CEUR-WS.org/Vol-3861/paperl2.pdf

C

CEUR

Workshop
Proceedings

Program implementation of large-integer modular
multiplication based on Montgomery space

Natalia Kryvinska®', Thor Prots’ko? " and Oleksandr Gryshchuk®*

T Comenius University Bratislava, Odbojarov, 10, Bratislava 25, Slovakia
2 Lviv Polytechnic National University, S. Bandery, 12, Lviv, 79013, Ukraine
3 LtdC “SoftServe”, Sadova, 2d, Lviv, 79021, Ukraine

Abstract

Modular multiplications and modular exponentiation over large integers is very computationally expensive.
Many cryptosystems of smart networks use the Montgomery modular multiplication method, which reduces
the latency of software and hardware implementations. The main directions of software development and
outlines of the parts of Montgomery modular multiplication for the implementation are presented. The
methods of the software class Montgomery Arithmetic over large integers for performing modular
Montgomery multiplication are described. Improved method of reduction of operand transfer from
Montgomery area that uses pre-computation. A comparison of the execution time of the Montgomery
modular multiplication library functions over large integers was made. The developed software
implementation of modular multiplication provides faster computation compared to functions of the MPIR,
OpenSSL, Crypto++ libraries over large integers with 1024 and 2046 bits.

Keywords

Modular multiplication, Montgomery reduction, large numbers, speedup computation

1. Introduction

Problems of modern asymmetric cryptography and theoretical-numerical transformations widely use
modular arithmetic. The most critical from the point of view of computational implementation is the
operation of modular multiplication. Modular multiplication over numbers of a large bit size, which
significantly exceeds the bit size of processors, is especially relevant. The increase in the number of
digits leads to the complication of performing calculations on general-purpose computers, the
slowing down of data exchange, and the possibility of unauthorized access to computer systems.
Currently, to achieve a level of security acceptable for most applications, the necessary length of
numerical data of modular multiplication can be 1024 - 4096 bits. This circumstance requires the
development of effective software tools aimed at reducing the calculation time of computer arithmetic
operations despite the increase in the bit rate of their operands [1].

Research on the efficient implementation of modular multiplication as a basic operation is under
the constant attention of many developers of software libraries and hardware modules. After all, this
basic operation is used in such areas of informatics as graphics and computer vision, communication
networks, artificial intelligence, computer games and information security. It is these areas that use
modular computing to model various processes, calculate activation functions in neural networks,
cryptographic encryption and decryption, and generate pseudorandom data.

The scientific problem of speeding up modular reduction is relevant to the current stage of
development of information and computer technologies. An analysis of the implementation of
modular multiplication, taking into account many technical publications and textbooks, shows that

CIAW-2024: Computational Intelligence Application Workshop, October 10-12, 2024, Lviv, Ukraine

*Corresponding author.

t These authors contributed equally.

) natalia.kryvinska @fm.uniba.sk (N. Kryvinska); ihor.o.protsko@lpnu.ua (I. Prots’ko); ocr@ukr.net (O. Gryshchuk)

@ 0000-0003-3678-9229 (N. Kryvinska); 0000-0002-3514-9265 (I. Prots’ko);0000-0001-8744-4242 (O. Gryshchuk)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
By

this basic operation is studied in detail and implemented in various computing software and hardware
tools.

The article [2] proposes a method of accelerating the operation of modular multiplication of long
numbers, which is important for cryptographic applications, by combining multiplications of sections
of numbers with symmetric indices, as well as alternating cycles of adding sectional products with
the same weight and Montgomery group reduction.

The methodology is relevant due to the use of matrix and vector modular methods of finding the
remainder, modular multiplication and exponentiation, finding the inverse element based on the
addition of the module [3]. The non-least positive form based modular multiplication method that
combines naive multiplication and Karatsuba is applied in Montgomery modular multiplication [4].
In the article [5] new algorithm for the reduction of the Montgomery in the system of residues RNS,
the main part of which is double matrix multiplication, is proposed. This makes it possible to remove
some multiplication steps from the conventional algorithms, and thus the new algorithms are simpler
and have higher regularity compared to the conventional ones.

In the paper [6], three modular reduction algorithms and one modular multiplication algorithm
are implemented. The usage of Montgomery Multiplication and Montgomery Reduction can be done
using Verilog as the description language in the Synopsys Design Compiler. In the article [7], a
flexible and pipelined hardware implementation of modular Montgomery multiplication is proposed.

