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Abstract
Recent advancements have made significant progress in addressing fair ranking and fairness with
continuous sensitive attributes as separate challenges. However, their intersection remains underexplored,
although crucial for guaranteeing a wider applicability of fairness requirements. In many real-world
contexts, sensitive attributes such as age, weight, income, or degree of disability are measured on a
continuous scale rather than in discrete categories. Addressing the continuous nature of these attributes
is essential for ensuring effective fairness in such scenarios. This work aims to fill the gap in the existing
literature by proposing a novel methodology that integrates state-of-the-art techniques to address long-
term fairness in the presence of continuous protected attributes. We demonstrate the effectiveness and
flexibility of our approach using real-world data.
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1. Introduction

Ranking in AI is increasingly used across various sectors to enhance decision-making processes,
spanning from credit scoring and hiring to education and other high-stakes domains. For
instance, in credit scoring, AI models evaluate creditworthiness by analyzing vast amounts
of financial data; in hiring, AI ranks candidates by assessing resumes and predicting job fit;
and educational programs leverage AI to rank students’ performance, providing personalized
learning experiences.
The social and ethical implications of these systems have recently gained attention both

in research and application domains, particularly concerning their potential to perpetuate or
accentuate discrimination. Several approaches and metrics have been proposed to enforce
and quantify adherence to fairness requirements, ensuring that trained models do not exhibit
discriminations against minorities or individuals [1].
In all these scenarios, it is possible to mitigate discrimination by adjusting the ranking to

promote fairness criteria (such as equal opportunity or statistical parity) across sensitive groups
or individuals. Various algorithmic mitigation strategies have been proposed in the literature
[2]; however, these approaches often focus on a single ranking, as if the AI system only produces
one ranking throughout its lifetime, failing to consider that the ranking process is repeated over
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time. Considering the lifespan of an AI system, it becomes essential to ensure that the system
can be deemed fair across all rankings produced, ensuring what is known as long-term fairness
[3]. The study and assurance of long-term fairness are necessary to guarantee consistent and
unbiased treatment across multiple iterations of the AI system, ensuring that biases do not
accumulate or shift over time. If fairness is only considered for individual rankings, it may lead
to temporary fairness that can fluctuate, resulting in long-term disparities. Furthermore, current
approaches to fair ranking typically only work with categorical sensitive attributes. However,
in various real-world scenarios, sensitive attributes like income, or degree of disability are
continuous rather than discrete. Consequently, effectively managing their continuous nature
is necessary for assessing and ensuring fairness. While there are studies focusing on fairness
concerning continuous sensitive attributes, they do not intersect with existing work on fair
ranking.
This work aims to fill the gap in the existing literature by proposing a methodology that

integrates state-of-the-art techniques to address long-term fairness in the presence of continuous
protected attributes.
The paper is structured as follows. Section 2 aims at placing our work within the existing

literature on fair machine learning, focusing on applications of fairness in ranking and fairness
with continuous sensitive attributes. In Section 3, we provide the essential technical background
required to understand the details and significance of our approach, as it incorporates different
state-of-the-art techniques and frameworks. Following this, we describe the specific aspects
of our contribution in Section 4, where we present our methodology grounded on a specific
use case. We outline the main results of our empirical evaluation in Section 5. Finally, we
summarize our findings in Section 6 and highlight potential directions for future investigation.

2. Related Work

To the best of our knowledge, no previous work has addressed the task of fair ranking with
continuous sensitive attributes. Still, there has been a significant growth in publications over the
last decade in the two distinct fields, both stemming from the broader domain of fair machine
learning. Hereby, we summarize the key developments in these areas as a means to effectively
frame our work within the current state of the art.

2.1. Fair Machine Learning

Mehrabi et al. [4] categorize fair machine learning methods into three major groups, namely
pre-processing, in-processing, and post-processing. This categorization is based on the timing
of debiasing interventions. For example, pre-processing methods can be applicable when
there is an opportunity to alter training data [5, 6, 7]. In contrast, in-processing methods
are used when the inherent training procedure of the machine learning model is modified,
either by loss regularizers or other types of constraint injection [8, 9, 10, 11]. Lastly, post-
processing methods are employed when the algorithm must operate on an already trained
model, treating it as a black box and reassigning output labels through a specific function in the
post-processing stage [12, 13, 14]. Our research aligns with the third category, as we build on
the work by [15] regarding the FAiRDAS framework, which aims to ensure sustained fairness



in ranking systems by post-processing the results produced by the learned model in successive
batches, independently of the characteristics of the model itself.

