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Abstract 
The development of automated systems has been demonstrated to be a significant area of study, with 
rapid advancement occurring with the advent of artificial intelligence. In order to provide a universal 
method of problem-solving, an algorithm for executing various tasks within environments described 
with the General Environment Description Language (GEDL) has been developed. The initial version 
of the algorithm, which operated at a conceptual level, was confronted with considerable challenges, 
including inefficiency in the utilization of resources, the potential for infinite loops, and the difficulty 
of  applying  conceptual  solutions  to  real-world  scenarios.  To  address  these  issues,  several  key 
enhancements were introduced. These included the implementation of a state queue to prevent 
repetitive  state  exploration  and  optimization  in  the  management  of  instances,  features,  and 
relationships.  The  enhanced  algorithm was  evaluated  using  a  practical  case  study involving  a 
washing machine, wherein it effectively circumvented infinite loops and markedly reduced execution 
time. Additionally, the algorithm was capable of identifying absent instances and relationships. The 
outcomes illustrate that the modifications not only enhance the algorithm's performance but also 
expand its applicability to more complex and diverse environments. Future research will concentrate 
on integrating evolutionary algorithms to further optimize solutions and address challenges related 
to missing instances and implicit parameters in the problem-solving process. 
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1.Introduction 
The  development  of  automated  systems  capable  of  performing  tasks  without  human 

supervision has witnessed considerable advancement in recent years. From industrial robots to 
intelligent personal assistants, these systems have had a profound impact on numerous facets of 
daily life and industry [1]. This drive towards automation can be seen as a fundamental aspect of 
human nature, namely the tendency to solve problems. This has been a significant factor in the 
advancement of technology over time. 
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The introduction of artificial intelligence (AI) marked a significant turning point in the 
evolution  of  automated  systems.  Artificial  intelligence  has  developed  rapidly,  offering 
sophisticated solutions to complex problems across a wide range of domains. Nevertheless, 
while AI displays considerable proficiency in certain domains, there is a clear requirement for 
more adaptable systems that can accommodate a diverse range of environments and challenges, 
rather than being constrained by a narrow focus on a single application. 

In response to this need, our previous work [2] has concentrated on the creation of the 
General  Environment  Description  Language  (GEDL)  [3]  and  an  accompanying  algorithm 
designed to resolve issues in environments described by GEDL. The objective of this approach 
was to provide a more general solution framework that operates at a conceptual level. The 
algorithm was structured in a manner that enabled navigation through a series of abstract 
actions and states, thereby effectively solving problems in a simulated, idealised environment. 
Although  this  conceptual  approach  proved  valuable  in  generating  solutions  that  could 
theoretically  achieve the  desired goals,  it  became evident  that  the  algorithm encountered 
difficulties when applied to real-world scenarios. 

The fundamental challenge lies in the fact that the algorithm, by design, operates primarily 
at the conceptual level, where the inherent complexity of real-world instances— such as varying 
parameters, unpredictable conditions, and multiple potential instances of objects—is not fully 
accounted for.  The conceptual  solutions generated by the algorithm do not  automatically 
translate into executable actions within a real environment. This is due to the necessity of 
considering physical constraints, resource availability and the precise state of objects, which are 
absent from the conceptual level. Consequently, while the algorithm effectively delineates a 
potential sequence of actions in an idealised environment, it frequently fails to address the 
practical challenges encountered when those actions are mapped onto real-world occurrences. 

This discrepancy between conceptual problem-solving and practical execution demonstrates 
the shortcomings of the original algorithm. It is crucial to overcome the gap between abstract 
planning and its real-world implementation. It needs to be ensured that solutions are not only 
theoretically sound but also executable in the actual environments in which they are intended 
to operate. 

