
Towards the Conceptual Specification of
Statistical Functions with OCL

Jordi Cabot1, Jose-Norberto Mazón2, Jesús Pardillo2, and Juan Trujillo2

1 University of Toronto (Canada), jcabot@cs.toronto.edu
2 Universidad de Alicante (Spain), {jnmazon,jesuspv,jtrujillo}@dlsi.ua.es

Abstract. Current proposals for designing information systems lack the
mechanisms to define statistical functions at the conceptual level. There-
fore, queries containing these kind of functions are defined once the rest
of the system has already been implemented, which requires much effort
and expertise. In this sense, the goal of this paper is to show the benefits
of extending the Object Constraint Language (OCL) with a predefined
set of statistical functions.

1 Introduction

Queries containing statistical functions are highly important for users to satisfy
their information needs in a comprehensive manner [14]. However, information
systems design gives little importance to the definition of these kind of complex
queries [13]. Currently, queries are not expressed at the conceptual level, thus
requiring a lot of effort and expertise in the target implementation platform
and preventing designers from validating early on that the conceptual schema
satisfies the users’ requirements.

The main restriction for defining queries at the conceptual level is the rather
limited support offered by current conceptual modeling languages. Surprisingly,
essential statistical functions are not predefined in these languages: OCL [12]
only provides the sum, size and count operations. ConQuer-II [3] and Concept-
Base/TELOS [11] offer just a basic set of predefined statistical functions (as
avg, min and so on). Finally, the ER language [4] does not include a specific
language for expressing queries, and complementary query languages proposed
later on (as [1, 2, 5]) provide, at most, basic operations.

It is then clear that a better support for statistical functions is necessary to
easily express complex queries as part of the definition of a conceptual schema,
thus avoiding the error-prone and time-consuming task of defining them once
the system is implemented. To this aim, we propose to extend the standard
OCL library with a new set of statistical functions that designers can use when
defining queries at the conceptual level. These new functions have been tested
on sample data by using one of the well-known case studies from Kimball’s
book [9]: an airline’s marketing department wants to analyze the flight activity
of each member of its frequent flyer program. The department is interested in
seeing what flights the company’s frequent flyers take, which planes they travel

Proceedings of CAiSE Forum 2009 7



2 Proceedings of CAiSE 2009 Forum

with, what fare basis they pay, how often they upgrade, and how they earn their
frequent flyer miles3.

The case study has been implemented in the USE tool [7] in order to ensure
the well-formedness of OCL expressions and facilitate their validation by provid-
ing an evaluation environment. Figure 1 shows the implementation of our case
study. In the background of the USE environment we can see the frequent flyers
class diagram (left-hand side) and the script that loads the data (objects and
links) into the corresponding classes and associations (right-hand side). Given
this class diagram, users can request a set of queries to retrieve useful infor-
mation from the system. For instance, they are probably interested in knowing
the miles earned by a frequent flyer in his/her trips from a given airport (e.g.
airports located in Colorado) in a given fare class. Many other queries can be
similarly defined by using other statistical functions in order to analyze data in
a richer manner.

Fig. 1. Conceptual querying of frequent flyer legs implemented in USE

Therefore, we believe that it is highly important to be able to provide all
kinds of statistical functions as predefined constructs offered by the modeling
language so that the definition of complex queries can be carried out at the con-
3 Note that, in this case study, the interest is in actual flight activity, but not in

reservation or ticketing activity.

Proceedings of CAiSE Forum 2009 8

ey
Rectangle



Proceedings of CAiSE 2009 Forum 3

ceptual level in order to define and validate them regardless the final technology
platform chosen to implement the system. This paper is a starting point to ad-
dress this research, since we show the feasibility of extending the OCL language
with statistical functions.

2 Extending OCL with Statistical Functions

Conceptual modeling languages require the use of a general-purpose (textual)
sublanguage to express all kinds of queries, constraints and derivation rules since
most of them cannot be expressed using only the graphical constructs provided
by the conceptual modeling language [6]. For UML conceptual schemas, the
Object Constraint Language (OCL [12]) is typically used for this purpose. The
goal of this section is to extend the OCL with a new set of predefined statistical
functions to facilitate the definition of complex queries on UML schemas.

