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Abstract
The main research area of this article is the analysis and modelling of the physical and mechanical  
characteristics of epoxy composites. The value of internal stresses was investigated using artificial 
neural networks. The results of the modelling studies of these parameters obtained by the authors are 
in good agreement with the experimental data of other scientists.
It was found that the correlation coefficient in the presented test sample is 0.98. For these features in 
the test samples, the prediction error when using artificial neural networks is 0.35% for aluminium 
oxide filler, 0.55% for chromium oxide, and 0.12% for carbon black.
It is shown that neural networks are able to analyse data and use them for the next stage of research - 
training. Therefore, modelling the properties of materials by neural networks provides an increase in 
the accuracy of experimental studies of the main physical and mechanical features of materials based 
on epoxy composites activated by electrospark water hammer containing dispersed fillers.
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1. Introduction

The  current  development  of  the  global  industry  involves  the  widespread  use  of  new 
materials with predefined characteristics for various functional purposes. From both a scientific 
and practical point of view, the use of composite materials, including coatings based on polymer 
composites [1-7] and moulded using advanced methods with the use of gas-thermal spraying [8-
24], is perspective. Also, composite materials created on the basis of technologies using the 
external  influence of  mechanical  force fields that regulate their  structure and,  as a result, 
determine their properties have become widely used [1-5,7]. 
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Composites based on cold-cured epoxy diane resins demonstrate high performance features. 
[3-6]. Such materials are technologically advanced when used as coatings on long-dimensional 
surfaces of complex profiles.  When creating and studying composites, a necessary condition is 
the use of systems for automated processing and analysis of research results, namely neural 
networks.

Artificial neural networks are a promising tool for predicting processes with many variables 
and complex interactions of various factors [25,26]. Such networks are designed like the neural 
structures of the human brain, which processes information using a large number of neuronal 
connections. In the last few years, there has been a steady increase in the use of neural network 
modelling for analysis in various fields of science to predict the properties of an object both at 
the stage of its formation and at the next stage of processing the results of experimental studies 
[27-30]. In particular, the use of artificial neural networks is effective in the study of polymeric 
composite materials based on reactoplastics, where a number of factors should be taken into 
account both in their formation and in the study of properties. It is worth noting that the chosen 
parameters of neural networks affect the accuracy of the systems in research [31-33]. In general, 
the properties  of  polymer composites  can be accurately modelled using machine learning 
algorithms. The advantage of this approach is the opportunity to obtain research results using 
the proposed non-destructive testing method. In this case, the effects on the structure change in 
the composite, which is crucial for the control of their features, are not only in the formulation 
of the composite, but also in the study of their properties. [25-27].

The  main  task  of  modern  polymer  composite  materials  technology  is  to  ensure  high 
technological and operational properties.This is achieved by targeted control of the structure of 
polymeric materials.This approach is based on the general theoretical understanding of the 
structure formation processes and their impact on the properties of composites, and the analysis 
of empirical data when studying the characteristics of the developed materials.A number of 
complex requirements are imposed on composite materials (CM) with optimal performance 
characteristics at the stage of their formation. This is primarily true for the polymer matrix as 
the basis for the composite materials. It should have high physical, mechanical, adhesion and 
thermal characteristics and sufficient technological properties. This is achieved by selecting the 
ingredients of the polymer binder, modifiers, plasticisers, catalysts, fillers, etc. [1,3-5,7]. The 
processing of composite materials by electric spark water hammer is also interesting from a 
scientific and practical point of view. It is known that the treatment of oligomers by electric arc 
spark discharge provides cracking of binder macromolecules [1]. This, in turn, increases the 
level of cross-linking of the material during moulding in the composite, and thus improves the 
cohesive characteristics of the materials.  The main requirements for these composites and 
coatings based on them are a targeted complex improvement of their structural and mechanical 
characteristics.  This  leads  to  experimental  studies  to  determine  the  dynamics  of  the  CM 
structure formation processes under different modes and specifically selected stages of material 
formation. It should be noted that the most important properties of CMs are low residual 
stresses, high adhesive and cohesive strength, corrosion resistance, and processability when 
applied to parts of complex profiles of various technological equipment. This is achieved by 
introducing fillers of different nature into the polymers and adjusting the temperature and time 
regimes of crosslinking of the CM [3]. It is known that one of the ways to reduce internal 
stresses  in  CM is  to  regulate  the  relaxation processes  at  the  polymer-base,  polymer-filler 
interface, due to the creation of a homogeneous ordered structure in the coatings [2,7]. In 



addition,  new  methods  of  mechanical  and  thermodynamic  activation  of  physicochemical 
processes  have  been developing most  intensively  recently,  which  are  associated  with  the 
possibility  of  controlling  the  structure  formation  of  composites  by  changing  the 
physicochemical interaction between the components of the system [1-3,7]. 