2.Related work 
This research is aligned with the broader goals of artificial general intelligence (AGI) [4], 

which aims to create intelligent systems capable of performing any intellectual task that a 
human  can  undertake.  The  ability  to  solve  problems  is  a  fundamental  aspect  of  human 
cognition. It involves the organisation and structuring of knowledge in a flexible and adaptive 
manner, which is a key area of focus in the development of AGI. Research in this field has 
contributed  to  the  theoretical  foundations  of  AGI  by  exploring  how  human-like  general 
intelligence can be structured within AI architectures.  This emphasises the importance of 
knowledge management and reasoning. 

A number of description languages have been developed with the objective of formalising 
and organising a variety of tasks and domains within artificial environments. Such languages 
include Game Description Languages (GDL) [5],  which are used to describe the rules and 
dynamics of different games, and Video Game Description Languages (VGDL) [6], which extend 



this concept to video games. Although both GDL and VGDL have proven useful in specific 
contexts, their primary drawback is their lack of universality, as they are designed exclusively 
for use with games. However, languages such as GDL-III [7] have introduced the ability to 
model more complex scenarios by incorporating epistemic logic, which accounts for agents' 
knowledge within the game environment. 

In  contrast,  agent-based  description  languages,  such  as  the  JIAC  Agent  Description 
Language (JADL) [8] and the Java Agent Development Framework Language (JADEL) [9], are 
more versatile in their scope, focusing on defining the characteristics and behaviours of agents 
within  multi-agent  environments.  These  languages  provide  frameworks  for  modelling 
interactions  between  multiple  agents,  thereby  enabling  the  design  of  more  sophisticated 
simulations  that  extend  beyond  rigid  rule-based  systems.  Moreover,  the  research  on 
compositional languages in multi-agent populations introduces a grounded approach, whereby 
agents develop their language to coordinate actions and behaviours within an environment. 

Our  work is  based  on the  General  Environment  Description Language  (GEDL),  which 
provides an even broader framework for representing complex environments and interactions. 
In contrast to the aforementioned languages, GEDL offers a wide range of possibilities for 
describing dynamic and diverse environments. The flexibility of GEDL makes it particularly 
suitable for this research, where complex problem-solving requires a detailed representation of 
both the environment and the relationships between its entities. 

A systematic approach to provide a reliable solution has resulted in the development of an 
initial algorithm designed to solve problems within environments defined by the GEDL. This 
earlier  approach established the  foundation for  the  derivation of  fundamental  conceptual 
solutions within a simulated environment. However, it also revealed significant challenges, 
including  inefficiencies  in  resource  management,  the  potential  for  infinite  loops,  and  the 
difficulty of  applying conceptual  solutions to real-world occurrences.  These insights  have 
informed the development of the enhanced algorithm presented in this paper, which addresses 
these  limitations  and  extends  the  applicability  of  GEDL  to  more  complex  and  realistic 
environments. 

In recent years, there has been a notable increase in interest in the areas of task execution 
and problem-solving within the context of specific simulated environments, such as the video 
game Minecraft. The frameworks MCU [10] and JARVIS-1 [11] represent significant advances in 
the evaluation of multi-task agents and agent-based control in openworld environments. To 
illustrate, MCU introduces a task-centric framework designed to evaluate agent performance 
across  a  wide  variety  of  tasks,  employing a  set  of  difficulty  metrics  to  assess  an  agent's 
capabilities.  Similarly,  JARVIS-1  employs  multi-modal  language  models  and  memory-
augmented  systems  to  facilitate  the  completion  of  complex  tasks  within  the  open-ended 
Minecraft environment. These systems offer valuable insights into problem-solving and task 
planning in environments that exhibit a high degree of complexity and variability. 

Another notable advancement in AGI development is evidenced by ChatGPT [12], which is 
capable of generating step-by-step problem-solving solutions. However, ChatGPT's reliance on 
natural language processing and statistical models limits its reliability in complex environments 
that require precise control over the problem-solving process. By leveraging GEDL, our work 
offers a more structured control over the environment and greater transparency into the steps 
required to solve problems in dynamic, multi-agent settings. 