Thus, increasing the efficiency of modular multiplication is achieved in the directions of the
development of algorithmic methods and hardware using modern information technologies for the
implementation of computations.

The purpose of the study is the software implementation of modular multiplication based on
Montgomery reduction to speed up computations over large numbers. The paper describes the
software implementation of efficient modular algorithms, both Montgomery reduction and modular
Montgomery multiplication. A comparison was made with functions for computing multi-bit modular
multiplication of freely available software libraries.

2. Modular multiplication

Modular multiplication (multiplication of the large number T1 by the large number T2 modulo M)
consists of calculating the product of T1 and T2 with a large modulus M, in form,

D=T -T, mod M, (1)

it is believed that 2n-1 <M < 2n, T1< M, T2<Mand T1, T2 , M€ Z, D€ Zm.

There are methods of accelerated multiplication, such as the Karatsuba method, the Fuhrer
method, the Toom-Cook method, and FFT-based methods [8] in which the number of multiplications
is less than n2.

In the case of calculation (1) with large integers T1, T2, M, use the property

T,-T, mod M =[(T, mod M)-(T, mod M)] mod M, (2)

which allows you to perform calculations with smaller numbers. That is, if we multiply a large
integer by another large integer, and the result of their multiplication is so large that it cannot be
written in the computer, then using the property allows us to reduce the first two operands before
starting the multiplication.

Thus, the basic operation of modular multiplication is the modular reduction of the numbers T1
and T2 concerning the module M. Effective implementation the modular reduction is the key to the
high performance of numerical-theoretic algorithms for large numbers intended for information
protection.

The classical calculation algorithm has no limit on the size of the numbers and can be easily
adapted to a general-purpose division algorithm that gives both a quotient and a remainder. The

operation of integer division requires significant computing resources for its implementation. There
are two ways of speeding up calculations: the use of recalculations and the replacement of processor
division, which is inefficient for reduction, with processor multiplication. In order to avoid the
operation of dividing multi-bit numbers when implementing modular reduction, several effective
algorithms have been proposed, the main idea of which is to move from the operation of division to
multiplication and shift. Algorithms are the most common among them Barrett Reduction, Mod
without Division, Montgomery Reduction.

Barrett's modular reduction technology involves certain recalculations [9]. For example, there is a
product P=T1- T2, module M. It is necessary to calculate P mod M. According to Barrett's method, the
smallest q is searched for, for which: (P — g-M) < M in the form of a product:

gq=P/M =P /2" -w/2", w=2""/M. ®)

The numerical value of w depends only on the modulus M and can be calculated once. Division by
power 2 is carried out by shifting. Barrett's reduction is implemented by two multiplication operations
q - M and (P/2n) - (w/2n) with recalculation of w.

The Mod without division algorithm [10] is effective for calculating large numbers modulo. The
condition of the algorithm is that the value of the input data must be greater than the value of the
module. The algorithm also has pre-computation of the power of two modulo and certain predefined
operations. In the algorithm, shifts are performed, while if the most significant bit is not zero, a
correction is performed by setting the most significant bit to zero and adding to it a previously
calculated value of the power of two modulo. The Mod without division algorithm for calculating the
module operation ensures minimal memory access and is efficiently implemented at the hardware
level.

Montgomery reduction [11] is used for modular reduction and is currently the most common
algorithm. A unique property of the Montgomery reduction is that the algorithm does not compute
the modulus directly, but instead, the modulus is multiplied by a constant. There are various
modifications to the Montgomery modular reduction implementation.

The Montgomery reduction of the T number is defined as

TR '"mod M, (4)

where 0 < T<M-1;R>M;R,M€eZ.

To compute the Montgomery reduction (4), it is necessary to determine the value of R-1 that meets
the condition R - R-1 mod M =1. To find R-1 the inverse modulo, you can use the extended Euclidean
algorithm. Montgomery reduction is an algorithm with pre-computation that simultaneously
computes the product by R-1 and reduces modulo M more quickly than the naive method.

For working with large numbers is common to write the Montgomery radix R = rn = 2k. This
algorithm is based on scanning the bit of a large number T from the right (the least significant bit) to
the left (the most significant bit). The algorithm Montgomery Reduction (Figure 1) of a number T for
radix 2 what not require some pre-computation. In this algorithm, the resource-intensive division
operation is replaced by simple shift operations by conversing the operands into the reduce number
system domain before the operation and re-conversing the result after the operation.