2.2. Fairness in Ranking Applications

In their survey [2], Zehlike et al. distinguish between two types of fair ranking algorithms: (1)
score-based methods, which use a predefined ranking function and allow the bias mitigation
step to intervene on either the initial scores of the candidates, the ranking function 𝑓, or the final
ranked outcome, and (2) supervised learning-to-rank methods, which train the ranking function
on data and can thus be further categorized as in Section 2.1. Interestingly, the authors note
that post-processing methods for learning-to-rank handle fairness constraints similarly to score-
based methods. Under this lens, FAiRDAS can be seen as both a learning-to-rank application
imposing constraints on model-predicted scores, and a score-based method enforcing fairness
by adjusting original scores, whether generated by a model or given as gold standards.

Most fair ranking approaches employ top-𝑘 proportional representations as a fairness metric.
Namely, they try to ensure an equal representation of protected groups in the first 𝑘 candidates.
For example, among the post-processing fairness methods for learning-to-rank, [16] and [17]
adjust the positions of the candidates in the final ranking to meet certain minimal (and optionally
maximal) requirements per subgroup. These methods treat top-𝑘 rankings as sets, hence
disregarding the position of candidates. In contrast, [18] and [19] take the position into account
by addressing the visibility bias rather than the score itself; in fact, the exposure of candidates
has been shown to decrease geometrically with respect to their ranking position, as defined
by their score. Moreover, the latter work proposes a methodology to dynamically change
rankings for the same query to achieve equal attention over time, thus inherently incorporating
long-term fairness effects within their framework, although at a query level only. For a more
comprehensive overview of bias mitigation in ranking at different stages in the pipeline and
using different methods, we refer the reader to the original survey.

2.3. Fairness with Continuous Protected Attributes

In the last few years, some works have proposed new metrics and computational methodologies
to address continuous sensitive attributes in fairness enforcement tasks. Among them, [20]
adopts for the first time the Hirschfeld–Gebelein–Rényi (HGR) correlation coefficient as a way
to enforce model debiasing over continuous protected features. This metric, also referred to as
the maximal correlation coefficient, is defined as the highest Pearson correlation that can be ob-
tained by transforming random variables into nonlinear spaces through copula transformations.
For this reason, its computation poses significant computational difficulties, yet various simplifi-
cations and approximations have been developed over recent years. Specifically, [20] introduced
a differentiable way to calculate a lower bound of the metric using kernel-density estimation
techniques, thus paving the way for its application as a loss regularizer in gradient-based learn-
ing algorithms. That work was subsequently improved by [21], whose novel computational
technique based on two adversarial neural networks was shown to outperform the former.
A parallel effort was undertaken by [22], who introduced an indicator named Generalized

Disparate Impact (GeDI) by slightly modifying the formulation of HGR to better adhere with



the legal concept of “Disparate Impact”. Disparate impact arises when a seemingly impartial
practice adversely affects a protected group, and a first method to measure it in both regression
and classification scenarios was introduced by [23], who proposed a novel fairness metric
called Disparate Impact Discrimination Index (DIDI). The Generalized Disparate Impact indicator
straightforwardly extends this metric to the case of continuous inputs where, as usual, higher
GeDI values signify a greater disparity concerning the chosen protected attribute.

3. Background

In this section, we provide a formalization of the ranking problem general enough to model
our case study and other similar applications. Next, we introduce FAiRDAS [15], a general
framework designed to address long-term fairness in ranking systems. Finally, we describe
the Generalized Disparate Impact (GeDI) indicator [22], which we utilize to effectively handle
continuous protected attributes.