In particular, a necessary condition for obtaining composites with high technological and 
operational  properties is  to ensure a strong and long-term connection between the active 
centers on the filler surface and the binder macromolecules. The change in the value of internal 
stresses should be explained on the basis of the basic principles of physical and chemical surface 
effects,  and in particular,  the active influence of  the surface of  dispersed particles  on the 
crosslinking processes of the matrix in the surface layers.

In view of the above, the use of artificial neural networks in the study of internal stresses, 
which is an important feature of the mechanical properties of epoxy composites, is an important 
problem of modern materials science. However, modern scientists have not yet paid enough 
attention  to  modelling  the  physical  features,  specifically  the  internal  stresses  of  epoxy 
composite materials, with neural networks. It is important to study the internal stresses of 
materials at different stages of the formation of epoxy composites filled with aluminium oxide, 
chromium oxide and carbon black by neural networks based on a matrix activated by electric 
spark water hammer.

2. Method of research with neural networks

Artificial neural networks (ANNs) have emerged as a new branch of computing that can be used 
in a wide range of experimental studies. Many studies have been published on predicting the 
properties of composites [31,33-35]. ANNs are based on the neural structure of the human brain, 
which processes information between many neurons, and in the last few years there has been a 
steady increase in interest in neural network modelling in various fields of materials science [36-
38]. The basic unit in the ANN is a neuron. Neurons are connected to each other by a weighting 
factor  that  determines  the  existing  and  strength  of  interconnections  and  thus  affects  the 
performance of the next groups of neurons. ANNs can be trained to perform a function by 
adjusting the values of the weights between neurons either based on information from outside 
the network or by the neuron itself in reaction to input data. This is the key point of the ability 
of ANNs to learn and record research results. The multilayer neural network (MLP) is the most 
widely used in most experimental studies25-27. A backpropagation algorithm can be used to 
train  these  multilayer  feedforward  networks  with  a  differential  transfer  function  for 
approximation, pattern matching, and pattern classification. The term ‘backpropagation’ refers 
to the process by which the derived network errors in terms of network weights and biases can 
be calculated and taken into account in later stages of the experiments.



Fig. 1 shows a general view of an MLP network. As you can see from the figure, a multilayer 
perceptron (MLP) is a feed-forward artificial neural network model that maps a set of input data 
to a set of related output data. An MLP consists of multiple layers of units in an oriented field,  
with each layer fully connected to the next. Except for the input units, each unit is a neuron (or 
processing unit) with a nonlinear activation function. MLP uses a supervised learning technique 
called backpropagation to train the network. MLP is a modification of the standard linear 
perceptron and can distinguish between data that cannot be separated linearly 27-31.

In this research, a 2-9-1 MLP network was built for composites filled with aluminium oxide, 
chromium oxide and carbon black. The training algorithm was BFGS, the error function was 
SOS, the hidden layer activation functions were tangential for carbon black and chromium 
oxide, and exponential for aluminium oxide. The activation functions of the outer layer are 
identity for chromium oxide and carbon black filler, and tangential for aluminium oxide filler 
[29, 35,37,39]. It should be noted that the epoxy diane binder ED-20 pretreated with electric 
spark water hammer was used as a matrix. In this case, the activity of such a matrix increases 
when interacting with dispersed fillers of aluminium oxide, chromium oxide and carbon black, 
improving the degree of crosslinking of the composite as a whole.