Addition and subtraction in Montgomery form are the same as ordinary modular addition and
subtraction because correspond to the distributive law:

(T,R 'mod M)+ (T,R '"mod M)=(T,+ T))R 'mod M), ®)
where T1,T2€Z.

B

/ T,MandR—Z"/
>\ i=1tok >j

T=T/2 l

4 No

T =T+M

]

Figure 1: Algorithm of computation the Montgomery reduction for radix 2.

However, the reduction multiplication (TIR-1 mod M - T2R-1 mod M) is more complicated. The
ordinary product of TIR-1 mod M and T2R-1 mod M does not represent the product of T1 and T2
because it has an additional factor of R-1.

3. Montgomery multiplication

Mathematician Peter L. Montgomery in 1985 proposed a method of computing modular
multiplication, which does not require any division by M. This method is called Montgomery Modular
Multiplication, which is the combined operation of multiplication and reduction.

The Montgomery reduction of the multiplication T1’- T2’, where T1’ = T1 R mod M and T2’ = T2
R mod M, is

T -T,R" mod M =(T,R mod M -T,R mod M)/R ' mod M =T,-T, R mod M. (6)
The inverse R-1 can be find using the extended Euclidean algorithm. Indeed, if gcd (M, R) =1, then
the following integers will be found R -1 and M -1, that

R-R"'-M-M"=1.)

Montgomery multiplication involves: first conversion of operands into Montgomery space,
multiplication and then after result is re-conversed into Montgomery space.

Analysis of the Montgomery algorithm showed that its computational complexity of modular
multiplication, which is performed without taking into account additional transformations, is close
to the theoretical minimum. With a constant modulus, the computational complexity of the algorithm
can be reduced. An analysis of numerous publications devoted to the development of the ideas of the
Montgomery algorithm largely confirms this assessment.

There are various algorithms for bit-serial, digital-serial, and bit-parallel Montgomery
multiplication by binary expansion fields to implement multi-precision modular multiplication. The
modular multiplication method and various improvements to reduce latency for software
implementation on devices are discussed in detail in the article [12]. In practice, Montgomery
multiplication is the most efficient method when the common modulus is used and has a very regular
structure, which speeds up the implementation [13].

The implementation of Montgomery multiplication can be applied both to a previously calculated
product and as part of a combination of multiplication and reduction. The main advantage of separate
execution of multiplication is that it is possible to apply existing methods of accelerated multiplication
[8], such as the Karatsuba method, the Fuhrer method, the Toom-Cook method, and FFT-based
methods.

The classic Montgomery modular multiplication algorithm (Figure 2) combines the execution time
of multiplication and reduction, where one operation, the shift operation, is performed for the actual

/ T, T2’ M, R=2* /

multiplication and reduction.

S =85/2 No

A

/S’ZT; 7> RmodM/

End

Figure 2: Algorithm of Computation the Montgomery modular multiplication, where T1” = (t1(k-1)
... t1i..t12t11 t10), LSB S is last significant bit of S.

The form T1T2 R mod M means that, after we normally multiply two numbers in the Montgomery
space, we need to reduce the result by multiplying it by R-1 and taking the modulo M.

4. The software implementations of Modular Multiplication

The operation of modular reduction is performed much more slowly compared to the operation of
multiplying large numbers. This is due to the fact that obtaining the remainder requires significantly
more computing resources, since it is impossible to use the built-in processor division operation for
this purpose. Montgomery technology significantly accelerates modular multiplication, however, in
the modern conditions of information technology development, there is a need to increase the
efficiency of theoretical numerical algorithms, which are based on modular arithmetic operations.

Modern software libraries are used to perform calculations of modular multiplication of large
numbers. The software implementation of the calculation of modular multiplication is included in the
software libraries Crypto++, OpenSSL, MPIR, designed for working with large numbers. Software-
implemented and modified algorithms of modular multiplication using Montgomery reduction
require an experimental study of their advantages and disadvantages.

The increase in the bit rate of operands up to 4096 bits requires further development of efficient
modular multiplication functions. The software implementation of modular multiplication in the C++
language allows you to perform modular multiplication of numbers with a variable bit using
Montgomery reduction.