3.1. Ranking Problem Formulation

We focus on a process wherein a set ℛ of 𝑚 resources undergoes repetitive ranking guided by
observable information arriving over time. For example, ℛ may contain students that need to
be ranked based on predicted academic performance. The observable information, hereinafter
referred to as batches, is seen as a stochastic process indexed by time, denoted as {𝑋𝑡}∞𝑡=1. Each
batch 𝑋𝑡 is a random variable characterized by a domain 𝒳 and probability distribution 𝑃(𝑋𝑡).
The ranking quality is characterized using a metric function defined in probabilistic terms,
typically relying on expectations or event probabilities, namely:

𝑦 ∶ 𝑋 , 𝜃 ↦ 𝑦[𝑋 ; 𝜃] (1)

Here, 𝜃 ∈ Θ is an action vector whose values can be adjusted to control the ranking procedure
behavior. For example, the action vector might represent penalty or reward terms linked to
sensitive groups. The vector 𝑦[𝑋 ; 𝜃] ∈ ℝ𝑛 denotes the values of 𝑛 metrics for a given batch 𝑋
and action vector 𝜃. In real-world scenarios, these metrics will always admit a finite sample
formulation, often derived by substituting theoretical expectations with sample averages.

Given that the ranking is performed for every batch, followed by an adjustment of the action
vector, the ranking problem can be defined in terms of the tuple:

⟨{𝑋𝑡}∞𝑡=1, {𝜃𝑡}∞𝑡=1⟩ (2)

where 𝑋𝑡 and 𝜃𝑡 are the batch and action vector at time 𝑡 respectively. The value of the metrics
at time 𝑡 is determined given 𝑋𝑡 and 𝜃𝑡 (Equation (1)).

3.2. FAiRDAS

FAiRDAS [15] is a general framework that models long-term fairness as a dynamic system.
It aims at stabilizing fairness and quality metrics below user-defined thresholds and allows
users to define a target behavior approximated through a sequence of action; for example,



one may modify an input ranking by adjusting the scores for different protected groups. The
approximation of the target behavior involves solving an optimization problem that minimizes
the discrepancy between the target values for the metrics ̄𝑦𝑡 and the actual metrics 𝑦𝑡 determined
by the actions 𝜃𝑡, namely:

𝜃∗( ̄𝑦𝑡) = argmin
𝜃𝑡∈Θ

ℒ(𝜃𝑡, ̄𝑦𝑡) (3)

The solution method for Equation (3) relies on the action space characteristics and the chosen
distance function. A possible choice for ℒ(𝜃𝑡, ̄𝑦𝑡) is the Euclidean distance:

ℒ(𝜃𝑡, ̄𝑦𝑡) = ‖𝑦[𝑋𝑡; 𝜃𝑡] − ̄𝑦𝑡‖22. (4)

The exact evaluation of Equation (4) is often unfeasible, primarily due to the unknown distribu-
tion 𝑃(𝑋𝑡); thus, metric values 𝑦[𝑋𝑡; 𝜃𝑡] are replaced typically with a Monte Carlo approximation
derived from historical data.

FAiRDAS Grounding. To apply FAiRDAS effectively to a specific scenario, it is essential
to delineate its core components: 1) the metrics of interest, which establish the criteria for
evaluating fairness and ranking quality; 2) the corresponding threshold vectors; 3) the target
dynamic system which define the ideal metrics behavior; 4) the set of actions, delineating how
metrics can be manipulated to enhance ranking fairness and quality; 5) the distance function,
defining the metric for assessing the effectiveness of the target system’s approximation; and
finally, 6) the optimization methods used to address Equation (3), which heavily depends on the
chosen set of actions and distance function.

3.3. Generalized Disparate Impact

The Generalized Disparate Impact (GeDI) was first introduced in [22] as an extension of the
Disparate Impact Discrimination Index (DIDI) [23] to expand the availability of fairness metrics
for the fully continuous case. It features a mapping function 𝑓 (𝑥) for the input attribute 𝑥 ∈ 𝒳,
which enables accounting for non-linear correlations between the sensitive input and the target.

This choice is inspired by the copula transformations of the Hirschfeld–Gebelein–Rényi
(HGR) maximum correlation coefficient. However, one major difference between GeDI and HGR
lies in the absence of a second mapping function on the output feature 𝑦 ∈ 𝒴, which prevents it
from measuring non-functional dependencies of the type 𝑦 ↦ 𝑥, akin to the DIDI. In addition
to that, instead of leveraging the original definition of Pearson’s coefficient, the formulation of
GeDI is slightly altered to make the indicator sensitive to scale variations. This ensures that
reductions in unfairness are proportionally translated to diminished disparate impacts even if
the shape of the unfair behavior is not modified, and also guarantees compatibility between
GeDI and DIDI since both metrics yield identical results when the input attribute is binary.
Finally, the mapping function 𝑓 (𝑥) is restricted to a linear combination over a polynomial kernel.
This allows one to frame the computation as a linear optimization problem, thus keeping a
low computational burden although retaining high approximation capabilities thanks to the
inherent non-linearities. Additionally, it serves the dual purpose of reducing overfitting while
maximizing user-configurability and interpretability of the metric.