2.1. Motivation 
The objective of this work is to present an enhanced approach that addresses the issues 

previously identified, thereby improving the reliability and efficiency of problem-solving in 
complex environments. It is hoped that, by confronting a previously developed approach with 
an example that highlights its shortcomings, the importance of readjusting the solution to cover 
a wider range of problems will become clear. This marks a major advance in enhancing the 
effectiveness of existing algorithm and opening up new possibilities for their use. The objective 
of this paper is to provide a more robust and flexible solution that can handle the details of 
complex environments, leading to the acquisition of more reliable and efficient outcomes. 

3.General Environment Description Language 
The General Environment Description Language is a framework designed to provide a 

description of the environment in which robots or agents operate. This enables the assignment 
of meaning to objects and the planning of tasks based on those objects. The GEDL is inspired by 
the manner in which the human mind organises and processes knowledge. The human mind 
constructs  a  conceptual  system,  a  structured  set  of  ideas  and  thoughts,  and  learns  from 
mistakes, thereby refining this system over time. Furthermore, humans are capable of passing 
entire conceptual frameworks to others, thereby reducing the time and resources that would 
otherwise be expended on individual learning. 

In GEDL, the term "environment" is used to represent a physical or conceptual reality, 
comprising individuals and objects.  The acquisition of knowledge is achieved through the 
cognitive mechanisms that enable individuals to recognise objects as instances with specific 
features. These features are grouped into sets that are associated with particular instances. The 
relationships between objects or individuals are based on logical connections derived from the 
aforementioned features. Furthermore, the language defines the concept of "relationship" which 
categorises these connections. 

In  GEDL,  instances  are  capable  of  performing  actions,  either  independently  or  with 
assistance, with the objective of modifying the environment. Actions modify the state of the 
environment by altering the features, relationships, or even the existence of objects. Each action 
is regarded as an indivisible unit; for instance, the placement of an object on a shelf is treated as 
a single, complete action, rather than a series of smaller movements. 

A problem in GEDL is defined as the task of modifying the environment from its initial state 
to a desired final state, utilising the available actions. In some cases, multiple solutions may 
exist, with the optimal one depending on the desired outcome, such as the minimisation of time 
or steps. 

The formation of an individual's  understanding of reality is  a function of accumulated 
knowledge, which is referred to as "individual knowledge." This includes information collected 
from  the  environment  and  concepts  learned.  This  knowledge  can  be  developed  through 
observation, deduction, and the exchange of information with others, the latter of which has 
been demonstrated to be an effective method for accelerating learning.  In GEDL, individual 
knowledge is comprised of three elements: 



• Conceptual System - represents the individual's perception of entities, relationships, and 
activities.  This  represents  the  individual's  perception  of  entities,  relationships,  and 
activities. It encompasses features, feature sets, instance concepts, relationship concepts, 
and action concepts. A feature is defined by a name and a range of possible values, which 
allows instances to be classified. The grouping of attributes that are common to objects of 
the same instance constitutes a feature set, thereby facilitating the process of classification. 
Relationship concepts define the connections between instances, which may be subject to 
alteration through the performance of actions. 

• Occurrences - these are particular instances and relationships that are identified by the 
individual. In contrast to the broader Conceptual System, Occurrences are concrete entities, 
characterised by defined features and values that can be acted upon. 

• Experience - this aspect of knowledge provides the impetus for the search for solutions to 
problems.  By  defining  a  problem  in  terms  of  the  current  and  desired  state  of  the 
environment, the individual employs their experiences to identify pertinent actions and 
construct a step-by-step plan to achieve the desired outcome. 

GEDL offers a systematic methodology for describing environments, comprehending the 
relationships between objects, and planning effective actions to address problems. It draws 
heavily upon the principles of human cognition, including how we learn, organize, and share 
knowledge. 