The basis of this program is the implementation of accelerated modular multiplication with a
combination of multiplier addition and modular reduction according to the Montgomery algorithm
using class-based pre-computations

class MontgomeryArithmetic

{

public:

explicit MontgomeryArithmetic(const mpz_class& mod);

mpz_class init(const mpz_class& x) const;

void new_reduce(mpz_class& x) const;
private:

const mpz_class mod_;

mpz_class inv_;

const size_t limbs_;

const size_t bits_;

mpz_class mip_2_;

mpz_class mip_n_;

¢

The developed class MontgomeryArithmetic implements the Montgomery modular multiplication
and reduction using the Multiple Precision Integers and Rationals library (MPIR) [14], which is a fork
of the famous GNU Multiple Precision Arithmetic library (GMP). Accordingly, in the MPIR library,
the data type mpz_t represents large numbers of arbitrary length, which are selected with the number
from 256 to 4096 bits.

The constructor MontgomeryArithmetic(const mpz_class& mod) computes the modular inverse
of the Montgomery reduction using the function mpz_sizeinbase(mpz_class(bits_).get_mpz_t(), 2) and
initializes the other member variables

mpz_class power = mpz_sizeinbase(mpz_class(bits_).get_mpz_t(), 2);

for (size_t i = 0; i < power; i++)

{

mpz_class expr = 2 - mod_ * inv_;
mpz_tdiv_r_2exp(expr.get_mpz_t(), expr.get_mpz_t(), bits_);
inv_ *= expr;

mpz_tdiv_r_2exp(inv_.get_mpz_t(), inv_.get_mpz_t(), bits_);

The search for a solution is carried out by constructing successive approximations and is based on
the principles of simple iteration (we start with inv_=1,as the inverse of m modulo 21). This method
calls the mpz_tdiv_r_2exp() function provided by MPIR, which returns the least significant bits of a
number, i.e., calculates the remainder of division by 2k. This algorithm uses only the shift, subtraction,
and multiplication of multi-bit numbers on each iteration.

Implementation of Montgomery multiplication (Fig. 3) for the computed product of two factors a
and b uses methods mpz_class init(const mpz_class& x) const and void new_reduce(mpz_class& x)
const converting them to Montgomery space and their product a_inv - b_inv out Res of Montgomery

form.
8 >

a,b, M,R=2Fk

a_inv =init (a) ;
b_inv =init (b)) ;

res_=a_"*b_ ;

Res =new _red(res_) ;

Res = a*b mod M /

E nd

Figure 3: The scheme for computation the Montgomery modular multiplication.

Before use at the stage of the multiplication operation (Fig. 3), you need to convert all numbers to
the Montgomery area. The method init mpz_class init(const mpz_class& x) const converts the number
x to the Montgomery space. A fast conversion algorithm implemented for multi-bit numbers is
described in [15].

The product of two numbers a_inv and b_inv converted to the Montgomery space uses the usual
multiplication provided by the MPIR library, optimized with AVX2 SIMD instructions, and is
performed by sequential execution of instructions

a_inv = mod_arithmetic.init(a);

b_inv = mod_arithmetic.init(b);

res =a “b_;

and then the Montgomery reduction is performed

mod_arithmetic_.new_reduce(res_);

This is one of the most performance-critical techniques. Method new_reduce(res_) with the
product argument res_ for which the Montgomery reduction is computed. This method is a
modernization of the mod_arithmetic_.reduce_1(res_) function of the MPIR library, which performs
the basic algorithm based on the Montgomery reduction. As a result of the analysis of the function
code, it was found that in reduce_1(res_) arithmetic transfers are stored in the variable tp and at the
end are added to the result using the mpn_addmul_1() function. As a result of the development of the
new_reduce(res_) function, an improvement has been achieved by taking into account transfers,
which are immediately added to the result. The mpn_addmul_1() function essentially consists of
many calls, so this simplification based on the class MontgomeryArithmetic provided faster
computation for large-bit data.

The developed Montgomery modular multiplication algorithm is faster than the usual modular
multiplication, which performs division by m. However, calculating the modular inverses of R-1, m-
1 and converting the numbers to the Montgomery region and vice versa are time-consuming
operations. The importance of speeding up the software computation of modular multiplication leads
to new software algorithmic solutions and their implementations. We will test the developed software
modular multiplication and compare it with similar functions from the Crypto++, OpenSSL, MPIR
software libraries designed for working with large numbers.

5. Experiments and discuss the implementation of Montgomery
modular multiplication

To test the effectiveness of the proposed method of accelerated modular multiplication with a
combination of multiplier addition and modular reduction according to the Montgomery algorithm
using pre-computations 5 different library functions were used. The library contains a set of available
primitives for theoretical and numerical operations, such as generation and verification of prime
numbers, arithmetic over a finite field, operations on polynomials.