Formally, 𝑓 (𝑥) is defined as the vector product V𝑘
𝑥 ⋅ 𝛼, where V𝑘

𝑥 is the polynomial expansion
matrix built from the input vector 𝑥 – i.e., the Vandermondematrix –, while 𝛼 ∈ ℝ𝑘 is a coefficient
vector that weighs the contribution of each polynomial order. GeDI is eventually computed as:

GeDI(𝑥, 𝑦 ;V𝑘) = |
cov(V𝑘

𝑥 ⋅ 𝛼 , 𝑦)
var(V𝑘

𝑥 ⋅ 𝛼)
| s.t. ‖𝛼‖1 = 1 (5)

where the constraint on the L1 norm of the coefficient vector is intended to replace the absence
of the scaling factor on the output term. An important detail to note is that the order 𝑘 of the
polynomial expansion is part of the specification of the indicator, as it appears in its notation
and aims to offer users a simple way to balance the bias-variance trade-off.

4. FAiRDAS with Continuous Attribute

As a demonstration of our approach, we focus on ranking students by their predicted academic
performance to identify those at risk of dropping out. The real-world data is provided by
the Canarian Agency for Quality Assessment and Accreditation (ACCUEE)1, which gathers
information to assess the performance of their educational system through regular diagnostic
reports. The data spans four academic years (2015-2019) including (1) the evaluation of students’
academic proficiency in subjects such as Mathematics, Spanish, and English and (2) context
questionnaires completed by students, school principals, families, and teachers to collect socio-
demographic background information. In our test case, we rank students based on their
Mathematics proficiency measured by a normalized score. The protected attribute considered is
the Economic, Social, and Cultural Status (ESCS) [24], namely a continuous indicator that serves
as a proxy for the socioeconomic status of students. Ensuring long-term stability is crucial in
this context: although consistently high accuracy and fairness are desirable, it is essential to
maintain stable actions over time to prevent negatively affecting students’ academic progress.
In addressing the task at hand, we define two distinct groundings of FAiRDAS framework.

The first grounding, inspired by [15], adopts a set of discrete actions that requires a discretization
of the sensitive attribute; conversely, the second grounding relies on a set of continuous actions
that do not require any discretization. In both groundings, the continuous nature of the attribute
is preserved when computing the fairness metric as we rely on GeDI [22]. The groundings we
propose represent two potential approaches to addressing long-term fairness with continuous
attributes and should not be seen as conflicting: in certain scenarios, depending on the desired
level of interpretability and the overall system requirements, discrete actions may be necessary,
while in others, continuous actions might be preferred. In the remaining of the section, we
describe the two groundings in detail.

4.1. Grounding with Discrete Actions

Set of Actions. Inspired by [15], we design a set of discrete actions that directly modify the
scores used by the ranking algorithm. Formally, given the discretization 𝑣 ∈ 𝒱 = {𝑣1, 𝑣2, ..., 𝑣𝑛}
of the continuous protected attribute ESCS, the actions are represented by a vector 𝜃 ∈ [0, 1]∣𝒱 ∣

1Dataset: https://zenodo.org/records/11171863.

https://zenodo.org/records/11171863


with unit L1 norm. The modified score of a student with 𝐸𝑆𝐶𝑆 = 𝑣 is obtained by multiplying
their original score by (1 − 𝜃𝑣). Thus, the action vector components act as penalizing factors
for over-represented sensitive groups in a batch, specifically affecting the scores of students
in these protected groups. Higher values in the action vector (closer to 1) correspond to more
significant penalization, whereas values closer to zero result in minimal modification to the
student’s score. In our application, we discretize the continuous protected attribute ESCS in four
levels; thus, the action vector 𝜃 has four components, each applying to the students belonging
to the corresponding ESCS level.

