O2  TASK  ?O3  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK

R$ASWCER-001
IF the task to accomplish is:
ASSESS-SURPRISE-WRT-COUNTERING-ENEMY-RECONNAISSANCE

FOR-COA ?O1

Question: Is an enemy reconnaissance unit present?
Answer: Yes, ?O2 which is performing the reconnaissance

action?O3.

Then accomplish the task:
ASSESS-SURPRISE-WHEN-ENEMY-RECON-IS-PRESENT

FOR-COA ?O1
FOR-UNIT ?O2
FOR-RECON-ACTION ?O3

Plausible Upper Bound Condition:
?O1  IS  COA-SPECIFICATION-MICROTHEORY
?O2  IS  MODERN-MILITARY-UNIT--DEPLOYABLE

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK
?O4  IS  RED--SIDE

Plausible Lower Bound Condition:
?O1  IS  COA411
?O2  IS  RED-CSOP1

SOVEREIGN-ALLEGIANCE-OF-ORG ?O4
TASK ?O3

?O3  IS  SCREEN1
?O4  IS  RED--SIDE

Justification: 
?O2  SOVEREIGN-ALLEGIANCE-OF-ORG  ?O4  IS  RED--SIDE
?O2  TASK  ?O3  IS  INTELLIGENCE-COLLECTION--MILITARY-TASK

Knowledge
Server 

(e.g. CYC)

Disciple
RKF

KB

Knowledge-based Assistant

Initial KB

SME KB

Import Ontology

Export Ontology and Rules

Knowledge
Server 

(e.g. CYC)

Disciple
RKF

KB

Knowledge-based Assistant

Initial KB

SME KB

Import Ontology

Export Ontology and Rules

Figure 10: The synergy between
Disciple-RKF and the knowledge servers 



 9 
 

They achieved rapid knowledge base development through 
extensive re-use of CYC’s carefully developed ontology, 
wide-ranging common-sense knowledge, and general 
inferential capabilities. 2) The EXPECT group from USC-
ISI. This group developed knowledge bases with wide 
problem coverage and expert-level performance, using the 
knowledge acquisition tools of EXPECT that assist a 
knowledge engineer in debugging and refining a knowledge 
base [Kim and Gil, 1999]. 3) The Loom/PowerLoom group 
from USC-ISI that used novel case-based reasoning 
techniques for the COA challenge problem, in conjunction 
with the PowerLoom [MacGregor, 1999] representation 
system and an imported ontology. 4) The AIAI group from 
the University of Edinburgh that developed a high 
performance knowledge base for the workaround challenge 
problem by designing a planning ontology in CYC. 

In these experiments all the approaches demonstrated 
very good results and relative technology strengths. 
However, the Disciple approach has achieved the highest 
rates of knowledge acquisition and the best problem solving 
performance, while the generated solutions and 
justifications where judged as being very intelligible. 

The first evaluation concerned the workaround challenge 
problem and lasted for 17 days. At the beginning of the 
evaluation Disciple had an incomplete knowledge base 
consisting of 723 object concepts, 100 tasks, and 121 task 
reduction rules. Out of the 723 concepts 126 were imported 
from LOOM (an OKBC compliant knowledge server). They 
included elements of the military unit ontology, as well as 
various characteristics of military equipment (such as their 
tracked and wheeled military load classes). The extent of 
knowledge import was more limited than it could have been 
because the LOOM’s ontology was developed at the same 
time as that of Disciple, and we had to define concepts that 
have later been also defined in LOOM and could have been 
imported. In any case, importing those concepts proved to 
be very helpful, and has demonstrated the ability to reuse 
previously developed knowledge.During the 17 days of the 
evaluation, the knowledge base of Disciple was increased 
with 147 object concepts, 104 tasks, and 87 complex task 
reduction rules. The performance of the developed 
knowledge-based agent was judged by the evaluators as 
being at the level of a human expert. 

The second evaluation concerned the COA challenge 
problem and lasted 8 days. In this case the initial ontology 
was imported from CYC. During the evaluation period the 
knowledge base of Disciple was increased by 46%, which 
represents an even higher daily rate of knowledge 
acquisition than in the first experiment. Also, in addition to 
generating most of the critiques expected by the evaluators, 
Disciple generated many new critiques. The final 
knowledge base contained 801 concepts, 444 object and task 
features, 360 tasks and 342 rules. Also, each input problem 
(the description of a course of action) was represented with 
around 1500 facts. Currently Disciple is further developed 
and evaluated at the US Army War College, being used by 
subject matter experts to develop knowledge bases for the 
identification of strategic center of gravity candidates.  