3. Experimental approach

The main task of the modern technology of manufacturing polymeric composite materials is to 
study the ways of directed control of the structure of polymeric materials. The targeted control 
of its parameters is used to ensure high technological and operational properties[4,40,41. This 
approach is based on the general theoretical understanding of structure formation processes and 
the analysis of the influence of the empirical data on the physical, mechanical and operational 
properties of the developed materials. Much attention has been paid to improving the polymer 
matrix to form materials with high physical, mechanical, adhesive, and thermal characteristics 
and sufficient rheological properties. Also, modification of compositions by external force fields 
is  a promising direction for improving the properties of  heterogeneous composites at  the 
current stages of materials science development. The technology of activation of oligomeric 
compositions  by  magnetic,  ultrasonic,  ultraviolet,  radiation  fields  and  electrospark  water 
hammer at the initial stages of material formation opens up fundamentally new possibilities for 



controlling the processes of interaction between components, which can be used to regulate the 
performance characteristics of the material [1,6,7.

Processing in external fields of both compositions as a whole and individual components 
under selected modes allows creating new classes of materials with a given set of performance 
properties.  In this regard,  interesting from a scientific and practical  point of view, special 
attention  was  paid  to  the  use  of  electrospark  water  hammer  to  activate  the  binder  by 
electrospark water hammer. It is known that the treatment of oligomers by electric arc spark 
discharge provides cracking of binder macromolecules. [1,4,5] This increases the level of cross-
linking of  the material  during composite  forming and,  as  a  result,  increases the cohesive 
properties of the materials.

Changes  in  molecular  and  segmental  mobility  during  crosslinking  of  oligomeric 
compositions due to the formation of new physical and chemical links, as well as increase in 
molecular  weight  to  gelation,  depend  heavily  on  the  rheological  characteristics  and 
concentration relations of the input components of the system. Therefore, in further studies, the 
effect of the plasticiser on the physical, mechanical, and thermal properties of the CM under 
optimised material forming regimes was investigated. It has been experimentally established 
that the introduction of aliphatic resin DEG-1 into an epoxy oligomer at a concentration of 10 
wt% per 100 wt% of ED-20 provides an increase in heat resistance by 19...21%, a destructive 
bending stress by 63...65%, and a decrease in internal stresses by 45...52% relative to the original 
epoxy matrix. 

The non-monotonic nature of the dependence of the physical and mechanical characteristics 
of CM on the concentration of the plasticiser was experimentally established. It has been found 
that the maximum values of the dependence of properties on the concentration of DEG-1 occur 
as a result of the introduction of an aliphatic resin in the amount of 10...20 wt% per 100 wt% of 
the modified epoxy oligomer. It should be noted that at these concentrations, the destructive 
stress, flexural modulus, and impact strength of the treated ED-20 resin with plasticiser increase 
by 1.5...1.8 times,  and the internal stresses decrease by 2.1 times relative to the untreated 
plasticised matrix.

It is known that one of the ways to reduce internal stresses in CM is to regulate the relaxation 
processes at the polymer-base, polymer-filler interface, due to the creation of a homogeneous 
ordered  structure  in  the  coatings  [1-6].  In  addition,  new  methods  of  mechanical  and 
thermodynamic activation of physicochemical processes have been developing most intensively 
recently, which are associated with the possibility of controlling the structure formation of 
composites  by  changing  the  physicochemical  interaction  between  the  components  of  the 
system.  We  have  used  the  activation  of  polymer  chains  of  macromolecules  by  cracking 
heterogeneous compositions with electric spark water hammer (ESWH).

It is important to study the value of internal stresses in ESWH-modified composites at 
different concentrations of fillers.  The analysis of the research results shows that with an 
increase in the concentration of fillers, the internal stresses in the CM increase. This is explained 
by an increase in the degree of gelation and better physical crosslinking of the matrix in the  
surface layers with an increase in the concentration of dispersed particles in the ESWH, which 
allows creating a material with a more crosslinked structure. At the same time, the introduction 
of carbon black particles as a filler ensures the formation of CMs with minimal internal stresses 
compared to other composites under study. This is due to the active influence of the surface of 
these particles on the physical and chemical processes of interfacial interaction of active centers 



on the surface of the solid phase with free radicals formed during the ESWH of epoxy oligomer 
[4-7]. It should be noted that this effect of the filler is not only near its surface, but also extends 
over some distances into the polymer volume. This makes it possible to form a material with 
surface layers around the filler that have a significant length and high physical and mechanical 
characteristics. This creates the conditions for targeted control of structural parameters on the 
performance characteristics of the studied CMs.