Metrics of Interest. In our case study, we are interested in decreasing socioeconomic dis-
crimination while preserving ranking accuracy; thus, we need 1) a fairness metric able to deal
with the continuous protected attribute ESCS and 2) an accuracy metric to measure the drop in
ranking performance due to the application of the action vector 𝜃. As a fairness metric, we rely
on GeDI, whereas to assess the system’s drop in performance we measure the sum of absolute
differences between the original and modified scores, namely:

SAE(𝜃) = 1
𝐾

𝐾
∑
𝑘=1

|𝑠𝑘 − (1 − 𝜃𝑣𝑘) ⋅ 𝑠𝑘| =
1
𝐾

𝐾
∑
𝑘=1

|𝑠𝑘 ⋅ 𝜃𝑣𝑘 | =
1
𝐾

𝐾
∑
𝑘=1

𝑠𝑘 ⋅ 𝜃𝑣𝑘 , (6)

where 𝐾 is the number of students in a batch, 𝜃𝑣𝑘 ∈ [0, 1] is the component of the action vector
corresponding to the ESCS level of the k-th student, and 𝑠𝑘 ∈ [0, 1] is the score of the k-th
student. It is worth noting that the two metrics of interest conflict: SAE drives 𝜃𝑣𝑘 towards
zero to maintain the original ranking, whereas GeDI requires 𝜃𝑣𝑘 > 0 for some 𝑘 to mitigate
discrimination. Given that the action vector must have a unit L1 norm, the trivial solution of
𝜃𝑣𝑘 = 0 for all 𝑘, which would nullify both metrics, is not allowed.

Target Dynamic System. As we aim to meet the metric thresholds while maintaining long-
term stability, we define our desired behavior by means of following dynamic system, which
defines a smooth evolution of the target metrics toward the thresholds:

̄𝑦𝑡+1 = 𝜆 ⊙ ( ̄𝑦𝑡 − 𝜇) + ̄𝑦𝑡, (7)

where ̄𝑦𝑡 represent the metric values in the target system, 𝜇 is the vector of thresholds, 𝜆 ∈ (0, 2)𝑛,
and ⊙ refers to the Hadamard (element-wise) product. Given that we are focusing on two
metrics (GeDI and SAE), 𝜆 is a 2-dimensional vector, with its values determined through a
preliminary experiment detailed in Section 5.

Distance Function and Optimization Method. We use Equation (4) – Euclidean distance
– as the distance function, optimizing it with the scipy implementation of Sequential Least
Squares Programming (SLSQP) optimizer.

4.2. Grounding with Continuous Actions

Set of Actions. To avoid the discretization of the protected attribute ESCS, we define the set of
possible actions as a family of polynomial functions 𝑊𝛽 parameterized by 𝛽 ∈ ℝ𝑑+1, where 𝑑 is



the order of the polynomial2. The functions map each value of ESCS to a real number, which is
then used as a multiplicative discount factor to modify the student’s score. First, we rescale ESCS
into the domain [0, 1], then we impose two constraints on the family of polynomial functions𝑊𝛽,
namely: 1) their integral must be unitary over domain in order to avoid degenerate solutions,
and 2) their roots must lie outside the domain in order to guarantee that each discount factor
𝑊𝛽(𝑧𝑘) is strictly positive for all 𝑧𝑘 ∈ [0, 1]. These constraints enhance the interpretability of the
mitigation strategy by simplifying the comparison between the selected polynomial functions.
Additionally, they prevent the trivial solution of a constant function equal to zero, which would
nullify the fairness metric.

Metrics of Interest. As in Discrete Actions, we use GeDI as fairness metric to deal with the
continuous nature of ESCS. The ranking performance is measured by the mean squared error
between the original and modified scores3:

MSE(𝛽) = 1
𝐾

𝐾
∑
𝑘=1

(𝑠𝑘 − 𝑊𝛽(𝑧𝑘) ⋅ 𝑠𝑘)2. (8)

where 𝑧𝑘 is the ESCS value of the k-th student, and 𝑊𝛽(𝑧𝑘) the weighting polynomial function
evaluated on 𝑧𝑘. As in Discrete Actions, the two metrics of interest conflict sinceMSE pushes
𝑊𝛽 to be close to the constant function 𝑊𝛽 = 1 while GeDI forces 𝑊𝛽 to deviate from it.

Target Dynamic System. We rely on the same dynamic system in Equation (7), as our goal
is to stably evolve the two metrics of interest below the predefined thresholds.

Distance Function and Optimization Method. As before, we use Equation (4) – Euclidean
distance – as a distance function. However, when optimizing it, we rely on the scipy imple-
mentation of the Trust Region Method (trust-constr), as it proved to be more reliable in the
solution, although at the expense of a slightly higher computational time.