2.1 Preliminary OCL Concepts

OCL is a rich language that offers predefined mechanisms for retrieving the
values of the attributes of an object, for navigating through a set of related
objects, for iterating through collection of objects (e.g., by means of the forAll,
exist and select iterators) and so forth. As part of the language, a standard
library including a predefined set of types and a list of predefined operations
that can be applied on those types is also provided. The types can be primitive
(Integer, Real, Boolean and String) or collection types (Set, Bag, OrderedSet and
Sequence). Some examples of operations provided for those types are: and, or,
not (Boolean), +, −, ∗, >, < (Real and Integer), union, size, includes, count
and sum (Set).

All these constructs can be used in the definition of OCL constraints, deriva-
tion rules, queries and pre/post-conditions. In particular, definition of queries
follows the template:

context Class::Q(p1:T1, . . . , pn:Tn): Tresult
body: Query-ocl-expression

where the query Q returns the result of evaluating the Query−ocl−expression
by using the arguments passed as parameters in its invocation on an object of the
context type Class. Apart from the parameters p1 . . . pn, in query-ocl-expression
designers may use the implicit parameter self (of type Class) representing the
object on which the operation has been invoked.

As an example, the previous query total miles earned by a frequent flyer in
his/her trips from Colorado in a given fare can be defined as follows:

context Customer::sumMiles(FareClass fc)
body: self.frequentFlyerLegs−>select(f | f.fareClass=fc and

f.origin.city.name=’Colorado’)−>sum()

Proceedings of CAiSE Forum 2009 9

ey
Rectangle



4 Proceedings of CAiSE 2009 Forum

Unfortunately, many other interesting queries cannot be similarly defined
since the operators required to define such queries are not part of the standard
library. Next, we present our extension to the OCL standard library to include
new statistical operators. The set of statistical functions included in our study are
those among the most used in data analysis4. These functions can be classified
in three different groups, following [8, 10]: distributive, algebraic and holistic
functions.

2.2 Distributive functions

Distributive functions can be defined by structural recursion, i.e. the input col-
lection can be partitioned into subcollections that can be individually aggregated
and combined. One example is the max function, which returns the element in
a non-empty collection of objects of type T with the highest value. T must sup-
port the >= operation. If several elements share the highest value, one of them
is randomly selected.

context Collection::max():T
pre: self −>notEmpty()
post: result = self −>any(e | self −>forAll(e2 | e >= e2))

2.3 Algebraic functions

Algebraic functions are expressed as finite algebraic expressions over distributive
functions, e.g., average is computed by using count and sum functions. The
average function returns the arithmetic average value of the elements in the
non-empty collection. The type of the elements in the collection must support
the + and / operations.

context Collection::avg():Real
pre: self −>notEmpty()
post: result = self−>sum() / self−>size()

.

2.4 Holistic functions

Holistic functions are all other functions that are not distributive nor algebraic.
For example, the mode function, which returns the most frequent value in a
collection.

4 Due to space constraints, we only mention some examples in this paper, but all the
defined statistical functions are available in http://www.lucentia.es/research/

ocllib.html

Proceedings of CAiSE Forum 2009 10

ey
Rectangle



Proceedings of CAiSE 2009 Forum 5

context Collection::mode(): T
pre: self −>notEmpty()
post: result = self −>any(e | self −>forAll(e2 |

self−>count(e) >= self−>count(e2))
.

2.5 Applying the functions

These statistical operations can be used exactly in the same way as any other
OCL function. As an example, we show the use of the avg function to compute
the average number of miles earned by a customer in each flight leg.

context Customer::avgMilesPerFlightLeg():Real
body: self−>frequentFlyerLegs.Miles−>avg()

In the foreground of Fig. 1 we show one of the queries we have used to test
our functions in the USE tool (in this case the query is used to check our avg
function) together with the resulting collection of data returned by the query.
Interested readers can download5 the scripts and data of our running example
together with the definition of our library of statistical functions.