11 Conclusions and Future Research 
We have presented an approach to rapid development of 
knowledge-based agents by subject matter experts that is 
based on ontology reuse and development.  
 In addition to the further development of the methods 
presented in this paper, future research on ontologies and 
information sharing will consist in extending the Disciple 
approach (Tecuci, 1998) and the supporting tools to allow 
several experts to collaborate in building different parts of a 
larger knowledge base. In particular, we plan to develop a 
distributed architecture for collaborative knowledge base 
development, as shown in Figure 11.  

Figure 11: Collaborative knowledge base development 
 
The right hand side of Figure 11 represents a team of subject 
matter experts that collaborate to rapidly build an integrated 
knowledge base. Each individual subject matter expert 
works with a personal Disciple-RKF agent to build a part of 
the integrated knowledge base. These separately developed 
knowledge bases are periodically integrated into a single 
knowledge base by the mediator team that includes a 
knowledge engineer, a subject matter expert, and a Disciple 
agent specialized in knowledge integration. The mediator 
team not only integrates the knowledge bases, but also 
mediates the collaboration between all the subject matter 
experts. 

Several features of the proposed approach facilitate 
collaborative knowledge base development. First, the 
knowledge base is structured into an object ontology that 
defines the terms of the representation language, and set of 
task reduction rules that are expressed using these terms. As 
a consequence, the subject matter experts have to agree on 
the shared object ontology but they can develop the rules 
independently. 
 Second, the knowledge base to be built is divided into 
parts that are as independent as possible, with each subject 
matter expert responsible for the development of a different 
part. The mediator team coordinates the partitioning and the 
integration of the knowledge base, and facilitates a 
consensus among the subject matter experts concerning the 
developed knowledge that is to be shared. 

Mediator Team
Subject Matter Expert
Knowledge Engineer

Disciple-RKF
Mediator Assistant

Mediated KB

Local KB

Disciple-RKF
Assistant SME

Local KB

Disciple-RKF
Assistant SME

Local KB

Disciple-RKF
Assistant SME

Local KB

Disciple-RKF
Assistant SME



 10 
 

Third, the integrated knowledge base consists of a 
hierarchy of component knowledge bases that are each 
internally consistent, but may contain portions that 
supersede or contradict portions from other knowledge 
bases. This corresponds to the fact that the knowledge 
model of a subject matter expert is internally consistent but 
it may contain knowledge that contradicts aspects of the 
knowledge model of another subject matter expert. This 
knowledge base organization not only facilitates knowledge 
acquisition from multiple subject matter experts, but also 
leads to a knowledge base that can provide solutions to 
problems from different points of view. 

Acknowledgements 
This research has been performed in the GMU Learning 
Agents Laboratory and was sponsored by the Defense 
Advanced Research Projects Agency (DARPA), Air Force 
Research Laboratory, Air Force Material Command, USAF, 
under agreement number F30602-00-2-0546, by the Air 
Force Office of Scientific Research (AFOSR) under grant 
no. F49620-00-1-0072, and by the US Army. The U.S. 
Government is authorized to reproduce and distribute 
reprints for Governmental purposes notwithstanding any 
copyright annotation thereon. Dorin Marcu, Michael 
Bowman, Cristina Cascaval, and other members of the 
LALAB have contributed to successive versions of Disciple. 
In addition to Michael Bowman, Tony Lopez and Jim 
Donlon, from the Center for Strategic Leadership of the US 
Army War College, have contributed to the application of 
Disciple to the center of gravity challenge problem. The 
anonymous reviewers of this paper provided insightful 
comments that helped us to improve it. 

References 
[Boicu et al., 2000] Mihai Boicu, Gheorghe Tecuci, Dorin 

Marcu, Michael Bowman, Ping Shyr, Florin Ciucu, and 
Cristian Levcovici. Disciple-COA: From Agent 
Programming to Agent Teaching. In Proceedings of the 
Seventeenth International Conference on Machine 
Learning, Stanford, CA, Morgan Kaufmann, 2000.  

[Buchanan and Wilkins, 1993] Bruce G. Buchanan and 
David C. Wilkins (editors). Readings in Knowledge 
Acquisition and Learning: Automating the Construction 
and Improvement of Expert Systems. Morgan Kaufmann, 
San Mateo, CA., 1993 

[Burke, 1999] Murray Burke. Rapid Knowledge Formation 
(RKF) Program Description, http://dtsn.darpa.mil/iso/ 
index2.asp?mode=9 

[Chaudhri et al. 1998] Vinay K. Chaudhri, Adam Farquhar, 
Richard Fikes, Daniel P. Park, and James P. Rice. OKBC: 
A Programmatic Foundation for Knowledge Base 
Interoperability. In Proceedings of the Fifteenth National 
Conference on Artificial Intelligence, Menlo Park, CA: 
AAAI Press, pages 600 – 607, 1998.  