5. Experimental Results

This section outlines the empirical evaluation performed on the case study described in Section
4. We first define the evaluation procedure and then report the numerical results4.

5.1. Evaluation

We compare each of the two groundings with a baseline method focusing on metrics of interest
and action smoothness (m𝐴𝑐𝑡𝑖𝑜𝑛𝑠) described below. For each approach, we report the mean and
standard deviation of the metrics across batches to assess performance and stability over time.

2In our application, we choose 𝑑 = 4 as it provides a sufficient trade-off between the expressiveness of the function
and the known numerical instability of polynomial kernels, along with their higher computational workload.

3We rely on MSE and not on SAE to avoid the computation of an absolute error.
4The source code to reproduce the experiments can be found at https://github.com/EleMisi/FairRanking under MIT
license.

https://github.com/EleMisi/FairRanking


Action Smoothness. To evaluate the stability of the chosen actions over time, we compute
the cosine distance between actions performed on consecutive batches. For the Discrete Actions
grounding, m𝐴𝑐𝑡𝑖𝑜𝑛𝑠 is defined as follows:

m𝐴𝑐𝑡𝑖𝑜𝑛𝑠 =
1
𝑁

𝑁−1
∑
𝑡=1

(1 −
𝜃𝑡 ⋅ 𝜃𝑡+1

√𝜃2𝑡 ⋅ √𝜃
2
𝑡+1

) (9)

where 𝑁 is the number of incoming batches and 𝜃𝑡 is the action vector of the 𝑡-th batch. For
the Continuous Actions grounding,m𝐴𝑐𝑡𝑖𝑜𝑛𝑠 is computed by evaluating the weighting polynomial
functions on a fine-grained discretization of the interval [0, 1]. Formally, it is defined as:

m𝐴𝑐𝑡𝑖𝑜𝑛𝑠 =
1
𝑁

𝑁−1
∑
𝑡=1

(1 −
𝑊𝛽𝑡 ⋅ 𝑊𝛽𝑡+1

√𝑊
2
𝛽𝑡 ⋅ √𝑊

2
𝛽𝑡+1

) (10)

where 𝑁 is the number of incoming batches and𝑊𝛽𝑡 is the evaluation of the polynomial function
chosen for the 𝑡-th batch.

BaselineApproach. We compare FAiRDAS in itsDiscrete Actions grounding against a baseline
approach that focuses on finding the optimal action vector that minimizes:

ℒ(𝜃) = max (GeDI(𝜃), 𝜇𝐺𝑒𝐷𝐼) +max (SAE(𝜃), 𝜇𝑆𝐴𝐸) (11)

where 𝜇𝐺𝑒𝐷𝐼 and 𝜇𝑆𝐴𝐸 are the metrics’ thresholds. The action vector 𝜃 is the same described
in Section 4.1, and it is optimized via the SLSQP method, as for FAiRDAS. For the Continuous
Actions grounding, the baseline approach searches for the optimal polynomial function 𝑊𝛽 that
satisfies the constraints described in Section 4.2 and minimizes:

ℒ(𝛽) = max (GeDI(𝛽), 𝜇𝐺𝑒𝐷𝐼) +max (MSE(𝛽), 𝜇𝑀𝑆𝐸) . (12)

with 𝜇𝐺𝑒𝐷𝐼 and 𝜇𝑀𝑆𝐸 are the metrics’ thresholds. As for FAiRDAS, we rely on the Trust Region
Methods to tackle the optimization problem.

5.2. Numerical Results

As a preliminary step, we examine how the eigenvalues 𝜆 of the FAiRDAS dynamic system
influence action smoothness to determine their optimal values for the experiments. We conduct
multiple runs with a fixed threshold while varying the eigenvalues (Table 1). As expected, based
on the theoretical characteristics of the dynamic state under consideration, lower eigenvalues
result in more stable actions in both groundings. For our experiments, we select the eigenvalues
corresponding to the inflection point of the action smoothness metric.
Next, we compare the performance of FAiRDAS and the baseline under different pairs of

thresholds for the metrics of interest. For both Discrete Actions and Continuous Actions settings,
the threshold pair {0, 2} represents an extreme scenario where fairness is prioritized over ranking
performance. Subsequently, we examine a loose threshold pair, {0.7, 0.7}, and a stringent pair,
{0.5, 0.5}. Finally, we investigate a pair of thresholds, {0.2, 0.2}, that cannot be reached.