3.1. Example 
In order to more clearly demonstrate the potential of GEDL notation, a familiar, everyday 

task – namely, the washing of clothes – was described using this notation. Although the act of 
laundering clothing may appear to be a relatively simple and straightforward process, it is, in 
fact, comprised of a series of complex steps and requires the fulfilment of several prerequisites 
before any action can be initiated. The environment is defined using JSON syntax. This allows 
the description to be both universal and easily understood by humans. 

In this scenario, the Conceptual System comprises several key concepts of components, 
including a manipulator, a washing machine, a laundry basket, and the laundry itself. Each of 
these components is represented as a distinct instance concept within the GEDL framework, 
complete with specific features and relationships pertinent to the task at hand. To illustrate, the 
washing machine concept includes features such as 'turned on', 'contains laundry', 'contains 
detergent', 'washing', 'selected washing program', 'access inside' and 'access drawer'. These 
features are directly related to the washing machine's functions; irrelevant attributes such as 
size, power consumption and water usage are omitted since they do not impact the task at hand. 
A comparable level of detail  is  applied to the remaining components.  The manipulator is 
assigned a feature indicating whether it is holding an object, the basket is assigned a feature 
indicating whether it contains laundry, and the laundry is assigned a feature indicating whether 
it is clean. Furthermore, two relationship concepts, "holds" and "contains," are defined to specify 
the interactions between these objects, such as the manipulator holding an item or the basket 
containing laundry. The simplified example illustrated in Figure 1 provides a helpful overview 
of this concept. It should be acknowledged that this illustration do not provide a comprehensive 



account of the details in question; rather, its purpose is to assist the reader in understanding the 
manner in which the Conceptual System is represented. 

 
Figure 1 Simplified illustration of the doing laundry example 

To represent the entire process of doing laundry, twelve distinct action concepts are defined. 
These  include  the  following:  'takeOutOfBasket',  'openDoor',  'closeDoor', 
'putIntoWashingMachine',  'openDrawer',  'closeDrawer',  'addDetergent', 
'turnOnWashingMachine',  'chooseProgram',  'pressStart',  'takeOutOfWashingMachine',  and 
'putInBasket'. It should be noted that the sequence in which the actions are performed does not 
necessarily  correspond  with  that  of  a  one-to-one  set  of  steps.  In  some  instances,  the 
performance of  an action may necessitate  the repetition of  a  previous action in order to 
complete the task; this reflects the iterative nature of numerous activities that occur on a daily 
basis. 

Each action is associated with specific objects in the environment and is subject to certain 
conditions. To illustrate, the action of placing laundry into the washing machine necessitates 
the presence of three objects in designated states: the manipulator must be in possession of dirty 
laundry, and the washing machine must be in an open and unloaded configuration. Once the 
action has been completed, the manipulator is no longer holding any items and the laundry is 
inside the washing machine. However, the door remains open since closing it is treated as a 
separate atomic action. 

The Occurrences section delineates the initial state of the environment at the inception of the 
laundry task. In this initial state, the manipulator is not holding any items, the basket contains 
dirty laundry, and the washing machine is turned off, empty, and without detergent, with no 
access inside. This part mirrors the state of actual, existing instances. 

The problem, as defined in the Experience section, is to successfully complete the laundry 
task using the instances defined in the individual's knowledge, which include the manipulator, 
washing machine, basket, and laundry. The ultimate goal is to obtain clean clothes. The only 
difference between the initial  and final  state is  the value of  the 'clean'  feature.  However, 
achieving this goal is not a matter of performing a single action; rather, it requires a series of 
modifications to the instances described in Occurrences. 



4. Initial solution 
The primary objective of the algorithm remains unchanged across all existing versions. It is 

to determine a path from an initial state to a final state by methodically exploring all possible 
actions that can be executed in a given environment. The approach involves a systematic 
exploration of possible state transitions to ascertain whether a solution exists and to outline the 
steps required to achieve the desired final state. 

Initially, the algorithm takes the given initial state and evaluates the set of possible actions 
that can be performed within that state. Each feasible action leads to the creation of a new state, 
which is then subjected to a similar evaluation process. This iterative process continues, with 
the algorithm exploring each newly generated state by determining the subsequent actions that 
can be performed.  