In  order  to  confirm  the  above-described  mechanism  of  CM  structure  formation,  it  is 
important to study the dynamics of internal stress growth at different stages (including high-
temperature)  of  the  formation of  epoxy composites  containing selected fillers  at  different 
concentrations. It has been experimentally established that an increase in internal stresses was 
observed for all composite materials with increasing temperature. This is confirmed by the 
analysis  of  the  results  of  calculating  internal  stresses  at  different  stages  of  sample 
thermostatting. It should be noted that a general analysis of the kinetics of internal stress 
growth in all samples, without exception, shows the highest gradient of internal stress growth at 
the stages of CM crosslinking. The first stage is the period after heat treatment of the composites 
at a temperature of T = 393 ± 2 K for  τ= 2 ± 0.1 h. In our opinion, after heat treatment, the 
processes of chemical crosslinking are completed in epoxy composites, and a material with a 
thermodynamically balanced structure is formed. During cooling of the CM, as well as in the 
future, processes occur that are accompanied by the formation of physical units both between 
macromolecules  or  free  radicals  and  the  filler  surface,  and  between  the  active  radicals 
themselves, in particular at temperatures below the glass transition temperature of the polymer 
matrix. This, in turn, is followed by the formation of a thermodynamically unbalanced system 
[2-5]. We observed a sharp jump in the value of internal stresses in the CM at the last stage of the 
study within 12 hours after heat treatment.

In  addition,  it  should  be  noted  that  in  all  the  studied  samples,  after  the  EIGU matrix 
treatment, an increase in internal stresses in the CM was observed compared to the original 
composites (at the same concentrations) at all stages of composite thermostatting. The obtained 
results confirm the above assumption about the formation of new physical nodes after ESWH of 
the matrix at the last stages of material crosslinking. 

The value of internal stresses was modelled using the experimental data obtained in the work 
by neural networks [28,29,33,34]. In particular, a sample of 28341 elements for each epoxy 
polymer filled with carbon black, aluminium oxide and chromium oxide was used to train the 
neural networks. Of this data, 80% was randomly selected for the training set, and the remaining 
20% was left to evaluate the quality of the forecast. Here, the output parameter was the value of 
internal  stresses  (sint,  MPa).  The  filler  concentration  (wt%  per  100  wt%  of  binder)  and 
temperature were considered as input parameters.

The dependences of the experimental data of internal stresses on the predicted ones obtained 
by the neural network method are shown in Figs. 2-4. It is proved that the prediction results are 
in good agreement with the experimental  data obtained by the authors  [30,35].  The data 
obtained using neural networks coincide with the input data (research results). It was confirmed 
that the created models adequately match the research results. This allows us to assert that 
neural network models can be used to predict the parameters of polymers treated with electric 
spark water hammer.



Figure 2: Predicted and experimental dependences for aluminium oxide filled composite

Figure 3: Predicted and experimental dependences for a chromium oxide-filled composite



Figure 4: Predicted and experimental dependences for a composite filled with carbon black

The dependences of the predicted value of internal stresses on the filler concentration in the 
composite and temperature are shown in Figs. 5-7. These figures make it possible to visually 
assess the dependence of internal stresses on temperature and filler concentration at certain 
points, which allows to reduce the time and material costs for further research [36-38].

Figure 5: Temperature dependence of internal stresses of aluminium oxide-filled CM



Figure 6: Temperature dependence of internal stresses in chromium oxide-filled CM

Figure 7: Temperature dependence of the internal stresses of the carbon black-filled CM

The diagrams of residual values for composites filled with aluminium oxide, chromium 
oxide, and carbon black, respectively, are shown in Figs. 8-10. The histogram data of the residual 
values shows the frequency of each value interval compared to the residual values. In particular, 
the residuals show the difference between the experimental and predicted values. They are 
found to be concentrated around zero and have a normal distribution 29,34,36,39,42.



Figure 8: Histogram of residual values for aluminium oxide-filled composites

Figure 9: Histogram of residual values for 
chromium oxide-filled composites

Figure 10: Histogram of residual values for 
composites filled with carbon black

To analyse the data, a statistical graph in the form of residual value diagrams is often used. It 
was found that these characteristics have a dependence close to the normal distribution law, 
which allows the use of statistical mathematical methods for processing the results of the 
experiment.