Table 1
Mean and standard deviation of the action smoothness computed over the batches for FAiRDAS. We
analyse the results for 5 different eigenvalues (𝜆) with a fixed threshold pair {0.5, 0.5}. For each eigenvalue,
we run eight experiments. We select 𝜆 = 0.2 as the elbow of the curve for both groundings (in bold).

Discrete Actions Continuous Actions
𝜆 mActions 𝜎mActions mActions 𝜎mActions

1.0 0.201 ± 0.042 0.265 ± 0.050 0.044 ± 0.023 0.166 ± 0.032

0.5 0.054 ± 0.045 0.128 ± 0.106 0.011 ± 0.003 0.053 ± 0.016

0.2 0.036 ± 0.048 0.115 ± 0.116 0.006 ± 0.002 0.023 ± 0.010
0.1 0.031 ± 0.048 0.105 ± 0.123 0.005 ± 0.002 0.025 ± 0.012

0.01 0.029 ± 0.049 0.101 ± 0.126 0.001 ± 0.001 0.002 ± 0.002

Table 2
Mean and standard deviation of the metrics computed over batches for Discrete Actions. We run eight
experiments for each pair of thresholds and report the results for the baseline and FAiRDAS approach.

Thresholds Approach GeDI 𝜎GeDI SAE 𝜎SAE mActions 𝜎mActions

{0, 2} Baseline .388 ± .146 .606 ± .172 .644 ± .117 .550 ± .090 .139 ± .014 .183 ± .010
FAiRDAS .269 ± .104 .469 ± .124 .636 ± .087 .262 ± .047 .015 ± .010 .054 ± .058

{0.7, 0.7} Baseline .456 ± .108 .642 ± .124 .608 ± .159 .568 ± .127 .211 ± .065 .288 ± .063
FAiRDAS .294 ± .103 .487 ± .115 .612 ± .102 .261 ± .062 .046 ± .060 .144 ± .131

{0.5, 0.5} Baseline .510 ± .157 .694 ± .151 .627 ± .149 .660 ± .123 .273 ± .046 .301 ± .034
FAiRDAS .281 ± .097 .484 ± .111 .627 ± .103 .263 ± .096 .036 ± .048 .115 ± .116

{0.2, 0.2} Baseline .579 ± .158 .743 ± .168 .639 ± .157 .736 ± .130 .358 ± .043 .334 ± .013
FAiRDAS .289 ± .121 .511 ± .133 .638 ± .119 .377 ± .076 .027 ± .015 .079 ± .057

Results with Discrete Actions. Table 2 presents the mean and standard deviation of the
metrics throughout 100 batches for both baseline and FAiRDAS approach in Discrete Actions
setting. Across all threshold pairs, the two methods achieve comparable levels of the metrics of
interest (GeDI and SAE). However, the baseline exhibits notably higher levels of instability in
the chosen actions (higher m𝐴𝑐𝑡𝑖𝑜𝑛𝑠) compared to FAiRDAS, especially with stringent thresholds.
This finding confirms the ability of FAiRDAS to maintain both performance effectiveness and
fairness over time while also avoiding drastic actions that may raise ethical concerns. The
increased stability of FAiRDAS approach is demonstrated in Figure 1, which shows the action
vectors selected by both approaches in an experiment with stringent thresholds. This figure
provides a component-wise comparison of the baseline and FAiRDAS action vectors across all
100 batches. As detailed in Section 4.1, each component of the action vectors affects students
from the corresponding ESCS level and acts as penalizing factors on their scores, potentially
altering their ranking. Higher values indicate more significant penalization, while values near
zero mean the student’s score remains untouched. The baseline method tends to favor rapid and
drastic interventions, indicated by 1) the sudden color change between batches and 2) action
components close to one (lighter color). In contrast, FAiRDAS exhibits a more moderated and
balanced behavior, with action vectors evolving smoothly over the experiment (gradual color
changes along x-axis) and similar penalization across groups (uniform color along y-axis).



(a) (b)

Figure 1: An example of the action vectors selected by the baseline (a) and FAiRDAS (b) in an experi-
ment with thresholds ({0.2, 0.2}). Each row shows the progression of the corresponding action vector
component throughout 100 batches. FAiRDAS exhibits a more moderated and balanced behaviour, with
action vectors evolving smoothly over the experiment.