The  process  begins  with  the  algorithm  analyzing  the  prevailing  environmental 
circumstances,  taking  into  account  initial  positions,  features,  conditions  and  any  existing 
relationships between objects. The data is then employed in the construction of a simulated 
scenario, which is utilized as a means of facilitating the process of problem-solving. 

After that, the algorithm identifies and executes a feasible action based on the current state. 
This approach enables the determination of the specific (on the conceptual level)  instance that 
performs the action at any given time. Once the action has been selected, it is executed, resulting 
in alterations to the environment. These may include the movement of objects, the modification 
of their properties, or the creation of new relationships. 

Subsequently, the algorithm determines whether the objective has been reached. If this is the 
case, the sequence of actions is identified as a potential solution. Conversely, if the objective has 
not been met, the algorithm commences the process anew from the updated environmental 
state,  searching  for  and  executing  the  next  available  action.  The  algorithm's  execution 
terminates under two conditions: if the final state is achieved, indicating that the problem is 
solved, or if there are no more states left to explore, signifying that no solution exists for the 
given problem. The illustration of this process is presented in the Figure 2. 

 

 
Figure 2: Illustrated process of finding a solution 

 



4.1. Challenging example 
The task of doing laundry can be used as a practical example to illustrate the challenges 

encountered in early stages of algorithmic design. The conceptual problem is straightforward: 
the initial state features dirty laundry, and the final goal is to have clean laundry. In order to 
achieve this goal, a series of actions must be carried out. These include removing the laundry 
from the basket, opening the washing machine door, placing the laundry inside, closing the 
door, adding detergent, starting the machine, waiting for the wash cycle to complete, removing 
the laundry, and finally, placing it back in the basket. 

Although the conceptual solution may appear straightforward, several issues emerge when 
considering the possibility of multiple outcomes or translating it into a practical algorithm that 
operates within a real environment. For the sake of this example, we may consider the following 
scenario: the environment consists of multiple instances, including two washing machines (one 
functional and one broken), two baskets (one with laundry and one empty), a piece of dirty 
laundry, and a manipulator (a mechanical arm) that can interact with these objects. 

4.1.1.Time and Resource Consumption 
A significant challenge is the vast number of potential outcomes that must be taken into 

account  at  each  stage  of  the  process.  In  any  given  state,  the  manipulator  is  capable  of 
performing a range of actions, including opening doors, moving laundry, and adding detergent, 
among others. Each of these actions results in a new state, and all potential outcomes must be 
considered to guarantee that the algorithm does not overlook a viable path to the goal. The 
combinatorial explosion of potential actions and states renders the algorithm highly resource-
intensive, as it must explore a multitude of potential sequences of actions. The necessity to 
assess each of these possibilities results in a considerable investment of time and resources, 
which has the potential to significantly impair the efficiency of the algorithm. 

4.1.2.Looping 
A further significant issue is that of infinite loops, which is particularly evident in the context 

of the laundry example. The environment permits actions that are cyclical in nature, such as 
repeatedly opening and closing the washing machine door or the detergent drawer. Moreover, 
actions such as placing laundry into the washing machine, closing the door, opening the door, 
removing the laundry, and then repeating the process could result in an infinite loop. Such 
cycles are not conducive to achieving the desired outcome; rather, they result in the inefficient 
utilization of computational resources and time. Without careful management, the likelihood of 
the algorithm becoming trapped in these futile loops is high. This would effectively halt its 
ability to progress towards the final state. 

4.1.3.Real World Application 
A final and equally crucial challenge is to ascertain whether the conceptual solution can be 

implemented in the actual environment. To illustrate, the conceptual solution is based on the 
assumption that a functional washing machine is available. However, should the only available 
washing  machine  be  in  a  state  of  malfunction,  the  entire  plan  becomes  unworkable, 



necessitating the rejection of the algorithm and the pursuit of an alternative solution. The 
verification  process  is  inherently  time-consuming  due  to  the  necessity  of  evaluating  the 
compatibility of the conceptual solution with the actual objects present in the environment 
(Occurrences).  The algorithm may require  multiple  iterations  through potential  solutions, 
discarding those that are infeasible, before identifying a viable option. This iterative process of 
generating and verifying solutions  introduces  an additional  layer  of  complexity  and time 
consumption to the algorithm. 