4. Conclusion

Neural networks have modelled the changes in the internal stresses of epoxy polymers filled 
with aluminium oxide, chromium oxide and carbon black. The results obtained are in good 
agreement with experimental data. The prediction error of the neural networks is 0.35, 0.55, and 
0.12 % in the test samples. The obtained results will allow to create conditions for targeted 
regulation of physical, mechanical and thermal characteristics by controlling the structural 
organisation in the material. Further research is planned to optimise the processes of developing 
epoxy composites for various functional purposes.



 

References

[1] O.V.Totosko,  P.D.Stukhlyak,  A.H.Mykytyshyn,  V.V.Levytskyi.  Investigation  of 
electrospark  hydraulic  shock  influence  on  adhesive-cohesion  characteristics  of  epoxy 
coatings. Funct. Mater. 2020; 27 4: 760-766. doi:https://doi.org/10.15407/fm27.04.760

[2] Skorokhod, A.Z., Sviridova, I.S. & Korzhik, V.N. The effect of mechanical pretreatment of 
polyethylene terephthalate powder on the structural and mechanical properties of coatings 
made  from  it.  Mechanics  of  Composite  Materials  30,  328–334  (1995). 
https://doi.org/10.1007/BF00634755

[3] Buketov, A., Stukhlyak, P., Maruschak, P., Panin, S. V., & Menou, A. (2016). Physical and 
Chemical Aspects of Formation of Epoxy Composite Material with Microfilling Agent. In 
Key  Engineering  Materials  (Vol.  712,  pp.  143–148).  Trans  Tech  Publications,  Ltd. 
https://doi.org/10.4028/www.scientific.net/kem.712.143

[4] Dolgov, N., Stukhlyak, P., Totosko, O., Melnychenko, O., Stukhlyak, D., & Chykhira, I. 
(2023). Analytical stress analysis of the furan epoxy composite coatings subjected to tensile 
test.  Mechanics  of  Advanced  Materials  and  Structures,  1–11. 
https://doi.org/10.1080/15376494.2023.2239811

[5] Dobrotvor I.G., Stukhlyak, P.D., Mykytyshyn, A.G.,.Stukhlyak, D.P. Influence of Thickness 
and Dispersed Impurities on Residual Stresses in Epoxy Composite Coatings // Strength of 
Materials. Springer, 2021. Vol. 53, № 2. P. 283–290.

[6] Oleg  TOTOSKO,  Petro  STUKHLYAK,  Mykola  MYTNYK,  Nikolay  DOLGOV,  Roman 
ZOLOTIY,  Danilo  STUKHLYAK,  Investigation  of  Corrosion  Resistance  of  Two-Layer 
Protective Coatings, Challenges to national defence in contemporary geopolitical situation 
2022(2022), no. 1, 50-54, DOI 10.47459/cndcgs.2022.6

[7] Dobrotvor, I.H., Stukhlyak, P.D., Buketov, A.V., Investigation of the formation of external 
surface layers in epoxy composites, Materials Science,2009, 45(4), рр.582-588.

[8] Korzhik, V.N. Theoretical analysis of the conditions required for rendering metallic alloys 
amorphous during gas-thermal spraying.  III.  Transformations in the amorphous layer 
during the growth process of the coating, Soviet Powder Metallurgy and Metal Ceramics, 
1992, 31(11), pp. 943–948. https://doi.org/10.1007/BF00797621

[9] Prokopov,  V.G.,  Fialko,  N.M.,  Sherenkovskaya,  G.P.,  ...Murashov,  A.P.,  Korzhik,  V.N. 
Poroshkovaya Metallurgiya, Effect of the coating porosity on the processes of heat transfer 
under, gas-thermal atomization, 1993, (2), р.р. 22–26 .