The production-grade OpenSSL library contains a set of tools for cryptography that implements
the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) network protocols, as
well as the corresponding cryptography standards [16]. The OpenSSL library includes two functions
to calculate the modular multiplication based on Montgomery space:

BN_mod_mul_montgomery(res_, a_, b_, mont_ctx_, ctx_);

BN_from_montgomery(res_, res_, mont_ctx_, ctx_);

Crypto++ is a library implemented in the C++ language, which is optimized for various platforms
and allows performing high-performance cryptographic operations. The library supports not only
basic cryptographic primitives, but also more advanced functions. [17]. The Crypto++ library contains
a function to compute modular multiplication based on Montgomery space:

mod_arithmetic_.Multiply(a_, b_);

A highly optimized modification of the well-known GMP or GNU Multiple Precision Arithmetic
Library the MPIR library, which is written in C and the assembler, is used to implement the algorithm
for computing the modular multiplication. Accordingly, in the MPIR library, the mpz_t data type
represents long numbers that are selected for the number of binary digits from 256 to 2048 bits for
testing. For the implementation of the developed algorithm the MPIR library functions
mpz_init_set(mul, base), mpz_sizeinbase(exp, 2), mpz_tstbit(exp, i), mpz_mul(r, r, mul) with long
binary digit data are used. The MPIR library [14] offers a few low-level implementations of
multiplication, which can be further optimized for specific use cases. There is no separate modular
multiplication function in the MPIR library. Instead, you need to combine ordinary multiplication and
Montgomery reduction. There is no separate modular multiplication function in the MPIR library.
Instead, you need to combine ordinary multiplication and Montgomery reduction. Thre are three
reduction functions in the MPIR library:

mpn_redc_1() function is used for numbers less than 2048 bits;

mpn_redc_2() function is used for numbers less than 4096 bits;

mpn_redc_n() function is used for larger numbers.

Experimental testing of 5 library functions marked as crypto++, openssl, mpir_ redc_1,
mpir_redc_2, mpir_redc_n and developed mpir_redc_new() using MPIR library to implementation, is
presented in Figure 4. A computer system with a multi-core microprocessor with shared memory in
64-bit Windows was used for numerical experiments.Testing was performed on computer systems
with processors an Intel Core i9-13900K (24 cores, 32 threads, 3.0GHz). The results are presented in
Figure 4, which contains the values of average execution time (ns nanoseconds) of computing 20
executions of the modular multiplication for pseudo-random data a, b, mod for 1024 bits of trials
100000 and 2048 bits of trials 50000.

Bl KomangHas cTpoka x

bits=20u48 trials=50000
a = 11638631784703777957225100337724782606174476993148348775039982555993900U8754558268902659549835
46957869392386816655559674220863449490302767565291512456713796608849298561935299793410572886798552
16197110154047572091155879119079075873175408172357971079590513897641115114369028211807087828508092
0u45378680329607689292383043438393028261158550565163831523774704498698308948656876U7635U461790099479
544381018186066508921238411273987575848294270196440133664985808628726703U641896718501574567673304U8
85092613893458801235358426313286778031467783376399969082299156260883567167082712858335785615943897
673544036541168898201532354518934

b = 1254512202509365758525769302577741041019377935806585009445893044243935500684109599498187291556
85691874482877699155252197656988184933219215890582085345351655726194519211183666315634392215712315
558725148175081914619564044063087847064650640356852095634590597469739484709158828818174566L4898UTU5
41508659340327963049833652232651374513819673192840222815857U487693851655421787680657765076150626509
95652519296313110375489474256448820037471414075909407765761135884621010823434115114484329240253039
70L475685951610344484658186102005467883999975509776996322465738940043302816888905524391853719697111
510677258308799449237433549709051

mod = 1279657157878643315375451994789121989527483U51815696706525978181478647280U4889626522939147197
29841367398722758u488468519551838329425705026040131690845603013107642031396010335999667195968952912
L46980883998049998591545259240941736193555835798982006589055990578887099177337187941074026989940064
18423101038288512666925452951569633791744547068207214169273365791786350001503719182275U473156U486580
254452176470109270272568969443431944314990838557531313529721489105123605844154416709069059450499723
12316196228996067174384570866890137572312754349635382359921163615073459219675099108408259003369239
216521914555702886'79693309935809721

openssl average time = 828 nanoseconds.

crypto++ average time = 972 nanoseconds.

mpir_reduce_1 average time = 639 nanoseconds.

mpir_reduce_2 average time = 674 nanoseconds.

mpir_reduce_n average time = 689 nanoseconds.

mpir_reduce_new average time = 536 nanoseconds.