Results with Continuous Actions. In Table 3 we report the mean and standard deviation of
the metrics over 100 batches for both baseline and FAiRDAS approach under Continuous Actions
setting. As withDiscrete Actions, the numerical results confirm FAiRDAS’s capability to maintain
both performance effectiveness and fairness over time while avoiding drastic actions. FAiRDAS
and the baseline achieve similar levels for the metrics of interest (GeDI and MSE) across all
thresholds, but FAiRDAS reaches lower values of action smoothness (m𝐴𝑐𝑡𝑖𝑜𝑛𝑠). This result is

Table 3
Mean and standard deviation of the metrics computed over batches for Continuous Actions. We run
eight experiments for each pair of thresholds and report the results for the baseline and FAiRDAS.

Thresholds Approach GeDI 𝜎GeDI MSE 𝜎MSE mActions 𝜎mActions

{0, 2} Baseline .629 ± .267 1.202 ± .337 .572 ± .197 .690 ± .078 .015 ± .005 .101 ± .056
FAiRDAS .449 ± .162 .717 ± .145 .546 ± .202 .684 ± .087 .005 ± .001 .024 ± .006

{0.7, 0.7} Baseline .629 ± .235 .970 ± .325 .550 ± .200 .688 ± .082 .017 ± .004 .108 ± .039
FAiRDAS .676 ± .194 .782 ± .272 .532 ± .198 .697 ± .088 .005 ± .003 .020 ± .017

{0.5, 0.5} Baseline .644 ± .213 1.011 ± .298 .555 ± .198 .688 ± .08 .017 ± .005 .107 ± .048
FAiRDAS .712 ± .275 .875 ± .375 .536 ± .204 .689 ± .087 .006 ± .002 .023 ± .010

{0.2, 0.2} Baseline .675 ± .233 1.152 ± .312 .567 ± .194 .688 ± .079 .015 ± .005 .100 ± .057
FAiRDAS .607 ± .201 .839 ± .284 .534 ± .200 .692 ± .088 .008 ± .002 .034 ± .013

exemplified in Figure 2, where we present an example of the polynomial functions selected by
FAiRDAS and the baseline throughout 100 batches. Each column displays the function chosen
for the corresponding batch, evaluated over the ESCS domain [0, 1] (y-axis). As described in
Section 4.2, the functions influence the ranking based on the students’ ESCS value, serving as a
penalizer on their scores: lower values correspond to more substantial penalization, whereas
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Figure 2: An example of the polynomial functions selected by the baseline (a) and FAiRDAS (b) in an
experiment with thresholds ({0.2, 0.2}). Each column represents the polynomial function selected for the
corresponding batch evaluated on domain [0, 1].

values close to one indicate that the student’s score is unaffected. As for Discrete Actions, we
observe that the baseline method tends to favor rapid and drastic actions, as indicated by 1) the
abrupt color changes between batches and 2) the high penalization values (higher contrast).
Conversely, FAiRDAS demonstrates a more moderated and balanced behaviour, with polynomial
functions evolving smoothly throughout the batches (gradual color changes along x-axis) and
more consistent penalization across different ESCS values (smooth color changes along y-axis).

6. Conclusion

We introduced a novel approach that integrates state-of-the-art techniques to address long-
term fairness in the presence of continuous protected attributes. This is achieved by pairing
FAiRDAS [15], a framework aimed at ensuring long-term fairness in ranking systems while
preserving stable actions, with the Generalized Disparate Impact (GeDI) indicator [22], a fairness
metric specifically designed to handle continuous protected attributes. Our contribution includes
the definition of two possible sets of actions to handle continuous attributes. The first set
prioritizes interpretability but introduces discretization, whereas the second set maintains the
continuity of actions at the expense of interpretability. The selection of the set of actions to
apply depends on the specific requirements and constraints of the application context. We
validated our methodology through a case study in the domain of AI and Education, where we
compared the performance and stability of FAiRDAS against a baseline method. Our analysis
demonstrates that the integration of FAiRDAS and GeDI with our defined actions presents a
robust solution for addressing long-term fairness under continuous protected attributes.

To the best of our knowledge, this is the first work that tackles long-term fairness and stability
in ranking with continuous attributes. Thus, we believe that it could lay the groundwork for
further research and applications in several domains where handling continuous attributes and
stability are of key importance, yet currently understudied.
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