[10] Fialko, N., Dinzhos, R., Sherenkovskii, J., ...Lazarenko, M., Makhrovskyi, V., Influence on 
the thermophysical properties of nanocomposites of the duration of mixing of components 
in the polymer melt, Eastern-European Journal of Enterprise Technologies, 2022, 2(5-116), 
25–30

[11] Berdnikova, O., Kushnarova, O., Bernatskyi, A., Polovetskyi, Y., Kostin, V., Khokhlov, M. 
Structure Features of Surface Layers in Structural Steel after Laser-Plasma Alloying with 
48(WC–WC) +  48Cr  +  4Al  Powder.  Proceedings  of  the  2021  IEEE 11th  International 
Conference  "Nanomaterials:  Applications  and  Properties",  NAP2021,  2021. 
https://doi.org/10.1109/NAP51885.2021.9568516



[12] Markashova, L., Tyurin, Y., Berdnikova, O., Kolisnichenko, O., Polovetskyi, I., Titkov, Y. 
(2019). Effect of Nano-Structured Factors on the Properties of the Coatings Produced by 
Detonation Spraying Method. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin 
Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. 
Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_11

[13] Berdnikova, O., Kushnarova, O.,Bernatskyi, A., T. Alekseienko, Polovetskyi, Y., Khokhlov, 
M. Structure Peculiarities of the Surface Layers of Structural Steel under Laser Alloying. 
Proceedings  of  the  2020  IEEE  10th  International  Conference  on  "Nanomaterials: 
Applications and Properties", NAP2020, 2020, 9309615

[14] Fialko, N., Dinzhos, R., Sherenkovskii, J., ...Lazarenko, M., Koseva, N. Establishing Patterns 
In The Effect Of Temperature Regime When Manufacturing Nanocomposites On Their 
Heat-Conducting  Properties.  Eastern-European  Journal  of  Enterprise  Technologies, 
2021,4(5-112), рр.21-26

[15] G. M.  Hryhorenko,  L. I.  Adeeva,  A. Yu.  Tunik,  M. V.  Karpets,  V. N.  Korzhyk,  M. V. 
Kindrachuk,  and  O. V.  Tisov,  Formation  of  Microstructure  of  Plasma-Arc  Coatings 
Obtained Using Powder Wires with Steel Skin and B4 C+(Cr,Fe)7С3+Al Filler, Metallofiz. 
Noveishie Tekhnol., 42, No. 9: 1265—1282 (2020) https://doi.org/10.15407/mfint.42.09.1265

[16] Berdnikova, O.M., Tyurin, Yu.M., Kolisnichenko, O.V., ...Titkov, E.P, Yerеmyеyevа, L.Т. 
Nanoscale Structures of Detonation-Sprayed Metal–Ceramic Coatingsof the Ni–Cr–Fe–B–
Si System. Nanosistemi, Nanomateriali, Nanotehnologii. 2022, 20(1), pp. 97–109

[17] Korzhyk, V.,  Khaskin, V.,  Grynyuk, A.,  Ganushchak, O.,  Peleshenko, S.,  Konoreva, O., 
Demianov, O., Shcheretskiy, V., & Fialko, Comparing features in metallurgical interaction 
when applying different techniques of arc and plasma surfacing of steel wire on titanium . 
Eastern-European  Journal  of  Enterprise  Technologies,  4(12-112),  6–17. 
https://doi.org/10.15587/1729-4061.2021.238634

[18] Grigorenko,  G.M.,  Adeeva,  L.I.,  Tunik,  A.Y.,  Korzhik,  V.N.,  Karpets,  M.V.,  Plasma Arc 
Coatings Produced from Powder-Cored Wires with Steel Sheaths, Powder Metallurgy and 
Metal Ceramics, 2020, 59(5-6), pp 318–329

[19] Sydorets, V., Berdnikova, O., Polovetskyi, Ye., Titkov, Ye., & Bernatskyi, A. (2020). Modern 
Techniques  for  Automated  Acquiring  and  Processing  Data  of  Diffraction  Electron 
Microscopy for Nano-Materials and Single-Crystals. In Materials Science Forum (Vol. 992, 
pp.  907–915).  Trans  Tech  Publications,  Ltd. 
https://doi.org/10.4028/www.scientific.net/msf.992.907

[20] Kvasnytskyi,  V.,  Korzhyk,  V.,  Kvasnytskyi,  V.,  Mialnitsa,  H.,  Dong,  C.,  Pryadko,  T., 
Matviienko, M., Buturlia, Y. Designing brazing filler metal for heat-resistant alloys based on 
NI3AL intermetallide, Eastern-European Journal of Enterprise Technologies, 2020, 6 (12), 
рр. 6-19: Materials Science. https://doi.org/10.15587/1729-4061.2020.217819

[21] L. I. Markashova & O. S. Kushnareva. Effect of Structure on the Mechanical Properties of 
the Metal of Welded Joints of Aluminum Alloys of the Al–Cu–Li System. Materials Science, 
2014, V. 49, pр. 681–687.