It is imperative that these challenges be addressed in order to create an efficient algorithm. 

5.Improved algorithm description 
To address the challenges mentioned earlier, an improved version of the algorithm was 

developed  to  tackle  more  complex  problems  defined  using  the  General  Environment 
Description Language (GEDL). In the initial version of the algorithm, three critical issues were 
identified: resource inefficiency, the risk of infinite loops, and difficulties in real-life application. 
The improved version specifically focused on resolving the first two issues, which were crucial 
for enhancing the algorithm's performance and reliability. 

The problem of resource inefficiency arose from the large number of operations and loops 
that the algorithm executed during the exploration process. As the algorithm evaluated possible 
actions and resulting states, the sheer volume of these operations led to significantly prolonged 
execution times,  making the process less efficient and scalable for complex environments. 
Additionally, the potential for infinite loops became apparent when the algorithm repeatedly 
cycled  through  certain  states  without  making  meaningful  progress  toward  the  goal.  For 
example, the algorithm might get stuck in a loop where it continuously opens and closes a door, 
failing to advance toward the final state. This issue not only wasted computational resources but 
also hindered the algorithm's ability to find a viable solution. 

To overcome these challenges, several key enhancements were proposed and implemented. 
One of the most significant improvements was the introduction of a state queue. This queue acts 
as  a  central  mechanism for  managing the  states  encountered  during the  simulation.  The 
algorithm now begins by taking the first state from the queue and appending all possible 
resultant states that can be achieved from this initial state. Before adding any new state to the 
queue,  the algorithm checks whether this state has already been encountered in previous 
iterations. If the state has been encountered before, it is discarded to prevent the algorithm from 
entering an infinite loop. On the other hand, if the state is new, it is added to the queue, allowing 
the exploration process to continue. This approach effectively eliminates the risk of repetitive 
cycles and ensures that the algorithm makes continuous progress toward the final goal. 

In addition to addressing infinite loops, further optimizations were implemented to reduce 
resource consumption. One significant optimization involved the use of references instead of 
duplicating instances, such as a washing machine, at each stage of the process. In the initial 
version, each state transition often involved creating cloned and slightly modified copies of the 
environment,  which  contributed  to  the  resource  inefficiency.  By  utilizing  references,  the 
algorithm can now directly address the initial state and the set of modifications made to reach 
the current state, rather than creating multiple copies. This approach substantially reduces the 
overhead associated with state transitions and minimizes the number of environmental states 
that need to be considered, thereby enhancing the overall efficiency of the algorithm. 



With regard to the third issue, namely the inability to verify the applicability of a conceptual 
solution in real-world scenarios, the improved algorithm incorporates a 

mechanism that systematically checks for the presence of required instances, features, and 
relationships in real-world occurrences subsequent to the generation of a conceptual solution. 

The process commences with the algorithm formulating a step-by-step solution based on the 
concepts  delineated  within  the  GEDL  framework.  Once  a  conceptual  solution  has  been 
established, the algorithm proceeds to verify its feasibility in a real-world environment. In 
particular, the solution is cross-referenced with the available instances, thus ensuring that the 
requisite features and relationships are present in the occurrences. 

In the event that the required instances or relationships are absent, the algorithm identifies 
and presents a list of these missing assets, indicating that the proposed solution is not viable in 
the current environment. This feature enables a more informed evaluation of the solution's 
practicality,  identifying  the  gaps  that  must  be  addressed  for  successful  implementation. 
Conversely, if all the requisite instances and relationships are present, the step-by-step solution 
is deemed potentially executable, indicating a higher probability of success in a real-world 
context. 