The average time(ns) of computing the modular multiplication
l624b 20648b

crypto++ 279 968
mpir_reduce_1 183 646
mpir_reduce_2 190 658
mpir_reduce_n 238 690
mpir_reduce_new 168 551
openssl 208 827

Figure 4: The result of testing the functions of computing the modular multiplication on a computer
system with an Intel Core i9-13900K processor.

Analysis of the execution time of modular multiplication revealed that the execution time of the
developed function mpir_redc_new() is the smallest than the execution time of the library functions.
Montgomery modular multiplication mpir_redc_new() is the fastest in computing a reasonably long
series of modular reductions, for instance in computing exponential functions of large numbers [18,
19].

Among 5 other functions, the best average time for computing the modular product (Fig. 4) is in
the openssl library function. In relation to openssl, the developed function mpir_redc_new() has a
better computation time by 24% for operands of size 1024 bits and by 50% for operands of size 2048
bits. Thus, with the increase in the number of operands, the average time for computing the modular
product is reduced based on the use of the mpir_redc_new() function.

In the process of solving many number-theoretic transformations, and especially in the problems
of cryptographic protection, the use of efficient computation of modular multiplication is the most
used operation. An important component of these calculations is the implementation time of the
modular multiplication, which has a significant impact on the performance of the computation.
Application of modular Montgomery multiplication requires additional operations performed before
and after the actual multiplication. In practice, modular multiplication using the Montgomery
algorithm is suitable in performing modular exponentiation in number-theoretic algorithms using
multi-digit numbers. For example, the obtained results of the implementation of the modular
exponentiation function with precomputation of the residues for a fixed basis and the use of the
developed Montgomery modular multiplication are the best among the available modular
exponentiation functions from the Crypto++, OpenSSL, and MPIR libraries for large numbers with
the bit size of more than 1Kbit [20]. Therefore, based on the developed software, the further
implementation of the computation of modular multiplication using promising computing
technologies will provide the possibility of effective solutions to applied problems.

6. Conclusions

The work compares and analyzes the use of the developed software implementation of the
Montgomery Arithmetic class for calculating modular multiplication. The constituent parts of the
modular Montgomery multiplication are outlined and the main features of the implementation of the
methods of the Montgomery Arithmetic class are given. The developed function of modular
multiplication and 5 functions of known software libraries were tested. As a result, the developed
function provides faster computations of Montgomery modular multiplication compared to using
other modular multiplication functions. We have shown that the developed Montgomery modular
multiplication in general-purpose computers speeds up the computations by an average of 1.5 times
compared to functions of modular multiplication for 2k bits numbers taken from famous software
libraries.

The scientific novelty of the obtained results lies in the implementation of the analysis and
software improvement of the Montgomery modular multiplication calculation, which obtained the
best time characteristics among the well-known functions of the Crypto++, OpenSSL and MPIR
libraries for large numbers over 1K bits.

The practical significance of the work lies in the fact that the obtained results can be successfully
applied for efficient computation of number-theoretic transforms, for modern asymmetric
cryptography and other computational applications. An especially effective use of the developed
software implementation of the Montgomery Arithmetic class for calculating fixed-base modular
exponentiation, which application is important in Diffie-Hellman key agreement and elliptic curve
digital signature algorithm verification.

Prospects for further research are the development of a program function of Montgomery's
modular multiplication and its implementation for large integers of size 4096 bits.

References

[1] V. Zadiraka, A. Tereshchenko, Computer arithmetic of multi-bit numbers in serial and parallel
computing models, Scientific opinion, Kyiv. 2021. 152 p.

[2] O. Markovskyi, A. Jalil, Method of accelerated modular multiplication for -efficient
implementation of public key cryptographic protection mechanisms, Interdepartmental
scientific and technical collection "Adaptive systems of automatic control", 1.44 (2024): 142-152.
do0i:10.20535/1560-8956.44.2024.302429.