[22] Grigorenko, G.M., Adeeva, L.I., Tunik, A.Y., ...Titkov, Y.P., Chaika, A.A., Structurization of 
Coatings in the Plasma Arc Spraying Process Using B C + (Cr,  Fe)7C3-Cored Wires., 
Powder Metallurgy and Metal Ceramics, 2019, 58(5-6), pp 312–322



[23] Fialko, N.M., Prokopov, V.G., Meranova, N.O., ...Korzhik, V.N., Sherenkovskaya, G.P. Fizika 
i  Khimiya  Obrabotki  Materialov,  Thermal  physics  of  gasothermal  coatings  formation 
processes. State of investigations, 1993, (4), р.р. 83–93

[24] Borisov, Yu.S., Oliker, V.E., Astakhov, E.A., Korzhik, V.N., Kunitskii, Yu.A., Structure and 
properties  of  gas-thermal  coatings  of  Fe-B-C  and  Fe-Ti  B-C  alloys,  Soviet  Powder 
Metallurgy and Metal Ceramics, 1987, 26(4), pp 313–318

[25] O. Khatib, S. Ren, J. Malof and W. Padilla, “Deep Learning the Electromagnetic Properties of 
Metamaterials—A Comprehensive Review,” Adv. Funct. Mater, vol. 31, no. 2101748, May. 
2021. doi:10.1002/adfm.202101748.

[26] R.  Tan,  N.  Zhang  and  W.  Ye,  “A  deep  learning–based  method  for  the  design  of 
microstructural materials,” Struct. Multidisc. Optim., vol. 61, pp. 1417–1438. Nov. 2019, doi:: 
10.1007/s00158-019-02424-2.

[27] Mazumder, Rahinul & Govindaraj, Premika & Mathews, Lalson & Salim, Nisa & Antiohos, 
Dennis  &  Hameed,  Nishar.  (2023).  Modeling,  Simulation,  and  Machine  Learning  in 
Thermally  Conductive  Epoxy  Materials,  Multifunctional  Epoxy  Resins,  295-326. 
DOI:10.1007/978-981-19-6038-3_11.

[28] Jiang, M. Chen and J. Fan, “Deep neural networks for the evaluation and design of photonic 
devices,” Nature Reviews Materials, vol. 6, pp. 679–700. Dec. 2021. doi:10.1038/s41578-020-
00260-1.

[29] B. Cunha, C. Droz, A. Zine, S. Foulard and M. Ichchou, “A review of machine learning 
methods applied to structural dynamics and vibroacoustic,” Mechanical Systems and Signal 
Processing, vol. 200, pp. 110535, Jun. 2023, doi:10.1016/j.ymssp.2023.110535.

[30] O. Khatib, S. Ren, J. Malof and W. Padilla, “Deep Learning the Electromagnetic Properties of 
Metamaterials—A Comprehensive Review,” Adv. Funct. Mater, vol. 31, no. 2101748, May. 
2021. doi:10.1002/adfm.202101748.

[31] Rajkovic V, Bozic D, Jovanovic MT. Characteristics of Cu–Al2O3 composites of various 
starting particle size obtained by high-energy milling. Journal of the Serbian Chemical 
Society 2009;74(5):595–605.

[32] Mukhtar A, Zhang DL, Kong C, Munroe P. Variation in hardness of ultrafine grained Cu–
Al2O3 composite hollow balls and granules produced by high energy mechanical milling. 
Materials Forum 2008;32:105–9.

[33] Wu. Lingling, L. Lei, W. Yong, Z. Zirui, Z. Houlong, K. Deepakshyam, W. Qianxuan and J. 
Hanqing, “A machine learning-based method to design modular metamaterials,” Extreme 
Mechanics Letters, vol. 36, no. 100657, Apr. 2020. doi:10.1016/j.eml.2020.100657.