3 Conclusions and Future Work

Support for defining complex queries is very limited in conceptual modeling
languages and would hinder designers to directly implement these kind of queries,
preventing them from easily satisfying the user requirements. Specifically, queries
containing statistical functions cannot be easily defined in OCL since they are
not part of the standard library and thus, they must be manually defined by
the designer which is an error-prone and time-consuming activity (due to the
complexity of some statistical functions).

To solve this problem we argue in this paper that the OCL Standard Library
should be extended by predefining a list of new statistical functions that can be
used by designers in the definition of their OCL expressions.

Our short term future work is to grow the number of predefined functions
in our library and align them with current Model-Driven Development (MDD)
and Model-Driven Architecture (MDA) approaches, where the implementation
of the system is supposed to be (semi)automatically generated from its high-
level models. The definition of all queries at the conceptual level permits a more
complete code-generation phase, including the automatic translation of these
queries from their initial platform-independent definition to the final (platform-
dependent) implementation.

5 http://www.lucentia.es/research/ocllib.html

Proceedings of CAiSE Forum 2009 11

ey
Rectangle



6 Proceedings of CAiSE 2009 Forum

4 Acknowledgements

Work supported by the projects: TIN2008-00444, ESPIA (TIN2007-67078) from
the Spanish Ministry of Education and Science (MEC), QUASIMODO (PAC08-
0157-0668) from the Castilla-La Mancha Ministry of Education and Science
(Spain), and DEMETER (GVPRE/2008/063) from the Valencia Government
(Spain). Jose-Norberto Mazón and Jesús Pardillo are funded by MEC under FPU
grants AP2005-1360 and AP2006-00332, respectively. Jordi Cabot is funded by
the 2007 BP-A 00128 grant (Catalan Government).

References

1. M. Andries and G. Engels. A hybrid query language for an extended entity-
relationship model. J. Vis. Lang. Comput., 7(3):321–352, 1996.

2. M. Angelaccio, T. Catarci, and G. Santucci. QBD*: a graphical query language
with recursion. Software Engineering, IEEE Transactions on, 16(10):1150–1163,
Oct 1990.

3. A. C. Bloesch and T. A. Halpin. Conceptual queries using ConQuer-II. In D. W.
Embley and R. C. Goldstein, editors, ER, volume 1331 of Lecture Notes in Com-
puter Science, pages 113–126. Springer, 1997.

4. P. P. Chen. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst., 1(1):9–36, 1976.

5. B. Czejdo, M. Rusinkiewicz, D. Embley, and V. Reddy. A visual query language for
an ER data model. Visual Languages, 1989., IEEE Workshop on, pages 165–170,
Oct 1989.

6. D. Embley, D. Barry, and S. Woodfield. Object-Oriented Systems Analysis. A
Model-Driven Approach. Youdon Press Computing Series, 1992.

7. M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based specification en-
vironment for validating UML and OCL. Sci. Comput. Program., 69(1-3):27–34,
2007.

8. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

9. R. Kimball and M. Ross. The Data Warehouse Toolkit. Wiley & Sons, 2002.
10. H.-J. Lenz and B. Thalheim. OLAP schemata for correct applications. In D. Dra-

heim and G. Weber, editors, TEAA, volume 3888 of Lecture Notes in Computer
Science, pages 99–113. Springer, 2005.

11. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing
knowledge about information systems. ACM Trans. Inf. Syst., 8(4):325–362, 1990.

12. Object Management Group. UML 2.0 OCL Specification, 2003.
13. A. Olivé. Conceptual schema-centric development: A grand challenge for informa-

tion systems research. In O. Pastor and J. F. e Cunha, editors, CAiSE, volume
3520 of Lecture Notes in Computer Science, pages 1–15. Springer, 2005.

14. R. B. Ross, V. S. Subrahmanian, and J. Grant. Aggregate operators in probabilistic
databases. J. ACM, 52(1):54–101, 2005.

Proceedings of CAiSE Forum 2009 12

ey
Rectangle