This enhancement not only enhances the algorithm's ability to solve problems but also 
provides a diagnostic tool that can guide users in adapting or refining their solutions based on 
the actual resources and constraints of the environment. The updated version of the algorithm 
is presented in Figure 3. 

 
Figure 3: Updated process of finding a solution 

 

6.Results 
The enhanced algorithm was evaluated in a scenario that involved a washing machine, 

laundry, a basket, and a manipulator. This scenario was designed to assess the algorithm's 



capacity to effectively address complex problems within dynamic environments. This example 
demonstrated the significant advancements achieved by the algorithm. 

Firstly, the implementation of the state queue effectively resolved the issue of infinite loops, 
such as those caused by repeatedly opening and closing doors or drawers. In earlier versions of 
the algorithm, these actions could result in an infinite loop, necessitating the introduction of 
artificial constraints to prevent such behaviour. However, the introduction of the queue has 
enabled the algorithm to rapidly identify and discard repetitive states. The initial iteration of 
any loop is promptly identified, thus ensuring that the algorithm does not expend resources on 
redundant actions. This improvement has not only maintained the algorithm's universality but 
has also considerably reduced the execution time. 

Furthermore, the intelligent administration of components, including instances, features, 
and relationships, has resulted in notable enhancements in processing speed. The algorithm is 
now able to propose a conceptual solution with greater rapidity than was previously possible, 
due to its more efficient handling of these elements. In the washing machine scenario, the initial 
conceptual solution proposed by the algorithm was accurate and executable in real-world 
contexts, thereby demonstrating the efficacy of the enhancements. 

Furthermore, the algorithm's flexibility was demonstrated through a test in which the basket 
containing laundry was replaced with an empty one. The queue mechanism promptly identified 
that the required actions could not be executed, resulting in the prompt depletion of the queue. 
This  resulted  in  the  identification  of  missing  elements,  specifically  the  laundry  and  the 
relationship "contains" (as in "basket contains laundry"). The algorithm's capacity to detect and 
report such deficiencies highlights its enhanced utility in navigating diverse environmental 
setups. 

In conclusion, the modifications introduced have enhanced the algorithm's adaptability and 
efficiency, allowing it to operate in a broader range of environments while maintaining robust 
performance in complex, dynamic scenarios. 

7.Direction of future work 
In  subsequent  research,  further  challenges  will  be  investigated  with  a  view to  further 

refining this approach. A crucial consideration is the manner in which the algorithm should 
respond when a necessary instance within the conceptual system is absent in the real-world 
occurrences. This scenario gives rise to a number of important questions. The question thus 
arises as to whether the algorithm should attempt to solve the problem once more, this time 
without relying on concepts that require the use of unavailable instances. Furthermore, if it is 
feasible to obtain or create the missing instance, should additional steps be incorporated into the 
solution to account for its production? The resolution of these questions will be crucial to the 
development of a more adaptable and intelligent problem-solving system. 

To enhance the algorithm's efficiency, future research will also focus on refining the search 
space through the utilization of Individual Knowledge Fragments (IKFs). By specifying the 
instances available in the environment, IKFs can assist in narrowing down the search, thereby 
reducing the computational burden by limiting the algorithm's focus to the relevant concepts 
and  instances.  This  approach  will  guarantee  that  the  algorithm exclusively  contemplates 
solutions that are based on the actual resources that are currently available, thereby enhancing 
both the speed and the accuracy of the process. 



A further significant challenge is posed by the algorithm's capacity to identify implicit 
parameters essential for problem-solving, particularly in instances where such parameters are 
not explicitly specified. To illustrate, if the task is to cut a hole in a wooden plank of a specific 
size to fit a given ball, a human being can deduce that the diameter of the hole should be the  
same as that of the sphere. However, this kind of logical inference is not a straightforward 
process for an algorithm. Future work will investigate methods of equipping the algorithm with 
the capability to derive such implicit parameters, potentially through the integration of domain-
specific knowledge or heuristic reasoning techniques. This will facilitate the algorithm's ability 
to process a more expansive range of tasks where not all requisite details are explicitly defined, 
thereby enhancing its versatility and problemsolving capabilities. 