[3] M. Kasianchuk, M, Karpinski, S. Kazmirchuk, Methodology of processing multi-digit numbers in
asymmetric cryptosystems, Ukrainian Information Security Research Journal, 21.2 (2019): 65-73.
doi: 10.18372/2410-7840.21.13764.

[4] J. Ding, S. Li, A low-latency and low-cost Montgomery modular multiplier based on NLP
multiplication. IEEE Trans. Circuits Syst. Il Express Briefs, 67(2019): 1319-1323. [CrossRef]

[5] doi: 10.1109/TCSII.2019.2932328.

[6] S. Kawamura, Y. Komano, H. Shimizu, T. Yonemura, RNS Montgomery reduction algorithms
using quadratic residuosity. Journal of Cryptographic Engineering, 9 (2019): 313-331.
doi:10.1007/s13389-018-0195-8.

[71 M.]. Ferrao, K. Kumar, N. Megha, Implementation of Modular Reduction and Modular
Multiplication Algorithms, IOSR Journal of VLSI and Signal Processing (IOSR-JVSP), 8.6.1 (2018):
34-38. doi: 10.9790/4200-0806013438.

[8] Z. Zhang,P. Zhang, A Scalable Montgomery Modular Multiplication Architecture with Low

[9] Area-Time Product Based on Redundant Binary Representation, Electronics 11.3712 (2022).
d0i:10.3390/electronics11223712.

[10] A. Tereshchenko, V. Zadiraka, Implementation of multi-bit multiplication operation based on
discrete cosine and sine transformations, Cybernetics and Computer Technologies, 4 (2021): 61—
79. d0i:10.34229/2707-451X.21.4.7.

[11] Z. Cao, Z. Chen, R. Wei, L. Liu, Run-based Modular Reduction Method, International Journal of
Network Security, 22.2 (2020): 331-336. doi: 10.6633/I]NS.202003 22(2).17.

[12] M. A. Will, R. K. L. Ko, Computing Mod Without Mod, in: Proceedings of 4th International
Symposium Security in Computing and Communications, SSCC 2016, Jiapur, India, 21-24
September 2016, pp. 3-17. doi: 10.1007/978-981-10-2738-3.

[13]].-C. Bajard, J. Eynard, N. Merkiche, Montgomery reduction within the context of residue number
system arithmetic. Special Issue on Montgomery Arithmetic, Journal of Cryptographic
Engineering, 8 (2018): 189-200. d0i:10.1007/s13389-017-0154-9.

[14]]. W. Bos, P. L. Montgomery, Topics in Computational Number Theory Inspired by Peter L.
Montgomery, in: J. W. Bos, A. K. Lenstra (Eds.), Montgomery Arithmetic from a Software
Perspective. October 2017, 276 p. URL: www.cambridge.org/9781107109353

[15] S. Srinitha, S. Niveda, S. Rangeetha, Kiruthika, A High Speed Montgomery Multiplier used in
Security Applications. in: Proceedings of the 2021 3rd International Conference on Signal
Processing and Communication (ICPSC), Coimbatore, India, 13-14 May 2021, pp. 299-303.

[16] MPIR: Multiple Precision Integers and Rationals. 2021. URL: http://mpir.org/.

[17] Montgomery Multiplication, 2022. URL: https://cp-algorithms.com/algebra
/montgomery_multiplication.html#implementation

[18] OpenSSL. Cryptography and SSL/TLS Toolkit, 2021. URL: http://www.openssl.org/

[19] Crypto++, 2021. URL: https://www.cryptopp.com/docs/ref/class_modular_arithmetic. html

[20] L. Prots'’ko, A. Gryshchuk, V. Riznyk, Efficient Multithreading Computation of Modular
Exponentiation with Pre-computation of Residues for Fixed-base in: Proceedings of Sixth
International Workshop on Computer Modeling and Intelligent Systems (CMIS 2023),
Zaporizhzhia, Ukraine, 3 May 2023. pp. 224-234. doi:10.32782/cmis/3392-19.

[21] L Prots’ko, N. Kryvinska, O. Gryshchuk, The Runtime Analysis of Computation of Modular
Exponentiation, Radio Electronics, Computer Science, Control 3 (2021). doi: 10.15588/1607-3274-
2021-3-4.

[22] 1. Prots’ko, A. Gryshchuk, Implementing Montgomery Multiplication to Speed-up the
Computation of Modular Exponentiation of Multi-bit Numbers, Cybernetics and Systems
Analysis 60.5 (2024). doi: 10.1007/s10559-024-00720-4.