[34] Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, The MIT Press, 2016
[35] M.  Zozyuk,  D.  Koroliouk,  P.  Krysenko,  A.  Yurikov and Y.  Yakymenko,  Prediction  of 

characteristics using a convolutional neural network based on experimental data on the 
structure  and  composition  of  metamaterials,  Statistics,  optimization  and  information 
computing, vol. 11, pp. 777–787, doi:10.19139/soic-2310-5070-1707.

[36] Haykin S. Neural Networks - A Comprehensive Foundation - Simon Haykin. McMaster 
University, Hamilton, Ontario, Canada, 2006. P. 823.

[37] N. Richard: Applied regression analysis, third ed., John Wiley & Sons, New York, 1998
[38] Wan, X., Feng, W., Wang, Y., Wang, H., Zhang, X., Deng, C., et al.: Materials discovery and 

properties prediction in thermal transport via materials informatics: a mini review. Nano 
Lett. 19, 3387–3395 (2019). https://doi.org/10.1021/acs.nanolett.8b05196



[39] Wenzhu  Zhang,  Youwei  Xu,  Yu  Shi,  Guoxing  Su,  Yufen  Gu,  Korzhyk  Volodymyr, 
Intergranular corrosion characteristics of high-efficiency wire laser additive manufactured 
Inconel  625  alloys,  Corrosion  Science,  Volume  205,  2022,  110422,  ISSN  0010-938X, 
https://doi.org/10.1016/j.corsci.2022.110422.

[40] Stukhlyak, P.D., Moroz, K.M., Influence of porosity in the epoxy matrix-polyvinyl alcohol-
disperse filler system on the impact toughness, Materials Science, 2011, 46(4), pp.455-463.

[41] Stukhlyak, P.D., Antifriction and adhesive properties of coatings of thermosetting plastics 
modified  with  thermoplastic  polymers.,  Soviet  Journal  of  Friction  and  Wear  (English 
translation of Trenie i Iznos), 1986, 7(1), рр..138-141.

[42] Buketov, A., Maruschak, P., Sapronov, O., Zinchenko, D., Yatsyuk, V., Panin, S. Enhancing 
performance  characteristics  of  equipment  of  sea  and  river  transport  by  using  epoxy 
composites. Transport, 2016, 31(3), pp. 333-342. 

 

https://www.scopus.com/sourceid/20799?origin=resultslist
https://www.scopus.com/sourceid/20799?origin=resultslist
https://www.scopus.com/sourceid/20799?origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-84988515882&origin=resultslist&sort=cp-f&src=s&sid=cdf28e8cd045b60fc285fd43b94b82af&sot=aff&sdt=a&sl=67&s=AF-ID(%22Ternopil+Ivan+Puluj+National+Technical+University%22+60013556)&relpos=28&citeCnt=30&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84988515882&origin=resultslist&sort=cp-f&src=s&sid=cdf28e8cd045b60fc285fd43b94b82af&sot=aff&sdt=a&sl=67&s=AF-ID(%22Ternopil+Ivan+Puluj+National+Technical+University%22+60013556)&relpos=28&citeCnt=30&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84988515882&origin=resultslist&sort=cp-f&src=s&sid=cdf28e8cd045b60fc285fd43b94b82af&sot=aff&sdt=a&sl=67&s=AF-ID(%22Ternopil+Ivan+Puluj+National+Technical+University%22+60013556)&relpos=28&citeCnt=30&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84988515882&origin=resultslist&sort=cp-f&src=s&sid=cdf28e8cd045b60fc285fd43b94b82af&sot=aff&sdt=a&sl=67&s=AF-ID(%22Ternopil+Ivan+Puluj+National+Technical+University%22+60013556)&relpos=28&citeCnt=30&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84988515882&origin=resultslist&sort=cp-f&src=s&sid=cdf28e8cd045b60fc285fd43b94b82af&sot=aff&sdt=a&sl=67&s=AF-ID(%22Ternopil+Ivan+Puluj+National+Technical+University%22+60013556)&relpos=28&citeCnt=30&searchTerm=

	1. Introduction
	2. Method of research with neural networks
	3. Experimental approach
	4. Conclusion
	References