Further work will be carried out to improve the algorithm's capacity to process missing 
instances or relationships when a conceptual solution is not viable in real-world scenarios. It is 
possible to enhance the presented approach, particularly in the context of identifying solutions 
within  occurrences.  In  order  to  address  this  challenge,  it  is  proposed  that  evolutionary 
algorithms be integrated into the problem-solving framework. Evolutionary algorithms, which 
are  inspired  by  the  process  of  natural  selection,  offer  a  powerful  method for  optimizing 
solutions in complex environments. In this context, the sequence of actions (steps) can be 
represented as a genome, with each gene corresponding to a specific action or decision. It is 
anticipated that the incorporation of evolutionary algorithms will result in a number of notable 
benefits,  including  the  capacity  to  adapt  to  complex  environments  containing  multiple 
instances and varying constraints. The algorithm would be better equipped to handle these 
environments by evolving strategies in an adaptive manner, with each strategy being tailored to 
the specific characteristics of the environment in question. Over successive generations, the 
evolutionary algorithm would progressively enhance its solutions, learning from past successes 
and failures. It seems plausible to suggest that the iterative refinement process is likely to result 
in the generation of more reliable solutions. 

8.Summary 
The objective of  this  work was to develop and refine an algorithm capable of  solving 

problems within environments described by the General Environment Description Language 
(GEDL). The initial version of the algorithm was effective at the conceptual level, generating 
solutions through the exploration of potential actions and state transitions. However, several 
significant obstacles were identified that restricted its applicability in real-world scenarios. 
These challenges included inefficiency in the use of resources, the risk of infinite loops, and 
difficulties  in  translating  conceptual  solutions  into  practical  actions  within  real-world 
occurrences. 

In order to surmount these limitations, a number of pivotal enhancements were introduced 
to the algorithm. Firstly, a state queue was implemented with the objective of providing a 
systematic means of managing and tracking the states encountered during the simulation. This 
mechanism proved an effective means of mitigating the issue of infinite loops, ensuring that 
previously encountered states were not revisited. Secondly, the consumption of resources was 
markedly decreased through the utilization of  references in contrast  to  the replication of 
instances of objects at each stage of the problem-solving process. This optimization resulted in a 
notable  enhancement  in  the  efficiency  and  scalability  of  the  algorithm.  In  addition,  the 



algorithm was provided with the capacity to identify the absent elements, thereby reinforcing 
the necessity of evaluating the viability of conceptual solutions in authentic contexts. 

Despite these advancements, the algorithm still faces challenges in applying conceptual 
solutions  to  complex  real-world  environments  where  multiple  instances  and  varying 
constraints  must  be  considered.  To  address  this  issue,  future  work  will  concentrate  on 
integrating  evolutionary  algorithms  into  the  problem-solving  framework.  Evolutionary 
algorithms, which are inspired by the principles of natural selection, represent a promising 
approach to optimising solutions within complex environments. 

Furthermore, additional challenges will be investigated through further research. One area 
of focus will be to determine whether it would be preferable to re-solve the problem or to 
incorporate additional steps to create or acquire the necessary instance.  A further crucial 
element will be narrowing down of the environment to the pertinent concepts and instances, 
thereby enhancing the algorithm's efficiency. Ultimately, efforts will be made to augment the 
algorithm's capacity to infer implicit parameters essential for problem-solving, particularly in 
instances where such parameters are not explicitly provided. 

In conclusion, the proposed improvements and the planned future directions are designed to 
develop a more robust and versatile algorithm capable of solving complex problems across a 
variety of environments. By establishing a connection between conceptual planning and real-
world execution, this work contributes to the advancement of automated problem-solving 
systems that are more generalisable and effective. 
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