[Cohen et al., 1998] Paul Cohen, Robert Schrag, Eric Jones, 
Adam Pease, Albert Lin, Barbara Starr, David Gunning 
and Murray Burke. The DARPA High-Performance Know-
ledge Bases Project, AI Magazine, 19(4), 25-49, 1998. 

[Corcho and Gomez-Perez, 200] Oscar Corcho and 
Asuncion Gomez-Perez. Evaluating Knowledge 
Representation and Reasoning Capabilities of Ontology 
Specification Languages. In Proceedings of the ECAI 
2000 Workshop on Application of Ontologies and 
Problem-Solving Methods, Berlin, 2000. 

[Farquhar et al., 1996] Adam Farquhar, Richard Fikes, and 
James Rice. The Ontolingua Server: a Tool for 
Collaborative Ontology Construction. In Proceedings of 
the Knowledge Acquisition for Knowledge-Based Systems 
Workshop, Banff, Alberta, Canada, 1996. 

[Fridman et al., 2000] Natalya Fridman Noy, Ray W. 
Fergerson, Mark A. Musen. The Knowledge Model of 
Protégé-2000: Combining Interoperability and Flexibility. 
In Proceedings of the European Knowledge Acquisition 
Workshop, pages 17-32, 2000. 

[Gilles et al., 1996] MAJ Phillip Kevin Giles, CPT Thomas 
P. Galvin. Center of Gravity: Determination, Analysis, 
and Application, U.S. Army War College, Carlisle 
Barracks, PA, 1996. 

[Jones, 1998]. Eric Jones. HPKB Year1 End-to-End Battle-
space Challenge Problem Specification. Burlington, 1998. 

[Jones, 1999]. Eric Jones. HPKB Course of Action Chal-
lenge Problem Specification. Alphatech, Burlington, 1998. 

[Kim and Gil, 1999]. Jihie Kim and Yolanda Gil. Deriving 
Expectations to Guide Knowledge Base Creation. In 
Proc. of the Sixteenth National Conference on Artificial 
Intelligence,235-241, Menlo Park, CA: AAAI Press, 1999. 

[Lenat, 1995] Douglas B. Lenat. CYC: A Large-scale 
investment in knowledge infrastructure. In 
Communications of the ACM 38(11): 33-38, 1995. 

[MacGregor, 1999] Robert MacGregor. Retrospective on 
LOOM. Available online: http://www.isi.edu/isd/LOOM/ 
papers/macgregor/Loom_Retrospective.html, 1999. 

[McGuinness et al., 2000] Deborah L. McGuinness, Richard 
Fikes, James Rice, Steve Wilder. The Chimaera Ontology 
Environment. In Proceedings of the Seventeenth National 
Conference on Artificial Intelligence, Menlo Park, CA, 
AAAI Press, pages 1123-1124, 2000. 

[Staab et al. 2000] Steffen Staab, Alexander Maedche, 
Claire Nedellec, and Peter Wiemer-Hastings (eds.) 
Proceedings of the First Workshop on Ontology Learning 
OL'2000, Berlin, Germany, August 25, 2000. 

[Tecuci, 1998] Gheorghe Tecuci. Building Intelligent 
Agents: An Apprenticeship Multistrategy Learning 
Theory, Methodology, Tool and Case Studies. London, 
England: Academic Press, 1998. 

[Tecuci et al. 2000a] Gheorghe Tecuci, Mihai Boicu, 
Kathryn Wright, Seok-Won Lee, Dorin Marcu, and 
Michael Bowman. A Tutoring Based Approach to the 
Development of Intelligent Agents. In Teodorescu, H.N., 
Mlynek, D., Kandel, A. and Zimmermann, H.J. (editors). 
Intelligent Systems and Interfaces, Kluwer Academic 
Press. 2000. 

[Tecuci et al. 2000b] Gheorghe Tecuci, Mihai Boicu, 
Michael Bowman, Dorin Marcu, Ping Shyr, and Cristina 
Cascaval. 2000 "An Experiment in Agent Teaching by 
Subject Matter Experts," International Journal of Human-
Computer Studies 53: 583-610. 


